Portable Colorimetric Hydrogel Test Kits and On-Mobile Digital Image Colorimetry for On-Site Determination of Nutrients in Water
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of In-Tube Hydrogel Test Kits for Nutrient Detection
2.2. Characterization of Hydrogel Test Kits
2.3. In-Tube Colorimetric Testing of Nutrients by Hydrogel Test Kits
2.4. Nutrient Quantification via On-Mobile DIC
2.5. Analytical Performance and Method Validation
2.6. Influence of Potential Interferences on Nutrient Quantification
2.7. Nutrient Quantification in Surface Water in Phuket
3. Materials and Methods
3.1. Materials
3.2. Preparation of Hydrogel Test Kits and Nitrate Reduction Film
3.3. Characterization of Hydrogel Test Kit for Phosphate
3.4. Quantitative Analysis via Colorimetric Testing and DIC
3.5. System Performance and Method Validation
3.6. Quantification of Nutrients in Surface Water
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Almanassra, I.W.; Kochkodan, V.; Subeh, M.; McKay, G.; Atieh, M.; Al-Ansari, T. Phosphate removal from synthetic and treated sewage effluent by carbide derive carbon. J. Water Process. Eng. 2020, 36, 101323. [Google Scholar] [CrossRef]
- Almanassra, I.W.; McKay, G.; Kochkodan, V.; Ali Atieh, M.; Al-Ansari, T. A state of the art review on phosphate removal from water by biochars. J. Chem. Eng. 2021, 409, 128211. [Google Scholar] [CrossRef]
- Huang, H.; Liu, J.; Zhang, P.; Zhang, D.; Gao, F. Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. J. Chem. Eng. 2017, 307, 696–706. [Google Scholar] [CrossRef]
- Rout, P.R.; Shahid, M.K.; Dash, R.R.; Bhunia, P.; Liu, D.; Varjani, S.; Zhang, T.C.; Surampalli, R.Y. Nutrient removal from domestic wastewater: A comprehensive review on conventional and advanced technologies. J. Environ. Manag. 2021, 296, 113246. [Google Scholar] [CrossRef]
- Seliem, M.K.; Komarneni, S.; Abu Khadra, M.R. Phosphate removal from solution by composite of MCM-41 silica with rice husk: Kinetic and equilibrium studies. Microporous Mesoporous Mater. 2016, 224, 51–57. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality; World Health Organization (WHO): Geneva, Switzerland, 2004.
- Choodum, A.; Boonsamran, P.; NicDaeid, N.; Wongniramaikul, W. On-site semi-quantitative analysis for ammonium nitrate detection using digital image colourimetry. Sci. Justice 2015, 55, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.-H.; Yu, L.-J.; Liu, Y.; Lin, L.; Lu, R.-G.; Zhu, J.-P.; He, L.; Lu, Z.-L. Methods for the detection and determination of nitrite and nitrate: A review. Talanta 2017, 165, 709–720. [Google Scholar] [CrossRef]
- Singh, P.; Singh, M.K.; Beg, Y.R.; Nishad, G.R. A review on spectroscopic methods for determination of nitrite and nitrate in environmental samples. Talanta 2019, 191, 364–381. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Ma, J. Recent advances in the determination of phosphate in environmental water samples: Insights from practical perspectives. TrAC—Trends Anal. Chem. 2020, 127, 115908. [Google Scholar] [CrossRef]
- Choodum, A.; Tiengtum, J.; Taweekarn, T.; Wongniramaikul, W. Convenient environmentally friendly on-site quantitative analysis of nitrite and nitrate in seawater based on polymeric test kits and smartphone application. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 243, 118812. [Google Scholar] [CrossRef]
- Taweekarn, T.; Wongniramaikul, W.; Limsakul, W.; Sriprom, W.; Phawachalotorn, C.; Choodum, A. A novel colorimetric sensor based on modified mesoporous silica nanoparticles for rapid on-site detection of nitrite. Microchim. Acta 2020, 187, 643. [Google Scholar] [CrossRef] [PubMed]
- Pistón, M.; Mollo, A.; Knochen, M. A simple automated method for the determination of nitrate and nitrite in infant formula and milk powder using sequential injection analysis. J. Autom. Meth. Manag. Chem. 2011, 2011, 148183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagul, E.A.; McKelvie, I.D.; Worsfold, P.; Kolev, S.D. The molybdenum blue reaction for the determination of orthophosphate revisited: Opening the black box. Anal. Chim. Acta 2015, 890, 60–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidari-Bafroui, H.; Charbaji, A.; Anagnostopoulos, C.; Faghri, M. A Colorimetric Dip Strip Assay for Detection of Low Concentrations of Phosphate in Seawater. Sensors 2021, 21, 3125. [Google Scholar] [CrossRef]
- Ibnul, N.K.; Tripp, C.P. A solventless method for detecting trace level phosphate and arsenate in water using a transparent membrane and visible spectroscopy. Talanta 2021, 225, 122023. [Google Scholar] [CrossRef]
- Yang, S.; Wo, Y.; Meyerhoff, M.E. Polymeric optical sensors for selective and sensitive nitrite detection using cobalt(III) corrole and rhodium(III) porphyrin as ionophores. Anal. Chim. Acta 2014, 843, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Amanulla, B.; Palanisamy, S.; Chen, S.-M.; Chiu, T.-W.; Velusamy, V.; Hall, J.M.; Chen, T.-W.; Ramaraj, S.K. Selective Colorimetric Detection of Nitrite in Water using Chitosan Stabilized Gold Nanoparticles Decorated Reduced Graphene oxide. Sci. Rep. 2017, 7, 14182. [Google Scholar] [CrossRef] [Green Version]
- Wongniramaikul, W.; Choodum, A. Synthesis of Polymer Sensor for Detection of Phosphate in Water. Int. J. Chem. Eng. Appl. 2017, 8, 221–225. [Google Scholar] [CrossRef] [Green Version]
- Nam, J.; Jung, I.-B.; Kim, B.; Lee, S.-M.; Kim, S.-E.; Lee, K.-N.; Shin, D.-S. A colorimetric hydrogel biosensor for rapid detection of nitrite ions. Sens. Actuators B Chem. 2018, 270, 112–118. [Google Scholar] [CrossRef]
- Sadighi, S.; Targhi, S.K.M. Preparation of Biofuel from Palm Oil Catalyzed by Ammonium Molybdate in Homogeneous Phase. Bull. Chem. React. Eng. Catal. 2017, 12, 49–54. [Google Scholar] [CrossRef]
- Barbosa, V.T.; de Menezes, J.B.; Santos, J.C.C.; de Assis Bastos, M.L.; de Araújo-Júnior, J.X.; do Nascimento, T.G.; Basílio-Júnior, I.D.; Grillo, L.A.M.; Dornelas, C.B. Characterization and Stability of the Antimony-Quercetin Complex. Adv. Pharm. Bull. 2019, 9, 432–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunaciu, A.A.; Bacalum, E.; Aboul-Enein, H.Y.; Elena Udristioiu, G.; Fleschin, Ş. FT-IR Spectrophotometric Analysis of Ascorbic Acid and Biotin and their Pharmaceutical Formulations. Anal. Lett. 2009, 42, 1321–1327. [Google Scholar] [CrossRef]
- Umer, A.; Naveed, S.; Ramzan, N.; Rafique, M.S.; Imran, M. A green method for the synthesis of Copper Nanoparticles using L-ascorbic acid. Matéria 2014, 19, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Clinton-Bailey, G.; Grand, M.; Beaton, A.; Nightingale, A.; Owsianka, D.; Slavik, G.; Cardwell, C.; Connelly, D.; Mowlem, M. A Lab-on-Chip Analyzer for in Situ Measurement of Soluble Reactive Phosphate: Improved Phosphate Blue Assay and Application to Fluvial Monitoring. Environ. Sci. Technol. 2017, 51, 9989–9995. [Google Scholar] [CrossRef]
- Habibah, N.; Dhyanaputri, I.G.A.S.; Karta, I.W.; Sundari, C.D.W.H.; Hadi, M.C. A simple spectrophotometric method for the quantitative analysis of phosphate in the water samples. J. Sains Teknol. 2018, 7, 198. [Google Scholar] [CrossRef]
- Method 365.3; Phosphorous, All Forms (Colorimetric, Ascorbic Acid, Two Reagent). United State Environmental Protection Agency: Washington, DC, USA, 1978.
- Method 1686; Nitrate/Nitrite-N in Water and Biosolids by Manual Colorimetry. United State Environmental Protection Agency: Washington, DC, USA, 2001.
- García-Robledo, E.; Corzo, A.; Papaspyrou, S. A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes. Mar. Chem. 2014, 162, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Miranda, K.M.; Espey, M.G.; Wink, D.A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 2001, 5, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Schnetger, B.; Lehners, C. Determination of nitrate plus nitrite in small volume marine water samples using vanadium(III)chloride as a reduction agent. Mar. Chem. 2014, 160, 91–98. [Google Scholar] [CrossRef]
- Pasquali, C.E.L.; Gallego-Picó, A.; Hernando, P.F.; Velasco, M.; Alegría, J.S.D. Two rapid and sensitive automated methods for the determination of nitrite and nitrate in soil samples. Microchem. J. 2010, 94, 79–82. [Google Scholar] [CrossRef]
- Knochen, M.; Rodríguez-Silva, J.C.; Silva-Silva, J. Exploitation of reaction mechanisms for sensitivity enhancement in the determination of phosphorus by sequential injection analysis. Talanta 2020, 209, 120589. [Google Scholar] [CrossRef]
- Choodum, A.; Kanatharana, P.; Wongniramaikul, W.; Nic Daeid, N. Using the iPhone as a device for a rapid quantitative analysis of trinitrotoluene in soil. Talanta 2013, 115, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Choodum, A.; Kanatharana, P.; Wongniramaikul, W.; NicDaeid, N. A sol–gel colorimetric sensor for methamphetamine detection. Sens. Actuators B Chem. 2015, 215, 553–560. [Google Scholar] [CrossRef]
- World Health Organization. Nitrate and Nitrite in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality; Geneva. World Health Organization: Geneva, Switzerland, 2003.
- The Ministry of Natural Resources and Environment of Thailand. Notification of the Ministry of Natural Resources and Environment for Standard levels for Discharge from Municipal Wastewater Treatment Plant; The Ministry of Natural Resources and Environment of Thailand: Bangkok, Thailand, 2010.
- Litke, D.W. Review of Phosphorus Control Measures in the United States and Their Effects on Water Quality; Water-Resources Investigations Report; U.S. Geological Survey: Denver, CO, USA, 1999.
- Wu, J.; Hong, Y.; Guan, F.; Wang, Y.; Tan, Y.; Yue, W.; Wu, M.; Bin, L.; Wang, J.; Wen, J. A rapid and high-throughput microplate spectrophotometric method for field measurement of nitrate in seawater and freshwater. Sci. Rep. 2016, 6, 20165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayala, A.; Leal, L.O.; Ferrer, L.; Cerdà, V. Multiparametric automated system for sulfate, nitrite and nitrate monitoring in drinking water and wastewater based on sequential injection analysis. Microchem. J. 2012, 100, 55–60. [Google Scholar] [CrossRef]
- Lin, B.; Xu, J.; Lin, K.; Li, M.; Lu, M. Low-Cost Automatic Sensor for in Situ Colorimetric Detection of Phosphate and Nitrite in Agricultural Water. ACS Sens. 2018, 3, 2541–2549. [Google Scholar] [CrossRef]
- Kozak, J.; Latocha, K.; Kochana, J.; Wieczorek, M.; Kościelniak, P. Simultaneous spectrophotometric flow injection determination of phosphate and silicate. Talanta 2015, 133, 150–154. [Google Scholar] [CrossRef]
- Qin, J.; Li, D.; Miao, Y.; Yan, G. Detection of phosphate based on phosphorescence of Mn doped ZnS quantum dots combined with cerium(iii). RSC Adv. 2017, 7, 46657–46664. [Google Scholar] [CrossRef] [Green Version]
- He, G.; Zhao, L.; Chen, K.; Liu, Y.; Zhu, H. Highly selective and sensitive gold nanoparticle-based colorimetric assay for PO43− in aqueous solution. Talanta 2013, 106, 73–78. [Google Scholar] [CrossRef]
- Suteja, Y.; Purwiyanto, A.I.S. Nitrate and phosphate from rivers as mitigation of eutrophication in Benoa bay, Bali-Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 162, 012021. [Google Scholar] [CrossRef]
- Isiuku, B.O.; Enyoh, C.E. Pollution and health risks assessment of nitrate and phosphate concentrations in water bodies in South Eastern, Nigeria. Environ. Adv. 2020, 2, 100018. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, Y.; Zhang, W.; Zhang, Y.; Sun, C.; Marhaba, T. Phosphorus, organic matter and nitrogen distribution characteristics of the surface sediments in Nansi Lake, China. Environ. Earth Sci. 2015, 73, 5669–5675. [Google Scholar] [CrossRef]
- Boonkanon, C.; Phatthanawiwat, K.; Wongniramaikul, W.; Choodum, A. Curcumin nanoparticle doped starch thin film as a green colorimetric sensor for detection of boron. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 224, 117351. [Google Scholar] [CrossRef] [PubMed]
- ICH Expert Working Group. ICH Harmonised Tripartite Guideline: Validation of Analytical Procedure: Text and Methodology; ICH: Geneva, Switzerland, 2005. [Google Scholar]
Parameter | Nitrite | Nitrate | Phosphate |
---|---|---|---|
IG | IG | IR | |
Sensitivity | 68.6 ± 2.1 | 22.4 ± 1.0 | 16.8 ± 0.7 |
Linear range (mg L−1) | 0.1–1 | 0.1–1 | 0.25–5 |
Linearity (R2) | 0.9964 | 0.9926 | 0.9937 |
Accuracy (% RE) | +3.0% | −4.8% | +3.0% |
Intraday precision (% RSD; n = 12) | 1.03% | 1.00% | 1.52% |
Interday precision (n = 5) | 1.85% | 0.87% | 1.69% |
LOD (mg L−1) | 0.02 | 0.04 | 0.14 |
LOQ (mg L−1) | 0.07 | 0.14 | 0.47 |
Analyte | Method | Linear Range (mg L−1) | LOD (mg L−1) | Accuracy (% RE) | Precision (% RSD) | On-Site Analysis | Ref |
---|---|---|---|---|---|---|---|
Nitrate | Vanadium(III)chloride-Griess spectrophotometry | 0–5 | 0.03 | - | 0.8% | x | [31] |
A modified zinc-cadmium reduction with microplate spectrophotometric method | 0.03–6.2 | 0.03 | - | 4.8% | x | [39] | |
Griess–Ilosvay-based sequential injection analysis | 0.6–8 | 0.09 | - | 4.76 | x | [40] | |
Griess-based test kit and on-mobile DIC | 0.1–1 | 0.04 | −4.8% | 0.87% | √ | This work | |
Nitrite | Griess-based capsule and DIC | 0.01–0.2 | 0.01 | 11.7% | <3% | √ | [41] |
Vanadium(III)chloride-Griess spectrophotometry | 0–0.05 | 0.003 | - | 1.6% | x | [31] | |
Griess–Ilosvay-based sequential injection analysis | 0.03–1.4 | 0.01 | - | 3.39 | x | [40] | |
Griess-based test kit and on-mobile DIC | 0.1–1 | 0.02 | +3.0% | 1.85% | √ | This work | |
Phosphate | Molybdenum blue-based capsule and DIC | 0.01–1 | 0.01 | 20.2% | <3% | √ | [41] |
Molybdenum blue-based flow-injection analysis | 0.2–15 | 0.05 | 6.2% | 2.7% | x | [42] | |
Phosphorescence of Mn-doped ZnS quantum dots combined with cerium(III) | 0.8–30 | 0.26 | - | 3.1% (intraday) | x | [43] | |
AuNPs-based colorimetric method | 7.6–19 | 11.3 | - | - | x | [44] | |
Molybdenum blue-based test kit and on-mobile DIC | 0.5–5 | 0.14 | +3.0% | 1.69% | √ | This work |
Co-Existing Species | Concentration (mg L−1) | %Change of IR |
---|---|---|
Zn2+ | 10,000 | 0.3 |
Mg2+ | 10,000 | 0.3 |
Mn2+ | 10,000 | 1.7 |
Cd2+ | 10,000 | 1.4 |
Na+ | 10,000 | −0.6 |
CO32− | 10,000 | 0.8 |
SO42− | 10,000 | 0.6 |
NO3− | 10,000 | −3.3 |
Cl− | 10,000 | −2.5 |
K+ | 5000 | +0.6 |
Ca2+ | 5000 | +1.4 |
OH− | 2500 | −4.4 |
Pb2+ | 500 | −4.4 |
Hg2+ | 500 | −2.8 |
As2+ | 250 | +1.4 |
NO2− | 100 | +0.6 |
F− | 100 | −1.1 |
Ascorbic acid | 10,000 | +1.6 |
Formic acid | 10,000 | −0.5 |
Analyte | Added (mg L−1) | Found (mg L−1) | Recovery (%) |
---|---|---|---|
Phosphate | 0.00 | 0.52 ± 0.03 | 0 |
0.50 | 1.04 ± 0.09 | 101.8 ± 6.6 | |
1.00 | 1.50 ± 0.06 | 98.5 ± 2.3 | |
Nitrate | 0.00 | 1.95 ± 0.02 | 0 |
0.50 | 2.25 ± 0.03 | 92.9 ± 0.7 | |
1.00 | 2.67 ± 0.01 | 90.5 ± 0.9 | |
Nitrite | 0.00 | 0.41 ± 0.02 | 0 |
0.50 | 1.06 ± 0.02 | 107.0 ± 5.7 | |
1.00 | 1.53 ± 0.02 | 108.9 ± 0.4 |
Analyte | Parameter | Concentration (mg L−1) | ||
---|---|---|---|---|
Nitrate | Nitrite | Phosphate | ||
Bang Yai | Range (n = 51) | Undetectable *–2.44 | Undetectable–0.50 | Undetectable–0.47 |
Median | 1.13 (n = 44) | 1.13 (n = 31) | 0.47 (n = 1) | |
Mean ± SD | 1.08 ± 0.63 (n = 44) | 0.29 ± 0.13 (n = 31) | 0.47 ± 0.00 (n = 1) | |
B1 | Range (n = 3) | Undetectable–0.26 | Undetectable | Undetectable |
Median | 0.26 (n = 1) | – | – | |
Mean ± SD | 0.26 ± 0.00 (n = 1) | – | – | |
B2-B10 | Range (n = 27) | 0.30–2.44 | Undetectable–0.50 | Undetectable |
Median | 1.33 (n = 27) | 0.33 (n = 23) | – | |
Mean ± SD | 1.28 ± 0.53 (n = 27) | 0.31 ± 0.12 (n = 23) | – | |
B11-B13 | Range (n = 9) | 0.15–2.24 | Undetectable–0.46 | Undetectable–0.47 |
Median | 1.31 (n = 9) | 0.26 (n = 6) | 0.47 (n = 1) | |
Mean ± SD | 1.11 ± 0.72 (n = 9) | 0.27 ± 0.13 (n = 6) | 0.47 ± 0.00 (n = 1) | |
B14-B17 | Range (n = 12) | Undetectable–0.96 | Undetectable–0.12 | Undetectable |
Median | 0.34 (n = 7) | 0.10 (n = 2) | – | |
Mean ± SD | 0.39 ± 0.26 (n = 7) | 0.10 ± 0.04 (n = 2) | – | |
Pak Bang | Range (n = 18) | Undetectable–2.98 | Undetectable–2.98 | Undetectable–0.52 |
Median | 1.47 (n = 37) | 0.39 (n = 21) | 0.50 (n = 2) | |
Mean ± SD | 1.21 ± 0.91 (n = 37) | 0.37 ± 0.11 (n = 21) | 0.50 ± 0.03 (n = 2) | |
P1-P6 | Range (n = 18) | Undetectable–0.37 | Undetectable | Undetectable |
Median | 0.24 (n = 12) | – | – | |
Mean ± SD | 0.25 ± 0.08 (n = 12) | – | – | |
P7-P9 | Range (n = 9) | Undetectable–2.60 | Undetectable–0.40 | Undetectable |
Median | 0.91 (n = 7) | 0.26 (n = 3) | – | |
Mean ± SD | 1.17 ± 0.87 (n = 7) | 0.30 ± 0.08 (n = 3) | – | |
P10-P15 | Range (n = 18) | 0.28–2.98 | 0.21–0.60 | Undetectable–0.52 |
Median | 1.95 (n = 18) | 0.40 (n = 18) | 0.50 (n = 2) | |
Mean ± SD | 1.87 ± 0.62 (n = 18) | 0.39 ± 0.11 (n = 18) | 0.50 ± 0.03 (n = 2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wongniramaikul, W.; Kleangklao, B.; Boonkanon, C.; Taweekarn, T.; Phatthanawiwat, K.; Sriprom, W.; Limsakul, W.; Towanlong, W.; Tipmanee, D.; Choodum, A. Portable Colorimetric Hydrogel Test Kits and On-Mobile Digital Image Colorimetry for On-Site Determination of Nutrients in Water. Molecules 2022, 27, 7287. https://doi.org/10.3390/molecules27217287
Wongniramaikul W, Kleangklao B, Boonkanon C, Taweekarn T, Phatthanawiwat K, Sriprom W, Limsakul W, Towanlong W, Tipmanee D, Choodum A. Portable Colorimetric Hydrogel Test Kits and On-Mobile Digital Image Colorimetry for On-Site Determination of Nutrients in Water. Molecules. 2022; 27(21):7287. https://doi.org/10.3390/molecules27217287
Chicago/Turabian StyleWongniramaikul, Worawit, Bussakorn Kleangklao, Chanita Boonkanon, Tarawee Taweekarn, Kharittha Phatthanawiwat, Wilasinee Sriprom, Wadcharawadee Limsakul, Wanchitra Towanlong, Danai Tipmanee, and Aree Choodum. 2022. "Portable Colorimetric Hydrogel Test Kits and On-Mobile Digital Image Colorimetry for On-Site Determination of Nutrients in Water" Molecules 27, no. 21: 7287. https://doi.org/10.3390/molecules27217287
APA StyleWongniramaikul, W., Kleangklao, B., Boonkanon, C., Taweekarn, T., Phatthanawiwat, K., Sriprom, W., Limsakul, W., Towanlong, W., Tipmanee, D., & Choodum, A. (2022). Portable Colorimetric Hydrogel Test Kits and On-Mobile Digital Image Colorimetry for On-Site Determination of Nutrients in Water. Molecules, 27(21), 7287. https://doi.org/10.3390/molecules27217287