Purification and Characterization of Bot33: A Non-Toxic Peptide from the Venom of Buthus occitanus tunetanus Scorpion
Abstract
:1. Introduction
2. Results
2.1. Purification of Bot33
2.2. Amino-acid Sequence of Bot33 and Sequence Analysis
2.3. Sequence Analysis
2.4. Bot33 Does Not Exhibit Toxicity Following ICV Injection in Mice
2.5. Chemical Synthesis of Kbot3
2.6. Effect of Synthetic Bot33 on Mice
2.7. Electrophysiological Experiments on Kv Channels Expressed in Xenopus Leavis Oocytes
2.8. In Silico Study of Bot33 Interaction with Kv1.3 Channel
2.9. Molecular Modeling of the Kv1.3 Potassium Channel, Bot33, and Its Toxin Mutations
2.10. Toxin–Channel Docking Study
3. Discussion
4. Materials and Methods
4.1. Scorpion Venom
4.2. Purification of Bot33
4.3. Amino Acid Sequence Determination
4.4. Mass Spectrometry
4.5. In Vivo Characterization of Bot33
4.6. Chemical Synthesis of Bot33
4.7. Electrophysiology
4.8. In Silico Analysis
4.8.1. Molecular Modeling of Bot33 and Kv1.3 Potassium Channel
4.8.2. Toxin–Channel Docking Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wulff, H.; Christophersen, P.; Colussi, P.; Chandy, K.G.; Yarov-Yarovoy, V. Antibodies and venom peptides: New therapeutic modalities for ion channels. Nat. Rev. Drug Discov. 2019, 18, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Norton, R.S. Enhancing the therapeutic potential of peptide toxins. Expert Opin. Drug Discov. 2017, 12, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Verdes, A.; Anand, P.; Gorson, J.; Jannetti, S.; Kelly, P.; Leffler, A.; Simpson, D.; Ramrattan, G.; Holford, M. From mollusks to medicine: A venomics approach for the discovery and characterization of therapeutics from Terebridae peptide toxins. Toxins 2016, 8, 117. [Google Scholar] [CrossRef] [PubMed]
- Batista, C.V.; Gomez-Lagunas, F.; Rodriguez de la Vega, R.C.; Hajdu, P.; Panyi, G.; Gaspar, R.; Possani, L.D. Two novel toxins from the Amazonian scorpion Tityus cambridgei that block Kv1.3 and Shaker BK + channels with distinctly different affinities. Biochem. Biophys. 2002, 1601, 123–131. [Google Scholar]
- Xiang, F.; Xie, Z.; Feng, J.; Yang, W.; Cao, Z.; Li, W.; Chen, Z.; Wu, Y. Plectasin, first animal toxin-like fungal defensin blocking potassium channels through recognizing channel pore region. Toxins 2015, 7, 34–42. [Google Scholar] [CrossRef] [PubMed]
- ElFessi-Magouri, R.; Peigneur, S.; Khamessi, O.; Srairi-Abid, N.; ElAyeb, M.; Mille, B.G.; Cuypers, E.; Tytgat, J.; Kharrat, R. Kbot55, purified from Buthus occitanus tunetanus venom, represents the first member of a novel α-KTx subfamily. Peptides 2016, 80, 4–8. [Google Scholar] [CrossRef]
- Rodríguez de la Vega, R.C.; Schwartz, E.F.; Possani, L.D. Mining on scorpion venom biodiversity. Toxicon 2010, 56, 1155–1161. [Google Scholar] [CrossRef]
- Bontems, F.; Roumestand, C.; Gilquin, B.; Menez, A.; Toma, F. Refined structure of charybdotoxin: Common motifs in scorpion toxins and insect defensins. Science 1991, 254, 1521–1523. [Google Scholar] [CrossRef]
- El Ayeb, M.; Martin, M.F.; Delori, P.; Bechis, G.; Rochat, H. Immunochemistry of scorpion alpha-neurotoxins. Determination of the antigenic site number and isolation of a highly enriched antibody specific to a single antigenic site of toxin II of Androctonus australis Hector. Mol. Immunol. 1983, 20, 697–708. [Google Scholar] [CrossRef]
- Kharrat, R.; Zenouaki, I.; Ben Lasfar, Z.; Miled, K.; El Ayeb, M. Molecular characterization, antigenicity and immunogenicity of anatoxic polymeric forms conferring protection against scorpion venoms. Toxicon 1997, 35, 915–930. [Google Scholar] [CrossRef]
- Mejri, T.; Borchani, L.; Srairi-Abid, N.; Benkhalifa, R.; Cestele, S.; Regaya, I.; Karoui, H.; Pelhate, M.; Rochat, H.; El Ayeb, M. BotIT6: A potent depressant insect toxin from Buthus occitanus tunetanus venom. Toxicon 2003, 41, 163–171. [Google Scholar] [CrossRef]
- Khamessi, O.; Ben Mabrouk, H.; ElFessi-Magouri, R.; Kharrat, R. RK1, the first very short peptide from Buthus occitanus tunetanus inhibits tumor cell migration, proliferation and angiogenesis. Biochem. Biophys. Res. Commun. 2018, 499, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ben Abderrazek, R.; Ksouri, A.; Idoudi, F.; Dhaouadi, S.; Hamdi, E.; Vincke, C.; Farah, A.; Benlasfar, Z.; Majdoub, H.; El Ayeb, M.; et al. Neutralizing Dromedary-Derived Nanobodies Against BotI-Like Toxin From the Most Hazardous Scorpion Venom in the Middle East and North Africa Region. Front. Immunol. 2022, 13, 863012. [Google Scholar] [CrossRef] [PubMed]
- ElFessi-Magouri, R.; Peigneur, S.; Othman, H.; Srairi-Abid, N.; ElAyeb, M.; Tytga, J.; Kharrat, R. Characterization of Kbot21 Reveals Novel Side Chain Interactions of Scorpion Toxins Inhibiting Voltage-Gated Potassium Channels. PLoS ONE 2015, 23, 0137611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouhat, S.; Mosbah, A.; Visan, V.; Wulff, H.; Delepierre, M.; Darbon, H.; Grissmer, S.; De Waard, M.; Sabatier, J.M. The ‘functional’ dyad of scorpion toxin Pi1 is not itself a prerequisite for toxin binding to the voltage-gated Kv1.2 potassium channels. Biochem. J. 2004, 377, 25–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darbon, H.; Blanc, E.; Sabatier, J.M. Three-dimensional structure of scorpion toxins: Towards a new model of interaction with potassium channels. Perspect. Drug Discov. Des. 1999, 15, 41–60. [Google Scholar] [CrossRef]
- Shakkottai, V.G.; Regaya, I.; Wulff, H.; Fajloun, Z.; Tomita, H.; Fathallah, M.; Cahalan, M.D.; Gargus, J.J.; Sabatier, J.M.; Chandy, K.G. Design and characterization of a highly selective peptide inhibitor of the small conductance calcium-activated K+ channel, SKCa2. J. Biol. Chem. 2001, 276, 43145–43151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Possani, L.D.; Selisko, B.; Gurrola, G.B. Structure and Function of Scorpion Toxins Affecting K+ Channels. In Perspectives in Drug Discovery and Design: Animal Toxins and Potassium Channels; Darbon, H., Sabatier, J.M., Eds.; Kluwer/Escom, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; Volume 15, pp. 15–40. [Google Scholar]
- Dauplais, M.; Lecoq, A.; Song, J.; Cotton, J.; Jamin, N.; Gilquin, B.; Roumestand, C.; Vita, C.; de Medeiros, L.C.; Rowan, E.G.; et al. On the convergent evolution of animal toxins. Conservation of a diad of functional residues in potassium channel blocking toxins with unrelated structures. J. Biol. Chem. 1997, 272, 4302–4309. [Google Scholar] [CrossRef] [Green Version]
- Tytgat, J.; Chandy, K.G.; Garcia, M.L.; Gutman, G.A.; Martin-Eauclaire, M.F.; van der Walt, J.J.; Possani, L.D. A unified nomenclature for short-chain peptides isolated from scorpion venoms: Alpha-KTx molecular subfamilies. Trends Pharmacol. Sci. 1999, 20, 444–447. [Google Scholar] [CrossRef]
- Miller, C. An overview of the potassium channel family. Genome Biol. 2000, 1, reviews0004.1. [Google Scholar] [CrossRef]
- Crest, M.; Jacquet, G.; Gola, M.; Zerrouk, H.; Benslimane, A.; Rochat, H.; Mansuelle, P.; Martin-Eauclaire, M.F. Kaliotoxin, a novel peptidyl inhibitor of neuronal BK-type Ca(2+)-activated K+ channels characterized from Androctonus mauretanicus mauretanicus venom. J. Biol. Chem. 1992, 267, 1640–1647. [Google Scholar] [CrossRef]
- Merrifield, R.B. Solid phase synthesis. Science 1986, 232, 341–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, B.; Sali, A. Comparative Protein Structure Modeling Using MODELLER. Curr. Protoc. Bioinform. 2016, 54, 5–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naseem, M.U.; Carcamo-Noriega, E.; Beltran-Vidal, J.; Borrego, J.; Szanto, T.G.; Zamudio, F.Z.; Delgado-Prudencio, G.; Possani, L.D.; Panyi, G. Cm28, a scorpion toxin having a unique primary structure, inhibits KV1.2 and KV1.3 with high affinity. J. Gen. Physiol. 2022, 8, 154. [Google Scholar] [CrossRef] [PubMed]
- Gubič, Š.; Hendrickx, L.A.; Toplak, Ž.; Sterle, M.; Peigneur, S.; Tomašič, T.; Pardo, L.A.; Tytgat, J.; Zega, A.; Mašič, L.P. Discovery of KV 1.3 ion channel inhibitors: Medicinal chemistry approaches and challenges. Med. Res. Rev. 2021, 41, 2423–2473. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Peigneur, S.; Gao, B.; Umetsu, Y.; Ohki, S.; Tytgat, J. Experimental conversion of a defensin into a neurotoxin: Implications for origin of toxic function. Mol. Biol. Evol. 2014, 31, 546–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swartz, K.J. The scorpion toxin and the potassium channel. eLife 2013, 2, e00873. [Google Scholar] [CrossRef] [PubMed]
- Park, C.S.; Miller, C. Interaction of charybdotoxin with permeant ions inside the pore of a K+ channel. Neuron 1992, 9, 307–313. [Google Scholar] [CrossRef]
- Goldstein, S.A.; Pheasant, D.J.; Miller, C. The charybdotoxin receptor of a Shaker K+ channel: Peptide and channel residues mediating molecular recognition. Neuron 1994, 12, 1377–1388. [Google Scholar] [CrossRef]
- Aiyar, J.; Withka, J.M.; Rizzi, J.P.; Singleton, D.H.; Andrews, G.C.; Lin, W.; Boyd, J.; Hanson, D.C.; Simon, M.; Dethlefs, B. Topology of the pore region of a K+ channel revealed by the NMR-derived structures of scorpion toxins. Neuron 1995, 15, 1169–1181. [Google Scholar] [CrossRef] [Green Version]
- Varga, Z.; Tajti, G.; Panyi, G. The Kv1. 3 K+ channel in the immune system and its “precision pharmacology” using peptide toxins. Biol. Futura 2021, 72, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Lee, A.; Campbell, E.; MacKinnon, R. Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent K+ channel. eLife 2013, 2, e00594. [Google Scholar] [CrossRef] [PubMed]
- Srairi-Abid, N.; Mansuelle, P.; Mejri, T.; Karoui, H.; Rochat, H.; Sampieri, F.; ElAyeb, M. Purification, characterization and molecular modelling of two toxin like proteins from the Androctonus australis Hector venom. Eur. J. Biochem. 2000, 267, 5614–5620. [Google Scholar] [CrossRef]
- Galeotti, N.; Bartolini, A.; Ghelardini, C. Diphenhydramine-induced amnesia is mediated by Gi-protein activation. Neuroscience 2003, 122, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Selisko, B.; Garcia, C.; Becerril, B.; Gaumez-Lagunas, F.; Garay, C.; Possani, L.D. Cobatoxine 1 and 2 from Centruroides noxius Hoffmann constitute a subfamily of potassium channel-blocking scorpion toxins. Eur. J. Biochem. 1998, 254, 468–479. [Google Scholar] [CrossRef] [PubMed]
- Peigneur, S.; Da Costa Oliveira, C.; De Sousa Fonseca, F.C.; McMahon, K.L.; Mueller, A.; Cheneval, O.; Nogueira Freitas, C.A.; Starobova, H.; Dimitri Gama Duarte, I.; Craik, D.J.; et al. Small cyclic sodium channel inhibitors. Biochem. Pharmacol. 2021, 183, 114291. [Google Scholar] [CrossRef] [PubMed]
- Sali, A.; Blundell, T.L. Comparative Protein Modelling by Satisfaction of Spatial Restraints. J. Mol. Biol. 1993, 234, 779–815. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Renisio, J.G.; Romi-Lebrun, R.; Blanc, E.; Bornet, O.; Nakajima, T.; Darbon, H. Solution structure of BmKTX, a K+ blocker toxin from the Chinese scorpion Buthus Martensi. Proteins 2000, 38, 70–78. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, Y.; Dong, H.; Xiao, L.; Zhang, Y.; Yang, Y.; Ong, S.T.; Chandy, K.G.; Zhang, L.; Tian, C. Structures of wild-type and H451N mutant human lymphocyte potassium channel KV1.3. Cell Discov. 2021, 7, 39. [Google Scholar] [CrossRef]
- Shen, M.Y.; Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006, 15, 2507–2524. [Google Scholar] [CrossRef] [PubMed]
- Seeliger, D.; De Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des. 2010, 24, 417–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro web server for protein-protein docking. Nat. Protoc. 2017, 2, 255–278. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
ElFessi, R.; Khamessi, O.; Srairi-Abid, N.; Sabatier, J.-M.; Tytgat, J.; Peigneur, S.; Kharrat, R. Purification and Characterization of Bot33: A Non-Toxic Peptide from the Venom of Buthus occitanus tunetanus Scorpion. Molecules 2022, 27, 7278. https://doi.org/10.3390/molecules27217278
ElFessi R, Khamessi O, Srairi-Abid N, Sabatier J-M, Tytgat J, Peigneur S, Kharrat R. Purification and Characterization of Bot33: A Non-Toxic Peptide from the Venom of Buthus occitanus tunetanus Scorpion. Molecules. 2022; 27(21):7278. https://doi.org/10.3390/molecules27217278
Chicago/Turabian StyleElFessi, Rym, Oussema Khamessi, Najet Srairi-Abid, Jean-Marc Sabatier, Jan Tytgat, Steve Peigneur, and Riadh Kharrat. 2022. "Purification and Characterization of Bot33: A Non-Toxic Peptide from the Venom of Buthus occitanus tunetanus Scorpion" Molecules 27, no. 21: 7278. https://doi.org/10.3390/molecules27217278
APA StyleElFessi, R., Khamessi, O., Srairi-Abid, N., Sabatier, J. -M., Tytgat, J., Peigneur, S., & Kharrat, R. (2022). Purification and Characterization of Bot33: A Non-Toxic Peptide from the Venom of Buthus occitanus tunetanus Scorpion. Molecules, 27(21), 7278. https://doi.org/10.3390/molecules27217278