Planispine A Sensitized Cancer Cells to Cisplatin by Inhibiting the Fanconi Anemia Pathway
Abstract
:1. Introduction
2. Results
2.1. Characterisation of Bioactive Compounds
2.2. Chemical Characterization
2.3. Planispine A Showed Synergistic Interaction with Cisplatin
2.4. Planispine A Enhanced Cisplati-Induced Apoptotic Cell Death
2.5. Planispine A Inhibits the FA/BRCA Pathway
3. Discussion
4. Materials and Methods
4.1. Plant Material Extraction
4.2. Bioassa-Guided Purification of the Bioactive Compounds
4.3. Cell Culture
4.4. Cell Viability Assay
4.5. Drug Combination Effect Analysis
4.6. Apoptosis Assay by Immunofluorescent Staining
4.7. Cell Cycle Analysis
4.8. Western Blots
4.9. Confocal Microscopy
4.10. General Experimental Procedures
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balch, C.; Huang, T.H.-M.; Brown, R.; Nephew, K.P. The Epigenetics of Ovarian Cancer Drug Resistance and Resensitization. Am. J. Obstet. Gynecol. 2004, 191, 1552–1572. [Google Scholar] [CrossRef] [PubMed]
- Harper, P. Current Clinical Practices for Ovarian Cancers. Semin. Oncol. 2002, 29, 3–6. [Google Scholar] [CrossRef]
- Ku, J.M.; Hong, S.H.; Kim, H.I.; Kim, M.J.; Kim, S.-K.; Kim, M.; Choi, S.Y.; Park, J.; Kim, H.K.; Kim, J.H. Synergistic Anticancer Effect of Combined Use of Trichosanthes Kirilowii with Cisplatin and Pemetrexed Enhances Apoptosis of H1299 Non-Small-Cell Lung Cancer Cells via Modulation of ErbB3. Phytomedicine 2020, 66, 153109. [Google Scholar] [CrossRef] [PubMed]
- Gottesman, M.M. Mechanisms of Cancer Drug Resistance. Annu. Rev. Med. 2002, 53, 615–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelland, L. The Resurgence of Platinum-Based Cancer Chemotherapy. Nat. Rev. Cancer 2007, 7, 573–584. [Google Scholar] [CrossRef]
- Makovec, T. Cisplatin and beyond: Molecular Mechanisms of Action and Drug Resistance Development in Cancer Chemotherapy. Radiol. Oncol. 2019, 53, 148. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.; Kaye, S.B. Ovarian Cancer: Strategies for Overcoming Resistance to Chemotherapy. Nat. Rev. Cancer 2003, 3, 502–516. [Google Scholar] [CrossRef]
- Baker, D.D.; Chu, M.; Oza, U.; Rajgarhia, V. The Value of Natural Products to Future Pharmaceutical Discovery. Nat. Prod. Rep. 2007, 24, 1225–1244. [Google Scholar] [CrossRef]
- Hsieh, M.-J.; Wang, C.-W.; Lin, J.-T.; Chuang, Y.-C.; Hsi, Y.-T.; Lo, Y.-S.; Lin, C.-C.; Chen, M.-K. Celastrol, a Plant-Derived Triterpene, Induces Cisplatin-Resistance Nasopharyngeal Carcinoma Cancer Cell Apoptosis Though ERK1/2 and P38 MAPK Signaling Pathway. Phytomedicine 2019, 58, 152805. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef]
- Vinod, B.S.; Maliekal, T.T.; Anto, R.J. Phytochemicals as Chemosensitizers: From Molecular Mechanism to Clinical Significance. Antioxid. Redox Signal. 2013, 18, 1307–1348. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, A.D. The Fanconi Anemia/BRCA Signaling Pathway: Disruption in Cisplatin-Sensitive Ovarian Cancers. Cell Cycle 2003, 2, 289–291. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; D’Andrea, A.D. Regulation of DNA Cross-Link Repair by the Fanconi Anemia/BRCA Pathway. Genes Dev. 2012, 26, 1393–1408. [Google Scholar] [CrossRef] [Green Version]
- Garaycoechea, J.I.; Crossan, G.P.; Langevin, F.; Mulderrig, L.; Louzada, S.; Yang, F.; Guilbaud, G.; Park, N.; Roerink, S.; Nik-Zainal, S. Alcohol and Endogenous Aldehydes Damage Chromosomes and Mutate Stem Cells. Nature 2018, 553, 171–177. [Google Scholar] [CrossRef] [PubMed]
- García-de-Teresa, B.; Rodríguez, A.; Frias, S. Chromosome Instability in Fanconi Anemia: From Breaks to Phenotypic Consequences. Genes 2020, 11, 1528. [Google Scholar] [CrossRef]
- Mirchandani, K.D.; D’Andrea, A.D. The Fanconi Anemia/BRCA Pathway: A Coordinator of Cross-Link Repair. Exp. Cell Res. 2006, 312, 2647–2653. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, T.; Tischkowitz, M.; Ameziane, N.; Hodgson, S.V.; Mathew, C.G.; Joenje, H.; Mok, S.C.; D’Andrea, A.D. Disruption of the Fanconi Anemia–BRCA Pathway in Cisplatin-Sensitive Ovarian Tumors. Nat. Med. 2003, 9, 568–574. [Google Scholar] [CrossRef]
- Wang, L.C.; Gautier, J. The Fanconi Anemia Pathway and ICL Repair: Implications for Cancer Therapy. Crit. Rev. Biochem. Mol. Biol. 2010, 45, 424–439. [Google Scholar] [CrossRef] [Green Version]
- Furgason, J.M.; Bahassi, E.M. Targeting DNA Repair Mechanisms in Cancer. Pharmacol. Ther. 2013, 137, 298–308. [Google Scholar] [CrossRef]
- Chirnomas, D.; Taniguchi, T.; de la Vega, M.; Vaidya, A.P.; Vasserman, M.; Hartman, A.-R.; Kennedy, R.; Foster, R.; Mahoney, J.; Seiden, M.V. Chemosensitization to Cisplatin by Inhibitors of the Fanconi Anemia/BRCA Pathway. Mol. Cancer Ther. 2006, 5, 952–961. [Google Scholar] [CrossRef]
- Fan, X.-Z.; Chen, Y.-F.; Zhang, S.-B.; He, D.-H.; Wei, S.-F.; Wang, Q.; Pan, H.-F.; Liu, Y.-Q. Centipeda Minima Extract Sensitizes Lung Cancer Cells to DNA-Crosslinking Agents via Targeting Fanconi Anemia Pathway. Phytomedicine 2021, 91, 153689. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.D.; Meitei, H.T.; Sharma, A.L.; Robinson, A.; Singh, L.S.; Singh, T.R. Anticancer Properties and Enhancement of Therapeutic Potential of Cisplatin by Leaf Extract of Zanthoxylum armatum DC. Biol. Res. 2015, 48, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dasari, S.; Tchounwou, P.B. Cisplatin in Cancer Therapy: Molecular Mechanisms of Action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef] [Green Version]
- Naiki, T.; Sugiyama, Y.; Tasaki, Y.; Iida, K.; Etani, T.; Hamamoto, S.; Nagai, T.; Nozaki, S.; Ando, R.; Kawai, N. Efficacy of a Newly Modified Short Hydration Method for Gemcitabine and Cisplatin Combination Chemotherapy in Patients with Urothelial Carcinoma. Oncology 2020, 98, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Su, G.; Wang, K.; Wang, X.; Wu, B. Bioactive Lignans from Zanthoxylum Planispinum with Cytotoxic Potential. Phytochem. Lett. 2015, 11, 120–126. [Google Scholar] [CrossRef]
- Florea, A.-M.; Büsselberg, D. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects. Cancers 2011, 3, 1351–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuertes, M.A.; Alonso, C.; Pérez, J.M. Biochemical Modulation of Cisplatin Mechanisms of Action: Enhancement of Antitumor Activity and Circumvention of Drug Resistance. Chem. Rev. 2003, 103, 645–662. [Google Scholar] [CrossRef]
- Kolinjivadi, A.M.; Crismani, W.; Ngeow, J. Emerging Functions of Fanconi Anemia Genes in Replication Fork Protection Pathways. Hum. Mol. Genet. 2020, 29, R158–R164. [Google Scholar] [CrossRef]
- Alan, D.; D’Andrea, M.D. The Fanconi Anemia and Breast Cancer Susceptibility Pathways. N. Engl. J. Med. 2010, 362, 1909. [Google Scholar]
- Singh, T.R.; Bakker, S.T.; Agarwal, S.; Jansen, M.; Grassman, E.; Godthelp, B.C.; Ali, A.M.; Du, C.; Rooimans, M.A.; Fan, Q. Impaired FANCD2 Monoubiquitination and Hypersensitivity to Camptothecin Uniquely Characterize Fanconi Anemia Complementation Group M. Blood J. Am. Soc. Hematol. 2009, 114, 174–180. [Google Scholar] [CrossRef]
- Du, H.; Liu, Y.; Chen, X.; Yu, X.; Hou, X.; Li, H.; Zhan, M.; Lin, S.; Lu, L.; Yuan, S. DT-13 Synergistically Potentiates the Sensitivity of Gastric Cancer Cells to Topotecan via Cell Cycle Arrest in Vitro and in Vivo. Eur. J. Pharmacol. 2018, 818, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.J. About the Evaluation of Drug Combination. Acta Pharmacol Sin 2004, 25, 146–147. [Google Scholar] [PubMed]
- Chun, M.J.; Hwang, S.K.; Kim, H.G.; Goh, S.; Kim, S.; Lee, C. Aurora A Kinase Is Required for Activation of the Fanconi Anemia/BRCA Pathway upon DNA Damage. FEBS Open Bio 2016, 6, 782–790. [Google Scholar] [CrossRef] [PubMed]
Drugs | % Inhibition Rate | Q Value |
---|---|---|
(Combination Index) | ||
PA (5 µM) | 7.4 ± 2.08 | - |
Cisplatin (25 µM) | 24 ± 3.6 | - |
Cisplatin (50 µM) | 35 ± 4 | - |
PA (5 µM) + Cisplatin (25 µM) | 65.4 ± 3.5 | 2.23 |
PA (5 µM) + Cisplatin (50 µM) | 89.4 ± 1.5 | 2.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, T.D.; Singh, N.I.; Devi, K.M.; Meiguilungpou, R.; Khongsai, L.; Singh, L.S.; Bal, N.C.; Swapana, N.; Singh, C.B.; Singh, T.R. Planispine A Sensitized Cancer Cells to Cisplatin by Inhibiting the Fanconi Anemia Pathway. Molecules 2022, 27, 7288. https://doi.org/10.3390/molecules27217288
Singh TD, Singh NI, Devi KM, Meiguilungpou R, Khongsai L, Singh LS, Bal NC, Swapana N, Singh CB, Singh TR. Planispine A Sensitized Cancer Cells to Cisplatin by Inhibiting the Fanconi Anemia Pathway. Molecules. 2022; 27(21):7288. https://doi.org/10.3390/molecules27217288
Chicago/Turabian StyleSingh, Thangjam Davis, Ningthoujam Indrajit Singh, Khuraijam Mrinalini Devi, Remmei Meiguilungpou, Lhaineichong Khongsai, Lisam Shanjukumar Singh, Naresh Chandra Bal, Ningombam Swapana, Chingakham Brajakishor Singh, and Thiyam Ramsing Singh. 2022. "Planispine A Sensitized Cancer Cells to Cisplatin by Inhibiting the Fanconi Anemia Pathway" Molecules 27, no. 21: 7288. https://doi.org/10.3390/molecules27217288
APA StyleSingh, T. D., Singh, N. I., Devi, K. M., Meiguilungpou, R., Khongsai, L., Singh, L. S., Bal, N. C., Swapana, N., Singh, C. B., & Singh, T. R. (2022). Planispine A Sensitized Cancer Cells to Cisplatin by Inhibiting the Fanconi Anemia Pathway. Molecules, 27(21), 7288. https://doi.org/10.3390/molecules27217288