Rutin Improves Anxiety and Reserpine-Induced Depression in Rats
Abstract
:1. Introduction
2. Results
2.1. Effect of Rutin Pretreatment on Body Weight
2.2. Effect of Rutin Pretreatment on Antianxiety Activity
2.2.1. Elevated Plus Maze (EPM)
2.2.2. Light-Dark Test
2.2.3. Open-Field Test
2.3. Effect of Rutin Pretreatment on Antidepressant Activity
2.3.1. Forced Swim Test
2.3.2. Tail Suspension Test (TST)
2.4. Effect of Rutin Pretreatment on Learning and Memory Activity
2.4.1. Novel Object Recognition (NOR)
2.4.2. Effect of Rutin Pretreatment on In-Vitro Acetylcholinesterase Activity
2.5. Brain Histopathological Analysis
3. Discussion
4. Materials and Methods
4.1. Experimental Animals
4.1.1. Experimental Procedures
- Changes in Body Weight and food Consumption in Reserpine-Injected Rats
4.1.2. Evaluation of Antianxiety Activity
- Elevated plus maze (EPM)
- Light-dark test
- Open-field test
4.1.3. Evaluation of Antidepressant Activity
- Forced swim test (FST)
- Tail suspension test (TST).
4.1.4. Evaluation of Learning and Memory Activity
- Novel Object Recognition (NOR)
- In vitro assay for acetylcholinesterase activity (AChE)
4.1.5. Brain Histopathological Analysis
4.1.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Feingold, D.; Weinstein, A. Cannabis and Depression. Adv. Exp. Med. Biol. 2021, 1264, 67–80. [Google Scholar]
- Malhi, G.S.; Mann, J.J. Depression. Lancet 2018, 392, 2299–2312. [Google Scholar] [CrossRef]
- Jiang, Y.; Peng, T.; Gaur, U.; Silva, M.; Little, P.; Chen, Z.; Qiu, W.; Zhang, Y.; Zheng, W. Role of corticotropin releasing factor in the neuroimmune mechanisms of depression: Examination of current pharmaceutical and herbal therapies. Front. Cell. Neurosci. 2019, 13, 290. [Google Scholar] [CrossRef] [Green Version]
- Hamon, M.; Blier, P. Monoamine neurocircuitry in depression and strategies for new treatments. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 45, 54–63. [Google Scholar] [CrossRef]
- Fried, E.I.; Nesse, R.M. Depression is not a consistent syndrome: An investigation of unique symptom patterns in the STAR∗D study. J. Affect. Disord. 2015, 172, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Schatzberg, A.F. Development of New Psychopharmacological Agents for Depression and Anxiety. Psychiatr. Clin. 2015, 38, 379–393. [Google Scholar] [CrossRef]
- Biozid, S.; Alam, M.N.; Abeden, J. Evaluation of Neuropharmacological Effects of Different Chemical Extracts of Flemingia Stricta (Roxb.) Leaves. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Tóth, B.; Hegyi, P.; Lantos, T.; Szakács, Z.; Kerémi, B.; Varga, G.; Tenk, J.; Pétervári, E.; Balaskó, M.; Rumbus, Z.; et al. The Efficacy of Saffron in the Treatment of Mild to Moderate Depression: A Meta-analysis. Planta Med. 2019, 85, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.N.; Rangra, N.K.; Singh, S.; Arora, S.; Gupta, V. Evolving Role of Natural Products from Traditional Medicinal Herbs in the Treatment of Alzheimer’s Disease. ACS Chem. Neurosci. 2021, 12, 2718–2728. [Google Scholar] [CrossRef]
- Foudah, A.I.; Alqarni, M.H.; Devi, S.; Singh, A.; Alam, A.; Alam, P.; Singh, S. Analgesic Action of Catechin on Chronic Constriction Injury–Induced Neuropathic Pain in Sprague–Dawley Rats. Front. Pharmacol. 2022, 13, 895079. [Google Scholar] [CrossRef]
- Chew, A.L.; Jessica, J.J.A.; Sasidharan, S. Antioxidant and antibacterial activity of different parts of Leucas aspera. Asian Pac. J. Trop. Biomed. 2012, 2, 176–180. [Google Scholar] [CrossRef]
- Parashar, A.; Mehta, V.; Udayabanu, M. Rutin alleviates chronic unpredictable stress-induced behavioral alterations and hippocampal damage in mice. Neurosci. Lett. 2017, 656, 65–71. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Saluja, A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [Green Version]
- Negahdari, R.; Bohlouli, S.; Sharifi, S.; Maleki Dizaj, S.; Rahbar Saadat, Y.; Khezri, K.; Jafari, S.; Ahmadian, E.; Gorbani Jahandizi, N.; Raeesi, S. Therapeutic benefits of rutin and its nanoformulations. Phyther. Res. 2021, 35, 1719–1738. [Google Scholar] [CrossRef]
- Budzynska, B.; Faggio, C.; Kruk-Slomka, M.; Samec, D.; Nabavi, S.F.; Sureda, A.; Devi, K.P.; Nabavi, S.M. Rutin as Neuroprotective Agent: From Bench to Bedside. Curr. Med. Chem. 2017, 26, 5152–5164. [Google Scholar] [CrossRef]
- Magalingam, K.B.; Radhakrishnan, A.; Haleagrahara, N. Protective effects of quercetin glycosides, rutin, and isoquercetrin against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in rat pheochromocytoma (PC-12) cells. Int. J. Immunopathol. Pharmacol. 2016, 29, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, R.S.; Teles-Souza, J.; dos Santos Souza, C.; Pereira, É.P.L.; de Araújo, F.M.; da Silva, A.B.; Castro e Silva, J.H.; Nonose, Y.; Núñez-Figueredo, Y.; de Assis, A.M.; et al. Rutin improves glutamate uptake and inhibits glutamate excitotoxicity in rat brain slices. Mol. Biol. Rep. 2021, 48, 1475–1483. [Google Scholar] [CrossRef]
- Prasad, R.; Prasad, S.B. A review on the chemistry and biological properties of Rutin, a promising nutraceutical agent. Asian J. Pharm. Pharmacol. 2019, 5, 1–20. [Google Scholar] [CrossRef]
- Seo, S.; Oh, S.; Shin, Y.; Jung, S.; Kim, Y. Reduction of body weight by rutin is associated with an increase of brown adipose tissue mitochondrial biogenesis in high-fat diet induced obese rat (LB430). FASEB J. 2014, 18, LB430. [Google Scholar] [CrossRef]
- Seo, S.; Lee, M.S.; Chang, E.; Shin, Y.; Oh, S.; Kim, I.H.; Kim, Y. Rutin increases muscle mitochondrial biogenesis with AMPK activation in high-fat diet-induced obese rats. Nutrients 2015, 7, 8152–8169. [Google Scholar] [CrossRef] [Green Version]
- Arauchi, R.; Hashioka, S.; Tsuchie, K.; Miyaoka, T.; Tsumori, T.; Limoa, E.; Azis, I.A.; Oh-Nishi, A.; Miura, S.; Otsuki, K.; et al. Gunn rats with glial activation in the hippocampus show prolonged immobility time in the forced swimming test and tail suspension test. Brain Behav. 2018, 8, e01028. [Google Scholar] [CrossRef]
- Chigome, A.K.; Matsangaise, M.M.; Chukwu, B.O.; Matlala, M.; Sibanda, M.; Meyer, J.C. Review of selective serotonin reuptake inhibitors. SA Pharm. J. 2017, 84, 52–59. [Google Scholar]
- Wing, Y.K. Recent advances in the management of depression and psychopharmacology. Hong Kong Med. J. 2000, 6, 85–92. [Google Scholar]
- Lee, B.; Yeom, M.; Shim, I.; Lee, H.; Hahm, D.H. Protective effects of quercetin on anxiety-like symptoms and neuroinflammation induced by lipopolysaccharide in rats. Evid.-Based Complement. Altern. Med. 2020, 2020, 4892415. [Google Scholar] [CrossRef]
- Antunes, M.S.; Goes, A.T.; Boeira, S.P.; Prigol, M.; Jesse, C.R. Protective effect of hesperidin in a model of Parkinson’s disease induced by 6-hydroxydopamine in aged mice. Nutrition 2014, 30, 1415–1422. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Wang, G.; Cui, L.; Wang, Q. Myricetin attenuates depressant-like behavior in mice subjected to repeated restraint stress. Int. J. Mol. Sci. 2015, 16, 28377–28385. [Google Scholar] [CrossRef] [Green Version]
- Baumeister, A.A.; Hawkins, M.F.; Uzelac, S.M. The myth of reserpine-induced depression: Role in the historical development of the monoamine hypothesis. J. Hist. Neurosci. 2003, 12, 207–220. [Google Scholar] [CrossRef]
- Guimarães, F.S.; Chiaretti, T.M.; Graeff, F.G.; Zuardi, A.W. Antianxiety effect of cannabidiol in the elevated plus-maze. Psychopharmacology 1990, 100, 558–559. [Google Scholar] [CrossRef]
- Tejada, J.; Bosco, G.G.; Morato, S.; Roque, A.C. Characterization of the rat exploratory behavior in the elevated plus-maze with Markov chains. J. Neurosci. Methods 2010, 193, 288–295. [Google Scholar] [CrossRef]
- Kalueff, A.V.; Tuohimaa, P. Experimental modeling of anxiety and depression. Acta Neurobiol. Exp. 2004, 64, 439–448. [Google Scholar]
- Reissland, N.; Froggatt, S.; Reames, E.; Girkin, J. Effects of maternal anxiety and depression on fetal neuro-development. J. Affect. Disord. 2018, 241, 469–474. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.Y.; Chang, A.Y.W.; Lin, T.K. Simvastatin treatment exerts antidepressant-like effect in rats exposed to chronic mild stress. Pharmacol. Biochem. Behav 2014, 124, 174–179. [Google Scholar] [CrossRef]
- Fahmy, H.M.; Mohamed, E.R.; Hussein, A.A.; Khadrawy, Y.A.; Ahmed, N.A. Evaluation of the therapeutic effect of mesoporous silica nanoparticles loaded with Gallic acid on reserpine-induced depression in Wistar rats. BMC Pharmacol. Toxicol. 2022, 23, 40. [Google Scholar] [CrossRef]
- Porsolt, R.D.; Anton, G.; Blavet, N.; Jalfre, M. Behavioural despair in rats: A new model sensitive to antidepressant treatments. Eur. J. Pharmacol. 1978, 47, 379–391. [Google Scholar] [CrossRef]
- Umukoro, S.; Adebesin, A.; Agu, G.; Omorogbe, O.; Asehinde, S.B. Antidepressant-like activity of methyl jasmonate involves modulation of monoaminergic pathways in mice. Adv. Med. Sci. 2018, 63, 36–42. [Google Scholar] [CrossRef]
- Steru, L.; Chermat, R.; Thierry, B.; Simon, P. The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology 1985, 85, 367–370. [Google Scholar] [CrossRef]
- Bhuvanendran, S.; Kumari, Y.; Othman, I.; Shaikh, M.F. Amelioration ofc ognitive deficit by embelin in a scopolamine-induced Alzheimer’s disease-like condition in a rat model. Front. Pharmacol. 2018, 9, 665. [Google Scholar] [CrossRef]
- Luine, V. Recognition memory tasks in neuroendocrine research. Behav. Brain Res. 2015, 285, 158–164. [Google Scholar] [CrossRef] [Green Version]
- Berté, T.E.; Dalmagro, A.P.; Zimath, P.L.; Gonçalves, A.E.; Meyre-Silva, C.; Bürger, C.; Weber, C.J.; dos Santos, D.A.; Cechinel-Filho, V.; de Souza, M.M. Taraxerol as a possible therapeutic agent on memory impairments and Alzheimer’s disease: Effects against scopolamine and streptozotocin-induced cognitive dysfunctions. Steroids 2018, 132, 5–11. [Google Scholar] [CrossRef]
Groups | Subjects | Treatment Given |
---|---|---|
Group I | Normal control | Vehicle (water) |
Group II | Standard | Reserpine (0.5 mg/kg ip) + amitriptyline (25 mg/kg, p.o.) |
Group III | Test Rutin I | Reserpine (0.5 mg/kg ip) + Rutin (40 mg/kg p.o) |
Group IV | Test Rutin II | Reserpine (0.5 mg/kg ip) + Rutin (80 mg/kg p.o) |
Group V | Negative control | Reserpine (0.5 mg/kg ip) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foudah, A.I.; Alqarni, M.H.; Alam, A.; Devi, S.; Salkini, M.A.; Alam, P. Rutin Improves Anxiety and Reserpine-Induced Depression in Rats. Molecules 2022, 27, 7313. https://doi.org/10.3390/molecules27217313
Foudah AI, Alqarni MH, Alam A, Devi S, Salkini MA, Alam P. Rutin Improves Anxiety and Reserpine-Induced Depression in Rats. Molecules. 2022; 27(21):7313. https://doi.org/10.3390/molecules27217313
Chicago/Turabian StyleFoudah, Ahmed I, Mohammed H Alqarni, Aftab Alam, Sushma Devi, Mohammad A Salkini, and Prawez Alam. 2022. "Rutin Improves Anxiety and Reserpine-Induced Depression in Rats" Molecules 27, no. 21: 7313. https://doi.org/10.3390/molecules27217313
APA StyleFoudah, A. I., Alqarni, M. H., Alam, A., Devi, S., Salkini, M. A., & Alam, P. (2022). Rutin Improves Anxiety and Reserpine-Induced Depression in Rats. Molecules, 27(21), 7313. https://doi.org/10.3390/molecules27217313