An Overview of Analytical Methodologies for Determination of Vancomycin in Human Plasma
Abstract
:1. Introduction
2. Bioassay
3. Immunoassay
3.1. RIA
3.2. FIA
3.3. EIA
4. LC
4.1. Pretreatment
4.2. Internal Standard (IS)
4.3. Stationary Phase and Mobile Phase
4.4. Detection
5. Other Methods
5.1. Spectrophotography
5.2. Micellar Electrokinetic Capillary Chromatography (MEKC)
5.3. Nanophase Materials
5.4. New Probe
5.5. Molecularly Imprinted Polymer Nanoparticles (MIPs)
6. Summary and Outlook
6.1. Simplicity
6.2. Good Performance
6.3. Economy
6.4. Environmental Friendliness
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Cunha, B.A. Vancomycin. Med. Clin. N. Am. 1995, 79, 817–831. [Google Scholar] [CrossRef]
- Elyasi, S.; Khalili, H.; Dashti-Khavidaki, S.; Mohammadpour, A. Vancomycin-induced nephrotoxicity: Mechanism, incidence, risk factors and special populations. A literature review. Eur. J. Clin. Pharmacol. 2012, 68, 1243–1255. [Google Scholar] [CrossRef]
- Valle, M.J.D.J.; López, F.G.; Navarro, A.S. Development and validation of an HPLC method for vancomycin and its application to a pharmacokinetic study. J. Pharm. Biomed. Anal. 2008, 48, 835–839. [Google Scholar] [CrossRef]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am. J. Health Syst. Pharm. 2020, 77, 835–864. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.; Luo, Y.; Qu, L.; Zhao, C.; Jiang, M. Application of vancomycin in patients with varying renal function, especially those with augmented renal clearance. Pharm. Biol. 2016, 54, 2802–2806. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, R.; Cortés, L.E.L.; Molina, J.; Cisneros, J.M.; Pachón, J. Optimizing the Clinical Use of Vancomycin. Antimicrob. Agents Chemother. 2016, 60, 2601–2609. [Google Scholar] [CrossRef] [Green Version]
- Bruniera, F.R.; Ferreira, F.M.; Saviolli, L.R.M.; Bacci, M.R.; Feder, D.; Pedreira, M.; Peterlini, M.A.S.; Azzalis, L.; Junqueira, V.B.C.; Fonseca, F.L. The use of vancomycin with its therapeutic and adverse effects: A review. Eur. Rev. Med. Pharm. Sci. 2015, 19, 694–700. [Google Scholar]
- Nascimento, P.A.D.; Kogawa, A.C.; Salgado, H.R.N. Current Status of Vancomycin Analytical Methods. J. AOAC Int. 2020, 103, 755–769. [Google Scholar] [CrossRef]
- Pfaller, M.; Krogstad, D.; Granich, G.; Murray, P. Laboratory evaluation of five assay methods for vancomycin: Bioassay, high-pressure liquid chromatography, fluorescence polarization immunoassay, radioimmunoassay, and fluorescence immunoassay. J. Clin. Microbiol. 1984, 20, 311–316. [Google Scholar] [CrossRef] [Green Version]
- Walker, C.A.; Kopp, B. Sensitive Bioassay for Vancomycin. Antimicrob. Agents Chemother. 1978, 13, 30–33. [Google Scholar] [CrossRef] [Green Version]
- Walker, C.N. Bioassay for determination of vancomycin in the presence of rifampin or aminoglycosides. Antimicrob. Agents Chemother. 1980, 17, 730–731. [Google Scholar] [CrossRef]
- Pohlod, D.J.; Saravolatz, L.D.; Somerville, M.M. Comparison of fluorescence polarization immunoassay and bioassay of vancomycin. J. Clin. Microbiol. 1984, 20, 159–161. [Google Scholar] [CrossRef] [Green Version]
- Ristuccia, P.A.; Ristuccia, A.M.; Bidanset, J.H.; Cunha, B.A. Comparison of Bioassay, High-Performance Liquid Chromatography, and Fluorescence Polarization Immunoassay for Quantitative Determination of Vancomycin in Serum. Ther. Drug Monit. 1984, 6, 238–242. [Google Scholar] [CrossRef]
- Crossley, K.; Rotschafer, J.; Chern, M.; Mead, K.; Zaske, D. Comparison of a radioimmunoassay and a microbiological assay for measurement of serum vancomycin concentrations. Antimicrob. Agents Chemother. 1980, 17, 654–657. [Google Scholar] [CrossRef] [Green Version]
- De Louvois, J. Factors influencing the assay of antimicrobial drugs in clinical samples by the agar plate diffusion method. J. Antimicrob. Chemother. 1982, 9, 253–265. [Google Scholar] [CrossRef]
- Fong, K.L.; Ho, D.H.; Bogerd, L.; Pan, T.; Brown, N.S.; Gentry, L.; Bodey, G.P. Sensitive radioimmunoassay for vancomycin. Antimicrob. Agents Chemother. 1981, 19, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Munro, A.J.; Landon, J.; Shaw, E.J. The basis of immunoassays for antibiotics. J. Antimicrob. Chemother. 1982, 9, 423–432. [Google Scholar] [CrossRef]
- Jolley, M. Fluorescence Polarization Immunoassay for the Determination of Therapeutic Drug Levels in Human Plasma. J. Anal. Toxicol. 1981, 5, 236–240. [Google Scholar] [CrossRef]
- Smith, D.S.; Eremin, S.A. Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules. Anal. Bioanal. Chem. 2008, 391, 1499–1507. [Google Scholar] [CrossRef]
- Schwenzer, K.S.; Wang, C.-H.J.; Anhalt, J.P. Automated Fluorescence Polarization Immunoassay for Monitoring Vancomycin. Ther. Drug Monit. 1983, 5, 341–346. [Google Scholar] [CrossRef]
- Farin, D.; Piva, G.; Gozlan, I.; Kitzes-Cohen, R. A modified HPLC method for the determination of vancomycin in plasma and tissues and comparison to FPIA (TDX). J. Pharm. Biomed. Anal. 1998, 18, 367–372. [Google Scholar] [CrossRef]
- Brozmanová, H.; Kacířová, I.; Uřinovská, R.; Šištík, P.; Grundmann, M. New liquid chromatography-tandem mass spec-trometry method for routine TDM of vancomycin in patients with both normal and impaired renal functions and comparison with results of polarization fluoroimmunoassay in light of varying creatinine concentrations. Clin. Chim. Acta 2017, 469, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.W.; Anne, L.; Forni, T.; Gottwald, K. Measurement of Vancomycin in Renally Impaired Patient Samples Using a New High-Performance Liquid Chromatography Method with Vitamin B12 Internal Standard: Comparison of high-performance liquid chromatography, emit, and fluorescence polarization immunoassay methods. Ther. Drug Monit. 1990, 12, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Begg, E.J.; Barclay, M.L.; Kirkpatrick, C.J. The therapeutic monitoring of antimicrobial agents. Br. J. Clin. Pharmacol. 1999, 47, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Li, M.-Y.; Ma, L.-Y.; Zhai, X.-Y.; Luo, D.-H.; Zhou, Y.; Liu, Z.-M.; Cui, Y.-M. Precision and accuracy of commercial assays for vancomycin therapeutic drug monitoring: Evaluation based on external quality assessment scheme. J. Antimicrob. Chemother. 2020, 75, 2110–2119. [Google Scholar] [CrossRef] [PubMed]
- Backes, D.W.; Aboleneen, H.; Simpson, J. Quantitation of vancomycin and its crystalline degradation product (CDP-1) in human serum by high performance liquid chromatography. J. Pharm. Biomed. Anal. 1998, 16, 1281–1288. [Google Scholar] [CrossRef]
- Morishige, H.; Shuto, H.; Ieiri, I.; Otsubo, K.; Oishi, R. Instability of Standard Calibrators May Be Involved in Overestimating Vancomycin Concentrations Determined by Fluorescence Polarization Immunoassay. Ther. Drug Monit. 1996, 18, 80–85. [Google Scholar] [CrossRef]
- Sym, D.; Smith, C.; Meenan, G.; Lehrer, M. Fluorescence Polarization Immunoassay: Can It Result in an Overestimation of Vancomycin in Patients Not Suffering From Renal Failure? Ther. Drug Monit. 2001, 23, 441–444. [Google Scholar] [CrossRef]
- Irtan, S.; Azougagh, S.; Monchaud, C.; Popon, M.; Baudouin, V.; Jacqz-Aigrain, E. Comparison of high-performance liquid chromatography and enzyme-multiplied immunoassay technique to monitor mycophenolic acid in paediatric renal recipients. Pediatr. Nephrol. 2008, 23, 1859–1865. [Google Scholar] [CrossRef]
- Chen, B.; Gu, Z.; Chen, H.; Zhang, W.; Fen, X.; Cai, W.; Fan, Q. Establishment of High-Performance Liquid Chromatography and Enzyme Multiplied Immunoassay Technology Methods for Determination of Free Mycophenolic Acid and Its Application in Chinese Liver Transplant Recipients. Ther. Drug Monit. 2010, 32, 653–660. [Google Scholar] [CrossRef]
- Wilson, J.F.; Davis, A.C.; Tobin, C.M. Evaluation of commercial assays for vancomycin and aminoglycosides in serum: A comparison of accuracy and precision based on external quality assessment. J. Antimicrob. Chemother. 2003, 52, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Tsoi, V.; Bhayana, V.; Bombassaro, A.M.; Tirona, R.G.; Kittanakom, S. Falsely Elevated Vancomycin Concentrations in a Patient Not Receiving Vancomycin. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2019, 39, 778–782. [Google Scholar] [CrossRef] [PubMed]
- Singer, B.; Stevens, R.; Westley, B.; Nicolau, D. Falsely elevated vancomycin-concentration values from enzyme immunoassay leading to treatment failure. Am. J. Health-Syst. Pharm. 2020, 77, 9–13. [Google Scholar] [CrossRef]
- Ghasemiyeh, P.; Vazin, A.; Zand, F.; Azadi, A.; Karimzadeh, I.; Mohammadi-Samani, S. A simple and validated HPLC method for vancomycin assay in plasma samples: The necessity of TDM center development in Southern Iran. Res. Pharm. Sci. 2020, 15, 529–540. [Google Scholar] [CrossRef]
- Ghassempour, A.; Darbandi, M.K.; Asghari, F.S. Comparison of pyrolysis-mass spectrometry with high performance liquid chromatography for the analysis of vancomycin in serum. Talanta 2001, 55, 573–580. [Google Scholar] [CrossRef]
- Hu, L.-Q.; Yin, C.-L.; Du, Y.-H.; Zeng, Z.-P. Simultaneous and Direct Determination of Vancomycin and Cephalexin in Human Plasma by Using HPLC-DAD Coupled with Second-Order Calibration Algorithms. J. Anal. Methods Chem. 2012, 2012, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, T.D.M.; Seba, K.S.; Gonçalves, J.C.S.; Cardoso, F.L.L.; Estrela, R.D.C.E. A Rapid and Simple HPLC Method for Therapeutic Monitoring of Vancomycin. J. Chromatogr. Sci. 2017, 56, 115–121. [Google Scholar] [CrossRef]
- Kratzer, A.; Liebchen, U.; Schleibinger, M.; Kees, M.G.; Kees, F. Determination of free vancomycin, ceftriaxone, cefazolin and ertapenem in plasma by ultrafiltration: Impact of experimental conditions. J. Chromatogr. B 2014, 961, 97–102. [Google Scholar] [CrossRef]
- Li, L.; Miles, M.V.; Hall, W.; Carson, S.W. An Improved Micromethod for Vancomycin Determination by High-Performance Liquid Chromatography. Ther. Drug Monit. 1995, 17, 366–370. [Google Scholar] [CrossRef]
- Usman, M.; Hempel, G. Development and validation of an HPLC method for the determination of vancomycin in human plasma and its comparison with an immunoassay (PETINIA). SpringerPlus 2016, 5, 124. [Google Scholar] [CrossRef] [Green Version]
- Hagihara, M.; Sutherland, C.; Nicolau, D.P. Development of HPLC Methods for the Determination of Vancomycin in Human Plasma, Mouse Serum and Bronchoalveolar Lavage Fluid. J. Chromatogr. Sci. 2012, 51, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Baranowska, I.; Wilczek, A.; Baranowski, J. Rapid UHPLC Method for Simultaneous Determination of Vancomycin, Terbinafine, Spironolactone, Furosemide and Their Metabolites: Application to Human Plasma and Urine. Anal. Sci. 2010, 26, 755–759. [Google Scholar] [CrossRef] [Green Version]
- Wicha, S.G.; Kloft, C. Simultaneous determination and stability studies of linezolid, meropenem and vancomycin in bacterial growth medium by high-performance liquid chromatography. J. Chromatogr. B 2016, 1028, 242–248. [Google Scholar] [CrossRef] [PubMed]
- López, K.V.; Bertoluci, D.F.; Vicente, K.; Dell’Aquilla, A.; Santos, S.J. Simultaneous determination of cefepime, vancomycin and imipenem in human plasma of burn patients by high-performance liquid chromatography. J. Chromatogr. B 2007, 860, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Feferbaum, R.; Machado, J.K.K.; Diniz, E.M.D.A.; Okay, T.S.; Santos, S.R.C.J.; Ceccon, M.E.J.; Krebs, V.L.J.; De Araújo, M.C.K.; Vaz, F.A.C. Vancomycin monitoring in term newborns: Comparison of peak and trough serum concentrations determined by high performance liquid chromatography and fluorescence polarization immunoassay. Rev. Do Hosp. Das Clínicas 2001, 56, 149–152. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Yu, J.; Chen, Y.; Zhang, J.; Wu, X.; Zhang, Y.; Li, G. Development and Validation of a New Ultra-Performance Liquid Chromatographic Method for Vancomycin Assay in Serum and Its Application to Therapeutic Drug Monitoring. Ther. Drug Monit. 2014, 36, 175–181. [Google Scholar] [CrossRef]
- Favetta, P.; Guitton, J.; Bleyzac, N.; Dufresne, C.; Bureau, J. New sensitive assay of vancomycin in human plasma using high-performance liquid chromatography and electrochemical detection. J. Chromatogr. B Biomed. Sci. Appl. 2001, 751, 377–382. [Google Scholar] [CrossRef]
- Abu-Shandi, K.H. Determination of vancomycin in human plasma using high-performance liquid chromatography with fluorescence detection. Anal. Bioanal. Chem. 2009, 395, 527–532. [Google Scholar] [CrossRef]
- Lukša, J.; Marušič, A. Rapid high-performance liquid chromatographic determination of vancomycin in human plasma. J. Chromatogr. B Biomed. Sci. Appl. 1995, 667, 277–281. [Google Scholar] [CrossRef]
- Furuta, I.; Kitahashi, T.; Kuroda, T.; Nishio, H.; Oka, C.; Morishima, Y. Rapid serum vancomycin assay by high-performance liquid chromatography using a semipermeable surface packing material column. Clin. Chim. Acta 2000, 301, 31–39. [Google Scholar] [CrossRef]
- Liu, M.; Yang, Z.-H.; Li, G.-H. A Novel Method for the Determination of Vancomycin in Serum by High-Performance Liquid Chromatography-Tandem Mass Spectrometry and Its Application in Patients with Diabetic Foot Infections. Molecules 2018, 23, 2939. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Peng, X.; Yu, J.; Liang, X.; Chen, Y.; Liu, X.; Guo, B.; Zhang, J. An ultra-performance liquid chromatography–tandem mass spectrometry method to quantify vancomycin in human serum by minimizing the degradation product and matrix interference. Bioanalysis 2019, 11, 941–955. [Google Scholar] [CrossRef] [PubMed]
- Stajić, A.; Maksić, J.; Maksić, Đ.; Forsdahl, G.; Medenica, M.; Jančić-Stojanović, B. Analytical Quality by Design-based development and validation of ultra pressure liquid chromatography/MS/MS method for glycopeptide antibiotics determination in human plasma. Bioanalysis 2018, 10, 1861–1876. [Google Scholar] [CrossRef]
- Fan, Y.; Peng, X.; Wu, H.; Liang, X.; Chen, Y.; Guo, B.; Zhang, J. Simultaneous separation and determination of vancomycin and its crystalline degradation products in human serum by ultra high performance liquid chromatography tandem mass spectrometry method and its application in therapeutic drug monitoring. J. Sep. Sci. 2020, 43, 3987–3994. [Google Scholar] [CrossRef]
- Barco, S.; Castagnola, E.; Gennai, I.; Barbagallo, L.; Loy, A.; Tripodi, G.; Cangemi, G. Ultra high performance liquid chromatography-tandem mass spectrometry vs. commercial immunoassay for determination of vancomycin plasma concentration in children. Possible implications for everyday clinical practice. J. Chemother. 2016, 28, 395–402. [Google Scholar] [CrossRef]
- Shi, M.; Zhao, X.; Wang, T.; Yin, L.; Li, Y. A LC–MS-MS assay for simultaneous determination of two glycopeptides and two small molecule compounds in human plasma. J. Chromatogr. Sci. 2018, 56, 828–834. [Google Scholar] [CrossRef] [Green Version]
- Parker, S.L.; Valero, Y.G.; Mejia, J.L.O.; Roger, C.; Lipman, J.; Roberts, J.; Wallis, S.C. An LC–MS/MS method to determine vancomycin in plasma (total and unbound), urine and renal replacement therapy effluent. Bioanalysis 2017, 9, 911–924. [Google Scholar] [CrossRef] [PubMed]
- Oyaert, M.; Peersman, N.; Kieffer, D.; Deiteren, K.; Smits, A.; Allegaert, K.; Spriet, I.; Van Eldere, J.; Verhaegen, J.; Vermeersch, P.; et al. Novel LC–MS/MS method for plasma vancomycin: Comparison with immunoassays and clinical impact. Clin. Chim. Acta 2015, 441, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Watson, D.; Azike, C.; Tettey, J.; Stearns, A.; Binning, A.; Payne, C. Determination of vancomycin in serum by liquid chromatography–high resolution full scan mass spectrometry. J. Chromatogr. B 2007, 857, 352–356. [Google Scholar] [CrossRef]
- Xiao, J.; Shi, J.; Li, R.; Her, L.; Wang, X.; Li, J.; Sorensen, M.J.; Bhatt-Mehta, V.; Zhu, H.-J. Developing a SWATH capillary LC-MS/MS method for simultaneous therapeutic drug monitoring and untargeted metabolomics analysis of neonatal plasma. J. Chromatogr. B 2021, 1179, 122865. [Google Scholar] [CrossRef]
- König, K.; Kobold, U.; Leinenbach, A.; Dülffer, T.; Thiele, R.; Zander, J.; Fink, G.; Vogeser, M. Quantification of vancomycin in human serum by LC-MS/MS. Clin. Chem. Lab. Med. (CCLM) 2013, 51, 1761–1769. [Google Scholar] [CrossRef] [PubMed]
- Tsai, I.-L.; Sun, H.-Y.; Chen, G.-Y.; Lin, S.-W.; Kuo, C.-H. Simultaneous quantification of antimicrobial agents for multidrug-resistant bacterial infections in human plasma by ultra-high-pressure liquid chromatography–tandem mass spectrometry. Talanta 2013, 116, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Hu, Z.-Y.; Laizure, S.C.; Hudson, J.Q. Simultaneous assay of multiple antibiotics in human plasma by LC–MS/MS: Importance of optimizing formic acid concentration. Bioanalysis 2017, 9, 469–483. [Google Scholar] [CrossRef] [PubMed]
- Bijleveld, Y.; de Haan, T.; Toersche, J.; Jorjani, S.; van der Lee, J.; Groenendaal, F.; Dijk, P.; van Heijst, A.; Gavilanes, A.W.; de Jonge, R.; et al. A simple quantitative method analysing amikacin, gentamicin, and vancomycin levels in human newborn plasma using ion-pair liquid chromatography/tandem mass spectrometry and its applicability to a clinical study. J. Chromatogr. B 2014, 951, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Barco, S.; Mesini, A.; Barbagallo, L.; Maffia, A.; Tripodi, G.; Pea, F.; Saffioti, C.; Castagnola, E.; Cangemi, G. A liquid chromatography-tandem mass spectrometry platform for the routine therapeutic drug monitoring of 14 antibiotics: Application to critically ill pediatric patients. J. Pharm. Biomed. Anal. 2020, 186, 113273. [Google Scholar] [CrossRef]
- Seyfinejad, B.; Ozkan, S.A.; Jouyban, A. Recent advances in the determination of unbound concentration and plasma protein binding of drugs: Analytical methods. Talanta 2020, 225, 122052. [Google Scholar] [CrossRef]
- Berthoin, K.; Ampe, E.; Tulkens, P.M.; Carryn, S. Correlation between free and total vancomycin serum concentrations in patients treated for Gram-positive infections. Int. J. Antimicrob. Agents 2009, 34, 555–560. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, F.; Xu, B.; Yu, X.; Yang, Y.; Zhang, L.; Li, H. Determination of the free and total concentrations of vancomycin by two-dimensional liquid chromatography and its application in elderly patients. J. Chromatogr. B 2014, 969, 181–189. [Google Scholar] [CrossRef]
- Fooks, J.R.; McGilveray, I.J.; Strickland, R.D. Colorimetric Assay and Improved Method for Identification of Vancomycin Hydrochloride. J. Pharm. Sci. 1968, 57, 314–317. [Google Scholar] [CrossRef]
- Belal, F.; El-Ashry, S.M.; El-Kerdawy, M.M.; El-Wasseef, D.R. Voltametric Determination of Vancomycin in Dosage Forms through Treatment with Nitrous Acid. Arzneimittelforschung 2001, 51, 763–768. [Google Scholar] [CrossRef]
- Kitahashi, T.; Furuta, I. Determination of vancomycin in human serum by micellar electrokinetic capillary chromatography with direct sample injection. Clin. Chim. Acta 2001, 312, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wu, W.; Yeh, H.; Chen, S. Simultaneous determination of cefepime and vancomycin in plasma and cerebrospinal fluid by MEKC with direct sample injection and application for bacterial meningitis. Electrophoresis 2007, 28, 1788–1797. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cao, Y.; Wu, S.; Wang, S.; Zhao, X.; Zhou, T.; Lou, Y.; Fan, G. Determination of Vancomycin in Human Serum by Cyclodextrin-Micellar Electrokinetic Capillary Chromatography (CD-MEKC) and Application for PDAP Patients. Molecules 2017, 22, 538. [Google Scholar] [CrossRef]
- Khataee, A.; Hasanzadeh, A.; Iranifam, M.; Fathinia, M.; Hanifehpour, Y.; Joo, S. CuO nanosheets-enhanced flow-injection chemiluminescence system for determination of vancomycin in water, pharmaceutical and human serum. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 122, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Gill, A.; Singh, S.; Agrawal, N.; Nate, Z.; Chiwunze, T.; Thapliyal, N.; Chauhan, R.; Karpoormath, R. A poly (acrylic acid)-modified copper-organic framework for electrochemical determination of vancomycin. Mikrochim. Acta 2020, 187, 79. [Google Scholar] [PubMed]
- Bai, X.; Lu, B.; Chen, X.; Zhang, B.; Tang, J. Reversible detection of vancomycin using peptide-functionalized cantilever array sensor. Biosens. Bioelectron. 2014, 62, 145–150. [Google Scholar] [CrossRef]
- Mu, F.; Zhou, X.; Fan, F.; Chen, Z.; Shi, G. A fluorescence biosensor for therapeutic drug monitoring of vancomycin using in vivo microdialysis. Anal. Chim. Acta 2021, 1151, 338250. [Google Scholar] [CrossRef]
- Dauphin-Ducharme, P.; Yang, K.; Arroyo-Currás, N.; Ploense, K.L.; Zhang, Y.; Gerson, J.; Kurnik, M.; Kippin, T.E.; Stojanovic, M.N.; Plaxco, K.W. Electrochemical Aptamer-Based Sensors for Improved Therapeutic Drug Monitoring and High-Precision, Feedback-Controlled Drug Delivery. ACS Sensors 2019, 4, 2832–2837. [Google Scholar] [CrossRef]
- Deng, T.; Hu, S.; Zhao, L.; Wu, S.; Liu, W.; Chen, T.; Fu, T.; Wang, H.; Shi, H.; Huang, X.-A.; et al. A ratiometric fluorescent probe for sensitive determination of the important glycopeptide antibiotic vancomycin. Anal. Bioanal. Chem. 2019, 411, 8103–8111. [Google Scholar] [CrossRef]
- Chianella, I.; Guerreiro, A.; Moczko, E.; Caygill, J.S.; Piletska, E.V.; Sansalvador, I.M.P.D.V.; Whitcombe, M.J.; Piletsky, S.A. Direct Replacement of Antibodies with Molecularly Imprinted Polymer Nanoparticles in ELISA—Development of a Novel Assay for Vancomycin. Anal. Chem. 2013, 85, 8462–8468. [Google Scholar] [CrossRef] [Green Version]
- Canfarotta, F.; Smolinska-Kempisty, K.; Piletsky, S. Replacement of Antibodies in Pseudo-ELISAs: Molecularly Imprinted Nanoparticles for Vancomycin Detection. Methods Mol. Biol. 2017, 1575, 389–398. [Google Scholar] [CrossRef] [PubMed]
- El-Din, M.K.S.; Ibrahim, F.; El-Deen, A.K.; Shimizu, K. Stability-indicating spectrofluorimetric method with enhanced sensitivity for determination of vancomycin hydrochloride in pharmaceuticals and spiked human plasma: Application to degradation kinetics. J. Food Drug Anal. 2018, 26, 834–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nascimento, P.A.D.; Kogawa, A.C.; Salgado, H.R.N. A New and Ecological Method to Quantify Vancomycin in Pharmaceutical Product by Infrared Spectrometry. Acta Chim. Slov. 2021, 68, 313–319. [Google Scholar] [CrossRef] [PubMed]
Medium | pH | Indicator Organism | Standard Range (µg mL−1) | Well Size (mm) | Incubation Time (h) | Incubation Temperature (°C) | Ref. |
---|---|---|---|---|---|---|---|
Tryptic soy agar medium | none | Bacillus globigii | 5–80 | 2.5 | 18 | 35 | [9] |
MSA | 7.3 | Bacillus subtilis (W23) | 0.8–50 | 6 | 10–12 | 35–37 | [10] |
MSA | 7.3 | Bacillus subtilis ATCC 6633 | 0.8–50 | 6 | 16–18 | 36 | [11] |
Antibiotic medium no. 5 | 8.0 | Bacillus subtilis ATCC 6633 | 10–40 | None | 4–18 | 37 | [12] |
MSA | 7.3 | Bacillus subtilis ATCC 6633 | 0.8–50 | None | 16–18 | 35 | [13] |
Heart infusion agar medium | 5.5 | Bacillus subtilis ATCC 6633 | 4–32 | 6.4 | 8 | 37 | [14] |
Detection Range (µg mL−1) | Other Methods | Correlation Coefficient | Ref. |
---|---|---|---|
5–85 | Bioassay | 0.973 | [8] |
HPLC | 0.977 | ||
RIA | 0.967 | ||
FIA | 0.918 | ||
5–80 | Bioassay | 0.985 | [12] |
0.8–50 | Bioassay | 0.777 | [13] |
HPLC | 0.999 | ||
0.6–100 | LC | 0.980 | [20] |
RIA | 0.975 | ||
0.5–75 | HPLC | 0.964 | [21] |
0.1–100 | LC-MS/MS | 0.943 | [22] |
5–50 | HPLC | 0.939 | [23] |
EMIT | 0.979 |
Method | Plasma/Serum | IS | Precipitant | Column | Mobile Phase | Detector (nm) | tR (min) | Sensitivity LOD/LOQ | Lin. Range | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
HPLC | 500 µL | Tinidazole | MeOH | Hypersil BDS C8 | 5 mM potassium dihydrogen phosphate buffer (pH 2.8)-ACN | UV; 282 | 7.6 | LOQ: 0.5 µg mL−1 | 0.5–75 µg mL−1 | [21] |
LC-MS/MS | 50 µL | Tobramycin | 33% TCA | RP BEH C18 | A: 2 mM ammonium acetate, 0.1% FA in 5% ACN; B: 2 mM ammonium acetate, 0.1% FA in 95%MeOH | MS/MS, ESI (+) | None | LOQ: 0.1 µg mL−1 | 0.1–100 µg mL−1 | [22] |
HPLC | 500 µL | Acetaminophen | 70% HClO4 | Azura C18 | Phosphate buffer (30 mM, pH of 2.2) and ACN (86:14% v/v) | None | 5.5 | LOD: 0.3 µg mL−1; LOQ: 1 µg mL−1 | 1–30 µmL−1 | [34] |
HPLC | 1000 µL | 3-Nitroaniline | MeOH | μBondapak C18 | A: triethylamine buffer, ACN, tetrahydrofuran (92:7:1); B: was the same solvent with 70:29:1 ratio | PDA; 205 | None | 1 ng mL−1 | 1–10 ng mL−1 | [35] |
HPLC-DAD | 2000 µL | None | none | XDB-C8 | Methanol and 0.1 M disodium hydrogen phosphate buffer (40/60 v/v %) | UV–Vis | None | LOD: 0.32 µg mL−1 | None | [36] |
HPLC | 50 µL | Zidovudine | none | Supelcosil C18 | 20 mM ammonium acetate/FA buffer (pH 4.0): methanol 88:12 (v/v) | UV; 240 | 4.0 | LOQ: 1 µg mL−1 | 1–100 µg mL−1 | [37] |
HPLC | 300 µL | None | none | CXBridge C18 | Phosphate buffer; ACN | UV; 240 | None | None | None | [38] |
HPLC | 50 µL | Ristomycin | 15% HClO4 | Microsorb-MV-NH2 | 62% acetonitrile, 38% sodium phosphate buffer (pH 7.0) | UV; 225 | None | LOD: 0.32 µg mL−1 | 1–100 µg mL−1 | [39] |
HPLC | 200 µL | None | 70% HClO4 | Nucleodur C18 | NH4H2PO4 (50 mM, pH 2.2)-CAN (88:12, v/v) | UV; 205 | 8.1 | LOD: 0.25 µg mL−1 | 0.25–60 µg mL−1 | [40] |
HPLC | 200 µL | Caffeine | ACN | Spherisorb C18 ODS | 0.05 M ammonium phosphate buffer with 11% ACN | UV; 240 | 13.7 | LOD: 0.1 µg mL−1 | 1–80 µg mL−1 | [41] |
UHPLC | 1000 µL | Ketoprofen | ACN | Hypersil GOLD C18 | 0.1% FA, ACN | UV; 215 | 2.96 | LOD: 0.01 µg mL−1 | 0.36–20 µg mL−1 | [42] |
HPLC | 100 µL | None | MeOH, ACN | Accucore C-18 | A: 0.1% TFA; B: ACN: Milli-Q water 40:60 (v/v) with 0.1% TFA | UV; 240 | None | LOQ: 2 µg mL−1 | None | [43] |
HPLC | 200 µL | Cefuroxime | ACN | SupelcosilTM LC-18 | 0.075 M acetate buffer, pH 5.0, and ACN (92:8 v/v) | UV; 230 | 17.4 | LOD: 0.17 ± 0.01 µg mL−1 | 0.4–100 µg mL−1 | [44] |
HPLC | 100 µL | None | MeOH, TCA | CLC-ODS | 0.05 M phosphate Buffer, MeOH, ACN | UV; 240 | None | LOQ: 0.4 µg mL−1 | 0.4–80 µg mL−1 | [45] |
UPLC | 200 µL | PABA | ACN | Acquity UPLC BEH C18 | 0.005 M KH2PO4 buffer (pH 2.5), ACN | PDA; 230 | 2.6 | LOQ: 1 µg mL−1 | 1–100 µg mL−1 | [46] |
HPLC | 100 µL | None | MeOH | Kromasil C18 | ACN-sodium phosphate buffer (pH 7) (12:88) | ECD | None | LOD: 0.5 µg mL−1; LOQ: 1 µg mL−1 | 5–100 µg mL−1 | [47] |
HPLC | 500 µL | Erythromycin | none | μBondapak C18 | A: 5 mM KH2PO4, MeOH | FLD; Ex: 225, Em:258 | 16.3 | LOD: 2 ng mL−1; LOQ: 5 ng mL−1 | 5–1000 ng mL−1 | [48] |
HPLC | 1000 µL | None | HClO4 | Nucleosil RP-18 | 0.005 M KH2PO4 (pH 2.8), ACN 90:10 (v/v) | UV; 229 | 5 | LOD: 0.2 µg mL−1; LOQ: 1 µg mL−1 | 1–100 µg mL−1 | [49] |
HPLC | none | None | None | SPS octyl-C8 | 0.1 MNaH2PO4 buffer-CAN (95/5, v/v%) | UV; 240 | None | LOD: 0.5 µg mL−1 | 0–100 µg mL−1 | [50] |
HPLC-Q-Trap-MS | 100 µL | Norvancomycin | ACN | ZORBAX SB-C18 | Water (containing 0.1% FA, v/v) and ACN (containing 0.1% FA, v/v) | Q-Trap, ESI (+) | None | LOD: 0.3 ng mL−1; LOQ: 1.0 ng mL−1 | 1–2000 ng ml−1 | [51] |
UPLC-MS/MS | 200 µL | Norvancomycin | ACN | Acquity UPLC BEH C18 | ACN, 0.1% FA | MS/MS, ESI (+) | None | LOQ: 1.0 µg mL−1 | 1–100 µg mL−1 | [52] |
UPLC-MS/MS | 100 µL | Roxithromycin | ACN | Acquity UPLC BEH C18 | ACN, 0.1% FA | MS/MS, ESI (+) | None | LOD: 0.02 µg mL−1; LOQ: 0.05 µg mL−1 | 0.05–10 µg mL−1 | [53] |
UPLC-MS/MS | 50 µL | Norvancomycin | ACN | Acquity BEH C18 | ACN, 0.1% FA | MS/MS, ESI (+) | None | LOQ: 0.25 µg mL−1 | Y = 0.133 x − 0.00823 (r = 0.9980) | [54] |
UPLC-MS/MS | 50 µL | Linezolid | ZnSO4, ACN | Hypersil GOLD aQ C18 | ACN, 0.1% FA | MS/MS, ESI (+) | 1.28 | LOQ: 0.1 µg mL−1 | 0.1–128 µg mL−1 | [55] |
LC-MS/MS | 50 µL | 10-hydroxycarbazepine | ACN | Zorbax SB-C18 | ACN, 0.1% FA (5:95, v/v) | Q-Trap, ESI (+) | None | LOQ: 1 µg mL−1 | 1–100 µg mL−1 | [56] |
LC-MS/MS | 10 µL | 2H12-vancomycin | ACN | SeQuant zic-HILIC | A: 30% ACN, 10% acetone and 60% of 0.1% FA in water, v/v/v; B: contained 70% ACN, 10% acetone and 20% of 0.1% FA in water, v/v/v | MS/MS, ESI (+) | 2 | LOQ: 1 µg mL−1 | 1–100 µg mL−1 | [57] |
LC-MS/MS | 40 µL | Vancomycin-des-leucine | ACN | Acquity UPLC BEH HILIC | ACN, 0.1% FA | MS/MS, ESI (+) | 2.7 | LOQ: 0.3 µg mL−1 | 0.3–100 µg mL−1 | [58] |
LC-MS/MS | 200 µL | Atenolol | MeOH | ACE-3-C8 | ACN, 0.1% FA (1:9) | Orbitrap, ESI (+) | 3.75 | LOD: 0.001 µg mL−1; LOQ: 0.05 µg mL−1 | 0.05–10 µg mL−1 | [59] |
LC-MS/MS | 25 µL | Caffeine-13C3 | MeOH | Acquity UPLC BEH C18 | ACN, 0.1% FA | MS/MS, ESI (+) | None | LOD: 0.5 µg mL−1; LOQ: 2 µg mL−1 | 0.002–50 µg mL−1 | [60] |
LC-MS/MS | 75 µL | Vancomycin-glycin | TCA | Fortis C8 | A: aqueous FA (0.1% v/v); B: MeOH containing 0.1% FA (0.1% v/v) | MS/MS, ESI (+) | 9.8 | LOQ: 1 µg mL−1 | 1–84 µg mL−1 | [61] |
UPLC–MS/MS | 100 µL | Polymyxin B | ACN | Kinetex C18 | ACN, 0.1% FA | MS/MS, ESI (+) | 1.62 | LOD: 1.1 ng mL−1; LOQ: 0.5 µg mL−1 | 0.5–100 µg mL−1 | [62] |
LC-MS/MS | 50 µL | PIP-d6, MER-d3, CEF-d3 | ACN | Eclipse Plus C18 | 25 mM FA, ACN | MS/MS, ESI (+) | 1.94–2.02 | none | None | [63] |
LC-MS/MS | 25 µL | Kanamycin B | TCA | Thermo Scientific Hypurity Aquastar | A: H2O, B: ACN100%, C: perfluoropen tanoic acid (200 mM)/ammonium acetate (130 mM) in H2O | MS/MS, ESI(+) | 3.02 | LOQ:1 µg mL−1 | 1–100 µg mL−1 | [64] |
LC-MS/MS | 50 µL | Vancomycin-d12 | 10% TCA | AccucoreTM Polar Premium | A: 0.1% FA in water; B: 0.1% FA in ACN | MS/MS, ESI (+) | 1.4 | LOQ: 1 µg mL−1 | 1–100 µg mL−1 | [65] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Ma, J.; Su, J. An Overview of Analytical Methodologies for Determination of Vancomycin in Human Plasma. Molecules 2022, 27, 7319. https://doi.org/10.3390/molecules27217319
Cheng X, Ma J, Su J. An Overview of Analytical Methodologies for Determination of Vancomycin in Human Plasma. Molecules. 2022; 27(21):7319. https://doi.org/10.3390/molecules27217319
Chicago/Turabian StyleCheng, Xin, Jingxin Ma, and Jianrong Su. 2022. "An Overview of Analytical Methodologies for Determination of Vancomycin in Human Plasma" Molecules 27, no. 21: 7319. https://doi.org/10.3390/molecules27217319
APA StyleCheng, X., Ma, J., & Su, J. (2022). An Overview of Analytical Methodologies for Determination of Vancomycin in Human Plasma. Molecules, 27(21), 7319. https://doi.org/10.3390/molecules27217319