Novel Complexes of 3-[3-(1H-Imidazol-1-yl)propyl]-3,7-diaza-bispidines and β-Cyclodextrin as Coatings to Protect and Stimulate Sprouting Wheat Seeds
Abstract
:1. Introduction
2. Results
2.1. Synthesis of 3,7-Diazabicyclo[3.3.1]nonane Derivatives
2.2. Growth-Stimulation Activity
3. Discussion
4. Materials and Methods
4.1. Chemical Experimental Part
4.1.1. Reagents and Equipment
4.1.2. Syntheses of Bispidine-9-ones (Compounds 6–7)
4.1.3. Syntheses of β-CD Complexes of Bispidines (Compounds 8–11)
4.1.4. Syntheses of β-CD Complexes of O-Benzoyloxime of Bispidine (Compounds 12–14)
4.2. Biological Experimental Part
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Harwitz, E. Double coating nurtures seeds. Chem. Eng. News 2021, 99, 9. [Google Scholar] [CrossRef]
- Zvinavashe, A.T.; Laurent, J.; Mhada, J.L.M.; Sun, H.; Fouda, H.M.E.; Kim, D.; Mouhib, S.; Kouisni, L.; Marelli, B. Programmable design of seed coating function induces water-stress tolerance in semi-arid regions. Nat. Food 2021, 2, 485–493. [Google Scholar] [CrossRef]
- Ezzo, M.I.; Glala, A.A.; Saleh, S.A.; Omar, N.M. Improving squash plant growth and yielding ability under organic fertilization condition. Aust. J. Basic Appl. Sci. 2012, 6, 572–578. Available online: http://www.ajbasweb.com/old/ajbas/2012/August/572-578.pdf (accessed on 1 August 2012).
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in Plant Science: A Global Perspective. Front. Plant Sci. 2017, 7, 2–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafeek, M.R.; Helmy, Y.I.; Ahmed, A.A.; Ghoname, A.A. Effect of foliar application of growth regulators (GA3 and Ethereal) on growth, sex expression and yield of summer squash plants (Cucurbita peop L.) under plastic house condition. Int. J. ChemTech Res. 2016, 9, 70–76. Available online: https://www.researchgate.net/publication/327989148 (accessed on 1 October 2018).
- Donskaya, V.I.; Diutin, K.E. Newly-developed hybrid “Ladushka”. Veg. Crops Russia 2016, 4, 428–429. [Google Scholar] [CrossRef] [Green Version]
- Yucel, G.; Erken, K.; Evren, Y.D. Organic stimulant uses in natural plant production. Egypt. J. Horticult. 2020, 47, 119–128. Available online: https://ejoh.journals.ekb.eg/article_125209_0c830e306c7070d4a22d65bf3145d88f.pdf (accessed on 1 November 2020). [CrossRef]
- Golovatskaya, I.F.; Vinnikova, Y.M. The role of gibberellins and brassinosteroids in the regulation of growth and development of Arabidopsis. Bull. TSPU 2007, 6, 48–53. Available online: https://vestnik.tspu.edu.ru/files/vestnik/PDF/articles/Golovatckaya_I._F.,_Vinnikova_YU._M._48_54_6_69_2007.pdf (accessed on 1 June 2007). (In Russian).
- Tarakanov, G.L. The role of physiologically active substances in the regulation of the growth and development of vegetable plants. In Vegetable Growing, 2nd ed.; Tarakanov, G.I., Mukhina, V.D., Eds.; Kolos-Moscow: Moscow, Russia, 2002; pp. 98–101. Available online: https://www.studmed.ru/view/tarakanov-gi-i-dr-ovoschevodstvo_5d8988872e7.html (accessed on 1 February 2003). (In Russian)
- Mamonov, E.V.; Starykh, G.A.; Goncharov, A.V. Application of plant growth regulators on crops cucurbitaceae family. Izv. TSHA 2012, 2, 94–99. Available online: http://elib.timacad.ru/dl/full/11-2012-2.pdf/en/view (accessed on 1 April 2012). (In Russian).
- Koshelyaev, V.V.; Kudin, S.M.; Koshelyaev, I.P. Application of growth regulators in winter cultivation wheat in forest-steppe conditions of the middle Volga region. Izv. Samara State Agric. Acad. 2017, 1, 6–10. Available online: https://vestnik.astu.org/temp/d8e9251ec4e4c1577424e3023730043c.pdf (accessed on 1 March 2017). (In Russian).
- Muromtsev, G.S.; Chkanikov, D.P.; Kulaeva, O.P.; Gamburg, K.Z. Fundamentals of Chemical Regulation of Plant Growth and Productivity; Agropromizdat–Moscow: Moscow, Russia, 1987; pp. 381–383. Available online: https://www.studmed.ru/muromcev-g-s-i-dr-osnovy-himicheskoy-regulyacii-rosta-i-produktivnosti-rasteniy_201edace0b8.html (accessed on 14 May 2016). (In Russian)
- Alam, B.; Lǐ, J.; Gě, Q.; Khan, M.A.; Gōng, J.; Mehmood, S.; Yuán, Y.; Gǒng, W. Endophytic Fungi: Symbiosis Second. Metab. Commun. Or Vice Versa? Front. Plant Sci. 2021, 12, 791033. [Google Scholar] [CrossRef] [PubMed]
- Suldin, D.A.; Eryashev, A.P.; Kamalihin, V.E. Efficiency of application of growth regulators and Humic of fertilizers for growth, development and yield of spring grain wheat. Vestn. Ulyanovsk State Agric. Acad. 2017, 4, 49–54. Available online: http://lib.ugsha.ru:8080/bitstream/123456789/1350/1/vestnik-2017-4-49-54.pdf (accessed on 1 November 2017). (In Russian). [CrossRef]
- Tkachuk, O.A.; Efremova, E.V.; Orlov, A.N. The effectiveness of the use of growth regulators in the cultivation of spring wheat in the forest-steppe zone of the Middle Volga region. Young Sci. 2013, 4, 677–679. Available online: https://moluch.ru/archive/51/6543/#google_vignette (accessed on 1 April 2013). (In Russian).
- Malmakova, A.E.; Yu, V.K.; Kan, V.M.; Dauletbai, P.; Li, T.E.; Dulatbaev, A.; Kaldybaeva, A.B.; Praliyev, K.D. 1-(3-Aminopropyl)imidazol as a precursor of plant growth stimulators. Chem. J. of Kazakhstan 2018, 4, 42–51. Available online: https://www.chemjournal.kz/index.php/journal/article/view/356/320 (accessed on 30 December 2018).
- Yu, V.K.; Kabdraissova, A.Z.; Praliyev, K.D.; Shin, S.N.; Berlin, K.D. Synthesis and properties of novel alkoxy- and phenoxyalkyl ethers of secondary and tertiary ethynyl-piperdin-4-ols possessing unusual analgesic, anti-bacterial, and anti-spasmotic activity as well as low toxicity. J. Saudi Chem. Soc. 2009, 13, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Praliev, K.D.; Yu, V.K.; Baymoldina, S.N.; Fomicheva, E.E. 1-(3-n-butoxypropyl)-4-oxopiperidine, as an Intermediate in the Synthesis of 1-(3-N- butoxypropyl)-4-phenyl-4-propionyloxypiperidine Hydrochloride, Possesses an Analgesic. Activity. Patent 1833618 USSR.MKI5 C07D 211/64, A61K 31/445, 28 January 1991. Available online: https://worldwide.espacenet.com/patent/search/family/060541536/publication/SU1833618A3?q=SU1833618A3 (accessed on 28 January 1991). (In Russian).
- Brewster, M.E.; Loffsson, T. Cyclodextrins as pharmacetical as solubilizers. Adv. Drug Discov. Solubilizers 2007, 59, 645–666. [Google Scholar] [CrossRef]
- Kemelbekov, U.S.; Ramazanova, K.R.; Kabdaraissova, A.Z.; Sabirov, V.K. X-Ray and NMR study of cyclodextrin inclusion complexes with 1-methyl-4-ethynyl-4-hydroxypipidine. Chem. Data Collect. 2021, 37, 100811. [Google Scholar] [CrossRef]
- Taeschler, C.; Sorensen, T.T. A practical synthesis of bicyclo3.3.1nonan-9-one. J. Org. Chem. 1998, 63, 5704–5705. [Google Scholar] [CrossRef]
- Kuppers, H.; Hesse, K.F.; Ashauer-Holzgrabe, U.; Haller, R.; Boese, R.Z. Stereochemitry of Substituted isomeric 3-0xa-7-azabicyclo3.3.1nonan-9-ones. Naturforsch 1987, 42b, 221–228. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Bassler, G.C.; Morrill, T.C. Spectrometric Identification of Organic Compounds; John Wiley & Sons: New York, NY, USA, 1991; p. 245. [Google Scholar] [CrossRef]
- Pantaleo, N.S.; van der Helm, D.; Ramarajan, K.; Bailey, B.R.; Berlin, K.D. Chair-boat conformer in 2,4,6,8-tetraphenyl-3-aza-7-thiabicyclo3.3.1nonan-9-one. An X-ray diffractionanalysis of asingle crystal of thecompound. J. Org. Chem. 1981, 46, 4199–4204. [Google Scholar] [CrossRef]
- Krut’ko, D.P.; Medved’ko, A.V.; Lyssenko, K.O.; Churakov, A.V.; Dalinger, A.I.; Kalinin, M.A.; Gudovannyy, A.O.; Ponomarev, K.Y.; Suslov, E.V.; Vatsadze, S.Z. Bispidine platform as a tool for studying amide configuration stability. Molecules 2022, 27, 430. [Google Scholar] [CrossRef] [PubMed]
- Suslov, E.V.; Ponomarov, K.Y.; Patrusheva, O.S.; Kuranov, S.O.; Okhina, A.A.; Rogachev, A.D.; Munkuev, A.A.; Ottenbacher, R.V.; Dalinger, A.I.; Kalinin, M.A.; et al. Novel bispidine—Monoterpene conjugates—Synthesis and application as ligands for the catalytic ethylation of chalcones. Molecules 2021, 26, 7539. [Google Scholar] [CrossRef] [PubMed]
- Kwon, R.; Lee, M.G. Anticancer activity of bispidinone derivative by apoptosis. Biomed. Sci. Lett. 2020, 26, 336–343. [Google Scholar] [CrossRef]
Wheat | Kazakhstanskaya-10 | Severyanka | Miras | ||||
---|---|---|---|---|---|---|---|
Treatment • | Shoot Length, cm •• | Root Length, cm ••• | Shoot Length, cm •• | Root Length, cm ••• | Shoot Length, cm •• | Root Length, cm ••• | |
Control (H2O) | 15.18 ± 2.0111% * (17.07 ± 1.41) | 6.93 ± 2.0626% * (9.36 ± 2.26) | 16.42 ± 3.29.3% * (18.11 ± 1.57) | 9.46 ± 1.782.6% * (9.71 ± 3) | 15.57 ± 2.099% * (17.11 ± 1.59) | 6.96 ± 1.4727.6% * (9.61 ± 3.19) | |
Control (H2O) | 17.88 ± 1.083% * (18.34 ± 0.96) | 10.44 ± 1.5431% ** (7.97 ± 0.91) | 18.47 ± 1.175.3% * (19.5 ± 0.79) | 11.88 ± 1.6333% ** (8.91 ± 1.02) | 16.78 ± 14.3% * (17.53 ± 1.15) | 9.66 ± 1.048.5% ** (8.9 ± 1.28) | |
Control (H2O) | 16.65 ± 2.550.36% * (16.71 ± 2.36) | 7.91 ± 2.3414.5% * (9.25 ± 1.9) | 17.52 ± 2.250.7% ** (17.4 ± 2.37) | 7.53 ± 2.4311.5% ** (6.75 ± 1.24) | 16.87 ± 2.833.7% * (17.52 ± 1.25) | 5.82 ± 1.5531.2%.* (8.46 ± 2.15) | |
Control (H2O) | 15.75 ± 1.10.8% ** (19.07 ± 2.17) | 10.19 ± 2.0112.3% ** (11.6 ± 3.58) | 16.73 ± 1.6612.3% ** (17.7 ± 1.8) | 11.6 ± 1.439.4% ** (10.06 ± 2.86) | 15.66 ± 1.2613.5% ** (17.8 ± 1.44) | 10.22 ± 1.3821.7% ** (10.45 ± 2.77) | |
Control (H2O) | 14.01 ± 3.9210.3% * (19.07 ± 2.17) | 6.46 ± 1.1928.8% * (11.6 ± 3.58) | 13.05 ± 3.6812.4 % * (17.7 ± 1.8) | 7.79 ± 1.2626.5% * (10.06 ± 2.86) | 10.44 ± 1.524.3% * (17.8 ± 1.44) | 5.97 ± 1.0428.9% * (10.45 ± 2.77) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaldybayeva, A.B.; Yu, V.K.; Malmakova, A.E.; Li, T.; Ten, A.Y.; Seilkhanov, T.M.; Praliyev, K.D.; Berlin, K.D. Novel Complexes of 3-[3-(1H-Imidazol-1-yl)propyl]-3,7-diaza-bispidines and β-Cyclodextrin as Coatings to Protect and Stimulate Sprouting Wheat Seeds. Molecules 2022, 27, 7406. https://doi.org/10.3390/molecules27217406
Kaldybayeva AB, Yu VK, Malmakova AE, Li T, Ten AY, Seilkhanov TM, Praliyev KD, Berlin KD. Novel Complexes of 3-[3-(1H-Imidazol-1-yl)propyl]-3,7-diaza-bispidines and β-Cyclodextrin as Coatings to Protect and Stimulate Sprouting Wheat Seeds. Molecules. 2022; 27(21):7406. https://doi.org/10.3390/molecules27217406
Chicago/Turabian StyleKaldybayeva, Altynay B., Valentina K. Yu, Aigul E. Malmakova, Tamara Li, Assel Yu. Ten, Tulegen M. Seilkhanov, Kaldybay D. Praliyev, and Kenneth D. Berlin. 2022. "Novel Complexes of 3-[3-(1H-Imidazol-1-yl)propyl]-3,7-diaza-bispidines and β-Cyclodextrin as Coatings to Protect and Stimulate Sprouting Wheat Seeds" Molecules 27, no. 21: 7406. https://doi.org/10.3390/molecules27217406
APA StyleKaldybayeva, A. B., Yu, V. K., Malmakova, A. E., Li, T., Ten, A. Y., Seilkhanov, T. M., Praliyev, K. D., & Berlin, K. D. (2022). Novel Complexes of 3-[3-(1H-Imidazol-1-yl)propyl]-3,7-diaza-bispidines and β-Cyclodextrin as Coatings to Protect and Stimulate Sprouting Wheat Seeds. Molecules, 27(21), 7406. https://doi.org/10.3390/molecules27217406