Mixed Cultures of Saccharomyces kudravzevii and S. cerevisiae Modify the Fermentation Process and Improve the Aroma Profile of Semi-Sweet White Wines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Mono- and Mixed Cultures of S. cerevisiae and S. kudriavzevii on the Fermentation and Enological Parameters of White Wines
2.2. Aroma Compounds and Sensory Analyzes
3. Materials and Methods
3.1. Microorganisms and the Preparation of Inoculate for Fermentation
3.2. Grape Must Composition and Fermentation
3.3. Enological Parameters Analysis
3.4. Solid Phase Microextraction–Gas Chromatography–Mass Spectrometry (SPME–GC–MS) Analysis of Volatile Aroma Components
3.5. Solid Phase Microextraction–Gas Chromatography–Flame Ionization (SPME-GC-FID) Analysis of Volatile Compounds
3.6. Determination of Volatile Esters and Carbonyl Compounds
3.7. Sensory Evaluation
3.8. Data Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peris, D.; Pérez-Torrado, R.; Hittinger, C.T.; Barrio, E.; Querol, A. On the origins and industrial applications of Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrids. Yeast 2018, 35, 51–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naumov, G.I.; James, S.A.; Naumova, E.S.; Louis, E.J.; Roberts, I.N. Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae. Int. J. Syst. Evol. Microbiol. 2000, 50, 1931–1942. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, J.P.; Gonçalves, P. Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and sympatric with S. cerevisiae and S. paradoxus. Appl. Environ. Microbiol. 2008, 74, 2144–2152. [Google Scholar] [CrossRef] [Green Version]
- Lopes, C.A.; Barrio, E.; Querol, A. Natural hybrids of S. cerevisiae x S. kudriavzevii share alleles with European wild populations of Saccharomyces kudriavzevii. FEMS Yeast Res. 2010, 10, 412–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsammar, H.; Delneri, D. An update on the diversity, ecology and biogeography of the Saccharomyces genus. FEMS Yeast Res. 2020, 20, foaa013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, S.S.; Barrio, E.; Gafner, J.; Querol, A. Natural hybrids from Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces kudriavzevii in wine fermentations. FEMS Yeast Res. 2006, 6, 1221–1234. [Google Scholar] [CrossRef] [Green Version]
- Lopandic, K.; Gangl, H.; Wallner, E.; Tscheik, G.; Leitner, G.; Querol, A.; Borth, N.; Breitenbach, M.; Prillinger, H.; Tiefenbrunner, W. Genetically different wine yeasts isolated from Austrian vine-growing regions influence wine aroma differently and contain putative hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii. FEMS Yeast Res. 2007, 7, 953–965. [Google Scholar] [CrossRef] [Green Version]
- Belloch, C.; Orlic, S.; Barrio, E.; Querol, A. Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. Int. J. Food Microbiol. 2008, 122, 188–195. [Google Scholar] [CrossRef]
- Gamero, A.; Tronchoni, J.; Querol, A.; Belloch, C. Production of aroma compounds by cryotolerant Saccharomyces species and hybrids at low and moderate fermentation temperatures. J. Appl. Microbiol. 2013, 114, 1405–1414. [Google Scholar] [CrossRef]
- Oliveira, B.; Barrio, E.; Querol, A.; Pérez-Torrado, R. Enhanced enzymatic activity of glycerol-3-phosphate dehydrogenase from the cryophilic Saccharomyces kudriavzevii. PLoS ONE 2014, 9, e87290. [Google Scholar] [CrossRef]
- Salvadó, Z.; Arroyo-Lopez, F.N.; Guillamón, J.M.; Salazar, G.; Querol, A.; Barrio, E. Temperature adaptation markedly determines evolution within the genus Saccharomyces. Appl. Environ. Microbiol. 2011, 77, 2292–2302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henriques, D.; Alonso-Del-Real, J.; Querol, A.; Balsa-Canto, E. Saccharomyces cerevisiae and S. kudriavzevii synthetic wine fermentation performance dissected by predictive modeling. Front. Microbiol. 2018, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Alonso-del-Real, J.; Lairón-Peris, M.; Barrio, E.; Querol, A. Effect of temperature on the prevalence of Saccharomyces non cerevisiae species against a S. cerevisiae wine strain in wine fermentation: Competition, physiological fitness, and influence in final wine composition. Front. Microbiol. 2017, 8, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, S.S.; Gallo, L.; Climent, M.D.; Barrio, E.; Querol, A. Enological characterization of natural hybrids from Saccharomyces cerevisiae and S. kudriavzevii. Int. J. Food Microbiol. 2007, 116, 11–18. [Google Scholar] [CrossRef]
- Stribny, J.; Gamero, A.; Pérez-Torrado, R.; Querol, A. Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors. Int. J. Food Microbiol. 2015, 205, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Arroyo-López, F.N.; Pérez-Través, L.; Querol, A.; Barrio, E. Exclusion of Saccharomyces kudriavzevii from a wine model system mediated by Saccharomyces cerevisiae. Yeast 2011, 28, 423–435. [Google Scholar] [CrossRef]
- Alonso-del-Real, J.; Contreras-Ruiz, A.; Castiglioni, G.L.; Barrio, E.; Querol, A. The use of mixed populations of Saccharomyces cerevisiae and S. kudriavzevii to reduce ethanol content in wine: Limited aeration, inoculum proportions, and sequential inoculation. Front. Microbiol. 2017, 8, 2087. [Google Scholar] [CrossRef]
- Alonso-del-Real, J.; Pérez-Torrado, R.; Querol, A.; Barrio, E. Dominance of wine Saccharomyces cerevisiae strains over S. kudriavzevii in industrial fermentation competitions is related to an acceleration of nutrient uptake and utilization. Environ. Microbiol. 2019, 21, 1627–1644. [Google Scholar] [CrossRef] [Green Version]
- Scanes, K.T.; Hohmann, S.; Prior, B.A. Glycerol production by the yeast Saccharomyces cerevisiae and its relevance to wine: A review. S. Afr. J. Enol. Vitic. 1998, 19, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Arroyo-López, F.N.; Pérez-Torrado, R.; Querol, A.; Barrio, E. Modulation of the glycerol and ethanol syntheses in the yeast Saccharomyces kudriavzevii differs from that exhibited by Saccharomyces cerevisiae and their hybrid. Food Microbiol. 2010, 27, 628–637. [Google Scholar] [CrossRef]
- Pérez-Torrado, R.; Barrio, E.; Querol, A. Alternative yeasts for winemaking: Saccharomyces non-cerevisiae and its hybrids. Crit. Rev. Food Sci. Nutr. 2018, 58, 1780–1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.Q.; Luan, Y.; Duan, C.Q.; Yan, G.L. Use of Torulaspora delbrueckii cofermentation with two Saccharomyces cerevisiae strains with different aromatic characteristic to improve the diversity of red wine aroma profile. Front. Microbiol. 2018, 9, 606. [Google Scholar] [CrossRef] [PubMed]
- Ciani, M.; Capece, A.; Comitini, F.; Canonico, L.; Siesto, G.; Romano, P. Yeast interactions in inoculated wine fermentation. Front. Microbiol. 2016, 7, 555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, E.S.; Swiegers, J.H.; Travis, B.; Francis, I.L.; Bastian, S.E.; Pretorius, I.S. Coinoculated fermentations using Saccharomyces yeasts affect the volatile composition and sensory properties of Vitis vinifera L. cv. Sauvignon Blanc wines. J. Agric. Food Chem. 2008, 56, 10829–10837. [Google Scholar] [CrossRef] [PubMed]
- Ciani, M.; Comitini, F. Yeast interactions in multi-starter wine fermentation. Curr. Opin. Food Sci. 2015, 1, 1–6. [Google Scholar] [CrossRef]
- Saerens, S.M.; Delvaux, F.; Verstrepen, K.J.; Van Dijck, P.; Thevelein, J.M.; Delvaux, F.R. Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl. Environ. Microbiol. 2008, 74, 454–461. [Google Scholar] [CrossRef] [Green Version]
- Fan, G.; Teng, C.; Xu, D.; Fu, Z.; Minhazul, K.A.H.M.; Wu, Q.; Liu, P.; Yang, R.; Li, X. Enhanced production of ethyl acetate using co-culture of Wickerhamomyces anomalus and Saccharomyces cerevisiae. J. Biosci. Bioeng. 2019, 128, 564–570. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology: The Chemistry of Wine–Stabilization and Treatments, 2nd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2006; Volume 2. [Google Scholar]
- Saerens, S.M.; Verstrepen, K.J.; Van Laere, S.D.; Voet, A.R.; Van Dijck, P.; Delvaux, F.R.; Thevelein, J.M. The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity. J. Biol. Chem. 2006, 281, 4446–4456. [Google Scholar] [CrossRef] [Green Version]
- PN-A-79528-8:2000; Spirit (Ethyl Alcohol). Test Methods. Part 8: Determination of the Content of Esters. The Polish Committee for Standardization (PKN): Warsaw, Poland, 2000. (In Polish)
- PN-A-79528-4:2000; Spirit (Ethyl Alcohol). Test Methods. Part 4: Determination of the Content of Carbonyl Compounds. The Polish Committee for Standardization (PKN): Warsaw, Poland, 2000. (In Polish)
- Renault, P.; Coulon, J.; de Revel, G.; Barbe, J.-C.; Bely, M. Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation is linked to specific esters enhancement. Int. J. Food Microbiol. 2015, 207, 40–48. [Google Scholar] [CrossRef]
- Clarke, R.J.; Bakker, J. Volatile components. In Wine Flavor Chemistry; Wiley-Blackwell: Chichester, UK, 2011. [Google Scholar]
- Gil, M.; Cabellos, J.M.; Arroyo, T.; Prodanov, M. Characterization of the volatile fraction of young wines from the denomination of origin “Vinos de Madrid” (Spain). Anal. Chim. Acta 2006, 563, 145–153. [Google Scholar] [CrossRef]
- Regodón Mateos, J.A.; Pérez-Nevado, F.; Rumírez Fernández, M. Influence of Saccharomyces cerevisiae yeast strain on the major volatile compounds of wine. Enzym. Microb. Technol. 2006, 40, 151–157. [Google Scholar] [CrossRef]
- Gamero, A.; Belloch, C.; Ibáñez, C.; Querol, A. Molecular analysis of the genes involved in aroma synthesis in the species S. cerevisiae, S. kudriavzevii and S. bayanus var. uvarum in winemaking conditions. PLoS ONE 2014, 9, e97626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nykänen, L. Formation and occurrence of flavour compounds in wine and distilled alcoholic beverages. Am. J. Enol. Vitic. 1986, 37, 84–96. [Google Scholar]
- König, H.; Unden, G.; Fröhlich, J. Biology of Microorganisms on Grapes, in Must and in Wine; Springer: Heidelberg, Germany, 2009. [Google Scholar]
- Carrau, F.M.; Boido, E.; Dellacassa, E. Terpenoids in grapes and wines: Origin and micrometabolism during the vinification process. Nat. Prod. Commun. 2008, 3, 577–592. [Google Scholar] [CrossRef] [Green Version]
- Gamero, A.; Manzanares, P.; Querol, A.; Belloch, C. Monoterpene alcohols release and bioconversion by Saccharomyces species and hybrids. Int. J. Food Microbiol. 2011, 145, 92–97. [Google Scholar] [CrossRef]
- Satora, P.; Semik-Szczurak, D.; Tarko, T.; Bułdys, A. Influence of selected Saccharomyces and Schizosaccharomyces strains and their mixed cultures on chemical composition of apple wines. J. Food Sci. 2018, 83, 424–431. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine (OIV). Compendium of International Methods of Wine and Must Analysis; OIV: Paris, France, 2021. [Google Scholar]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Januszek, M.; Satora, P. How different fermentation type affects volatile composition of plum jerkums. Appl. Sci. 2021, 11, 4658. [Google Scholar] [CrossRef]
- Amerine, M.F.; Roessler, A.B. Wines: Their Sensory Evaluation; W.H. Freeman & Co.: New York, NY, USA, 1983. [Google Scholar]
- Kovačević Ganić, K.; Staver, M.; Peršurić, Đ.; Banović, M.; Komes, D.; Gracin, L. Influence of blending on the aroma of Malvasia istriana wine. Food Technol. Biotechnol. 2003, 41, 305–314. [Google Scholar]
Strains | Ethanol [%vol.] | Total Extract | Total Sugars | Sucrose | Reducing Sugars | Sugar-Free Extract | Glycerol | Titratable Acidity | Volatile Acidity |
---|---|---|---|---|---|---|---|---|---|
[g/L] | |||||||||
Sc | 9.88 ± 0.14 c | 58.2 ± 2.4 f | 27.1 ± 0.2 f | 8.1 ± 0.1 e | 19.1 ± 0.2 d | 31.1 ± 2.6 d | 8.1 ± 0.1 d | 8.9 ± 0.1 b | 0.22 ± 0.00 b |
Sk | 8.69 ± 0.08 a | 69.8 ± 0.2 h | 36.0 ± 0.2 h | 13.9 ± 0.1 g | 22.2 ± 0.2 f | 33.8 ± 0.2 e | 7.7 ± 0.1 c | 10.1 ± 0.1 c | 0.32 ± 0.01 d |
Sc + Sk (3:2) | 8.99 ± 0.12 b | 65.0 ± 0.0 g | 32.2 ± 0.8 g | 10.9 ± 0.6 f | 21.2 ± 0.4 e | 32.8 ± 0.8 de | 7.7 ± 0.2 c | 8.4 ± 0.2 a | 0.23 ± 0.02 b |
Sc + Sk1 (3:2) | 10.06 ± 0.05 c | 44.6 ± 0.5 c | 16.7 ± 0.1 c | 0.7 ± 0.0 a | 16.0 ± 0.2 c | 27.8 ± 0.5 c | 7.4 ± 0.1 b | 9.0 ± 0.1 b | 0.19 ± 0.01 a |
Sc + Sk3 (3:2) | 10.51 ± 0.05 d | 39.7 ± 0.2 b | 15.5 ± 0.7 b | 1.9 ± 0.7 b | 13.6 ± 0.2 b | 24.2 ± 0.8 b | 7.4 ± 0.1 b | 8.4 ± 0.1 a | 0.23 ± 0.01 b |
Sc + Sk6 (3:2) | 11.18 ± 0.05 e | 29.8 ± 0.2 a | 12.2 ± 0.2 a | 0.0 ± 0.0 a | 12.2 ± 0.2 a | 17.7 ± 0.1 a | 7.5 ± 0.2 b,c | 8.6 ± 0.2 a | 0.18 ± 0.01 a |
Sc + Sk (99:1) | 9.91 ± 0.14 c | 54.5 ± 0.6 e | 25.6 ± 0.2 e | 6.6 ± 0.1 d | 19.1 ± 0.3 d | 28.9 ± 0.5 c | 8.1 ± 0.1 d | 8.6 ± 0.3 a,b | 0.28 ± 0.01 c |
Sc + Sk1 (99:1) | 10.02 ± 0.05 c | 49.4 ± 0.4 d | 20.9 ± 0.4 d | 5.1 ± 0.1 c | 15.9 ± 0.2 c | 28.4 ± 0.5 c | 7.4 ± 0.1 b | 8.9 ± 0.1 b | 0.18 ± 0.01 a |
Sc + Sk3 (99:1) | 10.42 ± 0.05 d | 40.0 ± 0.5 b | 17.3 ± 0.7 c | 1.9 ± 0.7 b | 15.4 ± 0.5 c | 22.7 ± 0.7 b | 6.4 ± 0.1 a | 8.4 ± 0.2 a | 0.23 ± 0.01 b |
Sc + Sk6 (99:1) | 11.19 ± 0.06 e | 29.6 ± 0.6 a | 11.9 ± 0.6 a | 0.0 ± 0.0 a | 11.9 ± 0.3 a | 17.7 ± 0.1 a | 7.6 ± 0.0 c | 8.5 ± 0.1 a | 0.22 ± 0.01 b |
Sig. 1 | *** | *** | *** | *** | *** | *** | *** | *** | ** |
Strains | Ethyl Acetate | Isoamyl Acetate | Ethyl Caproate | Volatile Esters 2 | Acetone | Acetaldehyde | Carbonyl Compounds 2 | Propanol | Isobutanol | Amyl Alcohols |
---|---|---|---|---|---|---|---|---|---|---|
[mg/L] | ||||||||||
Sc | 76.2 ±0.4 a,b | 2.7 ± 0.2 a | 0.7 ± 0.2 a | 316.8 ± 0.0 d | 7.2 ± 2.9 a,b | 13.6 ± 1.1 a | 44.0 ± 0.1 e | 60.2 ± 4.0 a,c | 38.3 ± 2.2 c | 68.8 ± 1.8 c |
Sk | 73.9 ± 1.6 a | 2.4 ± 0.2 a | 0.5 ± 0.4 a | 299.2 ± 0.0 c | 8.0 ± 3.3 a,b | 16.7 ± 2.3 b,c | 99.0 ±0.1 g | 48.5 ± 5.0 b | 36.9 ± 2.8 b,c | 68.8 ± 0.9 c |
Sc + Sk (3:2) | 73.9 ± 5.4 a | 2.4 ± 0.1 a | 0.5 ± 0.0 a | 305.1 ± 8.3 c | 10.8 ±0.5 b | 15.4 ± 2.7 b,c | 25.7 ± 5.2 c | 59.5 ± 3.5 a,d | 37.4 ± 0.9 b,c | 67.8 ± 0.7 b,c |
Sc + Sk1 (3:2) | 84.5 ± 5.1 c,d | 2.4 ± 0.0 a | 0.7 ± 0.2 a | 299.2 ± 0.0 c | 3.9 ± 0.9 a | 14.3 ± 1.9 a,b | 22.0 ± 0.1 b,c | 53.4 ± 0.1 b,d | 31.4 ± 3.9 a | 63.6 ± 1.4 a |
Sc + Sk3 (3:2) | 81.3 ± 2.9 b,c | 2.6 ± 0.1 a | 0.9 ± 0.5 a | 316.8 ± 0.0 d | 6.1 ± 0.4 a,b | 13.3 ± 0.9 a | 33.0 ± 0.1 d | 56.9 ± 2.0 a | 36.1 ± 1.0 a,b | 65.7 ± 0.7 a,b |
Sc + Sk6 (3:2) | 99.0 ± 1.5 e | 2.7 ± 0.1 a | 0.7 ± 0.1 a | 264.0 ± 0.0 a | 4.7 ± 0.3 a | 23.1 ± 0.6 d | 55.0 ± 0.1 f | 66.1 ± 3.5 c | 40.4 ± 1.7 b,c | 67.9 ± 0.4 b,c |
Sc + Sk (99:1) | 69.5 ± 2.9 a | 2.4 ± 0.1 a | 0.5 ± 0.0 a | 264.0 ± 0.0 a | 9.9 ± 1.6 b | 14.2 ± 0.9 a,b | 22.0 ± 0.1 b,c | 59.8 ± 4.5 a | 34.6 ± 4.1 a,b | 70.0 ± 1.6 c |
Sc + Sk1 (99:1) | 83.0 ± 3.8 c,d | 2.5 ± 0.1 a | 0.5 ± 0.0 a | 299.2 ± 0.0 c | 4.7 ± 0.6 a | 16.0 ± 1.2 b,c | 18.3 ± 5.2 b | 59.5 ± 2.8 a,d | 33.1 ± 3.1 a,c | 64.4 ± 0.8 a |
Sc + Sk3 (99:1) | 90.1 ± 4.6 d | 2.6 ± 0.1 a | 0.5 ± 0.0 a | 287.5 ± 8.3 b | 4.1 ± 0.7 a | 15.9 ± 1.4 b,c | 11.0 ± 0.1 a | 59.7 ± 2.0 a | 37.7 ± 3.1 b,c | 65.6 ± 0.4 a,b |
Sc + Sk6 (99:1) | 89.6 ± 3.4 d | 2.5 ± 0.1 a | 0.5 ± 0.0 a | 264.0 ± 0.0 a | 7.7 ± 1.1 a,b | 17.7 ± 0.8 c | 44.0 ± 0.1 e | 63.1 ± 1.9 a,c | 37.5 ± 0.1 b,c | 67.4 ± 0.4 b,c |
Sig. 1 | ** | ns | ns | *** | * | *** | *** | ** | ** | ** |
Code | LRI 2 | Sc | Sk | Sc + Sk (3:2) | Sc + Sk1 (3:2) | Sc + Sk3 (3:2) | Sc + Sk6 (3:2) | Sc + Sk (99:1) | Sc + Sk1 (99:1) | Sc + Sk3 (99:1) | Sc + Sk6 (99:1) | Sig. 1 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ethyl esters | |||||||||||||
Ethyl propanoate | E1 | 699 | 0.0 a | 0.0 a | 13.9 a,b | 25.4 b,c | 12.4 a,b | 34.7 c | 25.0 b,c | 7.6 a,b | 13.6 a,b | 44.0 c | *** |
Ethyl pyruvate 3 | E2 | 785 | 0.0 a | 0.0 a | 32.9 a–c | 26.4 a–c | 2.9 a | 34.7 a–c | 68.8 b,c | 15.6 a,b | 81.3 c | 13.2 a,b | * |
Ethyl butanoate | E3 | 789 | 29.7 a | 6.7 a | 55.7 a | 23.2 a | 7.8 a | 74.3 a,b | 162.9 b | 19.5 a | 40.1 a | 112.2 a,b | * |
Ethyl lactate | E4 | 798 | 4.2 | 79.7 | 19.8 | 26.4 | 0.9 | 6.0 | 9.2 | 29.5 | 5.4 | 62.0 | ns |
Ethyl (Z)-2-butenoate 3 | E5 | 830 | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 1.2 a,b | 0.0 a | 0.0 a | 0.0 a | 1.8 b | ** |
Ethyl 2-methylbutanoate 3 | E6 | 847 | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 3.7 b | 0.0 a | 0.0 a | 0.0 a | 3.7 b | *** |
Ethyl 3-hydroxybutyrate 3 | E7 | 949 | 0.0 a | 6.9 c,d | 0.0 a | 0.0 a | 0.0 a | 8.9 d | 5.2 b–d | 5.7 b–d | 3.0 a–c | 1.8 b | *** |
Ethyl 2,4-hexadienoate 3 | E8 | 1089 | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 0.0 a | 57.6 b | 0.0 a | 0.0 a | 0.0 a | 72.3 b | *** |
Ethyl heptanoate 3 | E9 | 1095 | 2.9 a | 1.0 a | 5.1 a | 0.0 a | 0.0 a | 11.7 a | 13.8 a | 12.8 a | 0.0 a | 36.0 b | *** |
Ethyl octanoate | E10 | 1180 | 77 a | 23 a | 1636 b | 1754 b | 41 a | 1699 b | 3463 c | 1074 b | 166 a | 1994 b,c | *** |
Ethyl 9-decenoate 3 | E11 | 1389 | 0.29 a | 0.00 a | 5.55 c | 1.63 a | 0.36 a | 9.71 d | 4.85 b,c | 6.14 c | 1.54 a | 3.78 b | *** |
Ethyl decanoate | E12 | 1397 | 9.6 a,b | 3.9 a | 115.6 b,c | 304.8 e | 18.2 a,b | 183.6 c,d | 306.8 e | 250.1 d,e | 10.4 a,b | 272.6 d,e | *** |
Ethyl 3-hydroxydecanoate 3 | E13 | 1539 | 0.00 a | 0.00 a | 1.38 c,d | 1.68 d | 2.24 e | 1.46 c,d | 0.70 b | 1.44 c,d | 1.58 d | 0.99 b,c | *** |
Ethyl dodecanoate | E14 | 1581 | 1.8 a,b | 0.8 a | 9.8 b–e | 17.2 e | 3.1 a–c | 10.6 c–e | 10.6 c–e | 8.3 a–d | 7.4 a–d | 12.2 d,e | ** |
Ethyl 3-hydroxydodecanoate 3 | E15 | 1743 | 0.09 a,b | 0.90 e | 0.18 a,b | 0.54 c | 0.27 a–c | 0.58 c,d | 0.00 a | 0.10 a | 0.34 b,c | 0.87 d,e | *** |
Ethyl tetradecanoate | E16 | 1790 | 1.17 | 0.95 | 6.18 | 2.75 | 1.34 | 2.75 | 2.36 | 1.28 | 4.55 | 2.86 | ns |
Ethyl pentadecanoate 3 | E17 | 1880 | 0.18 | 0.35 | 1.93 | 0.32 | 0.27 | 0.52 | 0.18 | 0.60 | 1.64 | 0.89 | ns |
Ethyl E-11-hexadecenoate 3 | E18 | 1974 | 0.45 | 0.00 | 1.19 | 0.49 | 0.00 | 2.24 | 2.39 | 0.00 | 3.24 | 0.98 | ns |
Ethyl hexadecanoate | E19 | 1990 | 4.5 a,b | 7.4 b,c | 6.8 a,b | 4.5 a,b | 2.4 a,b | 12.5 c,d | 7.0 a,b | 1.5 a | 13.2 d | 14.9 d | *** |
Ethyl octadecanoate | E20 | 2189 | 0.41 a,b | 1.02 b,c | 0.10 a | 0.49 a,b | 0.12 a | 1.08 b,c | 0.22 a,b | 0.85 a–c | 0.83 a–c | 1.42 c | * |
Acetates | |||||||||||||
Isobutyl acetate | E21 | 756 | 5.3 a,b | 0.0 a | 9.6 a,b | 1.4 a,b | 1.4 a,b | 8.5 a,b | 29.9 c | 7.9 a,b | 1.8 a,b | 16.9 b,c | * |
Butyl acetate | E22 | 805 | 0.0 a | 0.0 a | 3.1 a | 1.5 a | 0.0 a | 0.0 a | 11.7 c | 0.0 a | 0.0 a | 6.9 b | *** |
Hexyl acetate | E23 | 1008 | 15.2 b | 5.4 a–c | 6.5 a,b | 2.6 a,b | 1.7 a | 3.7 a,b | 15.2 b,c | 0.0 a | 0.0 a | 22.4 c | ** |
2-Phenylethyl acetate | E24 | 1228 | 4.1 a | 3.8 a | 12.7 a,b | 61.4 e | 13.7 a,b | 27.2 b,c | 31.8 c,d | 46.3 d,e | 35.8 c,d | 33.2 c,d | *** |
Other esters | |||||||||||||
2-Methylbutyl butanoate | E25 | 1020 | 8.3 b | 0.9 a | 1.1 a | 1.5 a | 0.0 a | 0.7 a | 6.8 b | 0.0 a | 0.0 a | 6.0 b | *** |
Methyl octanoate | E26 | 1126 | 0.0 a | 0.0 a | 4.6 a | 34.7 b | 4.3 a | 3.7 a | 0.0 a | 2.9 a | 0.0 a | 3.6 a | *** |
Diethyl succinate | E27 | 1153 | 14.9 a | 19.9 a | 33.2 a–c | 31.6 a–c | 18.3 a | 52.6 c,d | 37.6 a–c | 73.6 d | 49.8 b–d | 22.2 a,b | *** |
Methyl decanoate | E28 | 1324 | 0.0 a | 0.0 a | 0.0 a | 6.3 b | 1.1 a | 0.5 a | 0.0 a | 5.5 b | 0.2 a | 0.9 a | *** |
Ethyl 3-methylbutyl succinate 3 | E29 | 1430 | 0.00 a | 0.00 a | 1.37 b | 0.50 b,c | 0.07 a,b | 0.56 c | 0.64 c | 0.49 b,c | 0.34 a–c | 0.47 a–c | *** |
3-Methylbutyl octanoate 3 | E30 | 1450 | 0.00 a | 0.00 a | 0.00 a | 1.30 b | 0.72 a,b | 0.60 a,b | 0.00 a | 1.34 b | 0.42 a,b | 0.66 a,b | * |
1-methylethyl dodecanoate 3 | E31 | 1614 | 0.35 | 0.50 | 0.32 | 1.56 | 2.30 | 1.01 | 0.32 | 1.49 | 1.15 | 0.76 | ns |
Benzyl benzoate | E32 | 1755 | 1.24 | 1.51 | 2.15 | 1.65 | 2.17 | 1.64 | 1.13 | 1.49 | 2.54 | 0.64 | ns |
Methyl 15-methylhexadecanoate 3 | E33 | 1970 | 0.51 | 0.62 | 0.36 | 0.49 | 0.34 | 1.43 | 0.29 | 1.18 | 0.50 | 0.59 | ns |
Alcohols and polyols | |||||||||||||
2,3-Butanediol | A1 | 770 | 712 a–c | 1434 d | 226 a | 568 a–c | 693 a–c | 1482 d | 1072 b–d | 496 a–c | 436 a,b | 1177 c,d | *** |
3-Hexanol 3 | A2 | 784 | 14.5 b,c | 11.8 a–c | 23.4 c | 7.1 a,b | 2.2 a,b | 3.9 a,b | 8.9 a,b | 9.8 a,b | 1.4 a | 0.9 a | * |
1-Hexanol | A3 | 865 | 13.2 c | 14.9 c | 26.0 d | 11.8 b,c | 4.4 a,b | 3.7 a | 27.2 d | 10.0 a–c | 7.1 a–c | 10.2 a–c | *** |
1-Heptanol 3 | A4 | 971 | 0.00 a | 0.00 a | 8.62 b | 7.98 b | 3.60 a,b | 1.34 a | 5.39 a,b | 5.42 a,b | 3.18 a,b | 0.00 a | * |
2-Ethyl-1-hexanol | A5 | 1034 | 27.8 a–c | 20.6 a,b | 65.0 d,e | 43.0 b–d | 23.4 a,b | 9.5 a | 54.2 c–e | 61.3 d,e | 25.7 a–c | 74.6 e | *** |
1-Octanol | A6 | 1068 | 5.18 b,c | 2.66 a | 2.38 a | 5.33 b,c | 5.56 b,c | 2.88 a | 3.76 a,b | 6.52 c | 4.83 b,c | 3.84 a,b | *** |
Phenylethyl alcohol | A7 | 1114 | 710 d | 189 a,b | 388 b,c | 2016 f | 553 c,d | 272 a,b | 135 a | 964 e | 682 d | 224 a,b | *** |
1-Nonanol | A8 | 1156 | 1.95 a,b | 7.91 d | 4.68 b,c | 7.50 dc | 9.10 d | 6.48 c,d | 2.89 a,b | 4.68 b,c | 8.17 d | 0.00 a | *** |
1-Decanol | A9 | 1272 | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 7.90 e | 3.50 d | 0.00 a | 0.00 a | 0.56 b | 1.60 c | *** |
1-Undecanol 3 | A10 | 1374 | 0.49 | 6.21 | 3.67 | 0.00 | 0.00 | 4.66 | 1.50 | 0.00 | 0.12 | 1.51 | ns |
1-Dodecanol | A11 | 1480 | 2.01 a | 1.99 a | 3.56 a,b | 3.88 a,b | 3.43 a,b | 2.86 a | 1.47 a | 2.54 a | 5.64 b | 2.62 a | * |
1-Tridecanol 3 | A12 | 1577 | 0.68 | 0.78 | 0.93 | 1.23 | 0.99 | 0.45 | 1.02 | 0.85 | 1.23 | 0.46 | ns |
1-Tetradecanol | A13 | 1661 | 1.20 a,b | 1.55 b | 0.71 a,b | 3.50 c | 0.78 a,b | 0.93 a,b | 0.82 a,b | 0.34 a | 1.08 a,b | 1.11 a,b | *** |
1-Pentadecanol 3 | A14 | 1787 | 0.36 | 0.77 | 0.29 | 0.13 | 0.06 | 0.16 | 0.00 | 0.37 | 0.29 | 0.45 | ns |
1-Hexadecanol | A15 | 1877 | 0.56 a,b | 1.68 b | 0.22 a | 1.39 a,b | 0.73 a,b | 1.51 b | 0.27 a | 0.70 a,b | 0.62 a,b | 2.78 c | *** |
1-Octadecanol | A16 | 2075 | 0.22 a,b | 0.44 b,c | 0.00 a | 0.00 a | 0.14 a,b | 0.09 a | 0.00 a | 0.00 a | 0.00 a | 0.66 c | *** |
Volatile acids | |||||||||||||
Hexanoic acid | VA1 | 982 | 67.5 d,e | 38.9 a–c | 66.5 c–e | 46.8 a–d | 62.2 c–e | 98.0 f | 28.1 a | 60.7 b–e | 33.8 a,b | 77.2 e,f | *** |
Heptanoic acid 3 | VA2 | 1080 | 4.3 a | 7.6 a–c | 5.7 a | 11.6 b–d | 7.3 a,b | 15.0 d | 6.4 a | 12.0 c,d | 7.7 a–c | 14.4 d | *** |
Octanoic acid | VA3 | 1160 | 116 a | 108 a | 134 a,b | 480 e | 370 d,e | 255 b–d | 144 a,b | 450 e | 274 c,d | 233 a–c | *** |
n-Decanoic acid | VA4 | 1368 | 21.9 a,b | 23.1 a,b | 33.3 b,c | 74.2 e | 73.2 e | 41.8 b,c | 8.8 a | 68.1 d,e | 48.6 c,d | 39.0 b,c | *** |
Dodecanoic acid | VA5 | 1554 | 2.44 | 3.82 | 1.68 | 5.43 | 4.62 | 3.34 | 1.11 | 3.37 | 3.72 | 4.08 | ns |
n-Hexadecanoic acid | VA6 | 1965 | 1.18 a–c | 2.69 c,d | 0.32 a,b | 0.00 a | 0.27 a,b | 2.02 b,c | 0.00 a | 0.00 a | 0.07 a | 3.95 d | *** |
Carbonyl compounds | |||||||||||||
Hexanal | CC1 | 778 | 11.8 b | 8.4 b | 10.6 b | 9.2 b | 0.9 a | 2.5 a | 21.8 d | 11.4 b | 3.4 a | 17.1 c | *** |
Butyrolactone 3 | CC2 | 915 | 21.6 | 12.6 | 13.1 | 35.2 | 25.2 | 36.7 | 32.4 | 29.8 | 28.2 | 19.2 | ns |
Benzaldehyde | CC3 | 959 | 7.6 c,d | 6.2 b,c | 6.6 b,c | 15.1 e | 8.1 c,d | 3.0 a,b | 8.7 c,d | 8.8 c,d | 11.0 d | 0.0 a | *** |
6-Methyl-5-hepten-2-one 3 | CC4 | 975 | 0.0 a | 0.0 a | 5.3 a | 0.0 a | 0.0 a | 0.0 a | 30.1 b | 6.2 a | 4.1 a | 1.1 a | *** |
Acetophenone | CC5 | 1053 | 3.55 b–d | 2.50 b | 0.00 a | 5.05 d | 2.83 b,c | 2.57 b | 5.37 d | 3.89 b–d | 4.63 c,d | 0.00 a | *** |
Nonanal | CC6 | 1102 | 18.8 b | 0.0 a | 3.9 a | 10.3 a,b | 10.5 a,b | 11.2 a,b | 1.1 a | 113.3 d | 0.7 a | 35.2 c | *** |
Decanal | CC7 | 1183 | 17.1 a | 6.4 a | 68.4 b | 13.9 a | 17.2 a | 12.0 a | 8.4 a | 11.1 a | 12.5 a | 3.7 a | *** |
Dodecanal | CC8 | 1407 | 3.00 d | 0.46 a | 9.02 e | 2.35 b–d | 1.14 a–c | 0.98 a–c | 3.44 d | 2.76 c,d | 2.29 b–d | 0.87 a,b | *** |
Benzophenone | CC9 | 1603 | 2.72 b–e | 2.15 b,c | 3.15 c–f | 3.45 d–f | 3.85 e,f | 0.60 a | 4.20 f | 1.76 b | 2.44 b–d | 0.06 a | *** |
Tetradecanal | CC10 | 1611 | 1.83 a | 0.49 a | 4.70 b | 1.27 a | 0.74 a | 0.55 a | 1.39 a | 2.55 a | 0.70 a | 0.86 a | ** |
Monoterpenes | |||||||||||||
p-Cymene | T1 | 1027 | 0.0 a | 0.0 a | 30.0 b | 70.4 c,d | 51.7 b,c | 32.9 b | 83.1 d | 63.7 c,d | 66.0 c,d | 27.1 b | *** |
α-Terpinene | T2 | 1030 | 0.00 a | 0.00 a | 6.85 f | 1.15 a–c | 1.06 a–c | 0.96 a,b | 3.48 d,e | 2.26 b–d | 4.00 e | 2.67 c–e | *** |
α-Ocimene 3 | T3 | 1058 | 0.0 a | 0.0 a | 11.9 b | 2.2 a | 1.0 a | 0.0 a | 9.7 b | 1.8 a | 0.0 a | 2.3 a | *** |
γ-Terpinene 3 | T4 | 1060 | 0.00 a | 0.00 a | 8.38 d | 6.63 c,d | 4.37 b,c | 4.01 b | 6.64 c,d | 4.19 b,c | 3.55 b | 3.94 b | *** |
Dihydromyrcenol 3 | T5 | 1076 | 9.4 b | 7.4 b | 18.8 d | 14.6 c | 10.8 b | 3.8 a | 23.1 e | 9.2 b | 8.7 b | 4.3 a | *** |
α-Terpinolene | T6 | 1093 | 5.8 a,b | 3.8 a | 10.8 c | 5.4 a,b | 4.5 a | 6.6 a,b | 10.4 c | 5.0 a | 4.1 a | 8.2 b,c | *** |
Linolool | T7 | 1106 | 61 a,b | 50 a,b | 110 b,c | 12 a | 4 a | 51 a,b | 175 c | 8 a | 16 a | 61 a,b | *** |
Myrcenol 3 | T8 | 1118 | 0.00 a | 0.00 a | 0.00 a | 5.03 c | 1.92 a,b | 6.89 d | 0.00 a | 3.89 c | 3.66 b,c | 7.22 d | *** |
Camphore | T9 | 1139 | 7.5 b | 1.6 a | 8.6 b,c | 14.9 d | 8.6 b,c | 5.4 a,b | 13.4 c,d | 14.1 d | 13.7 c,d | 7.8 b | *** |
Ocimenol 3 | T10 | 1149 | 1.40 a,b | 2.55 a–c | 2.02 a,b | 5.91 c | 3.44 a–c | 12.87 d | 0.92 a | 6.12 c | 4.93 b,c | 11.25 d | *** |
Dihydro-γ-terpineol 3 | T11 | 1158 | 7.86 a–c | 6.08 a,b | 9.64 a–c | 27.20 d | 19.49 c,d | 3.13 a,b | 9.27 a–c | 13.04 b,c | 5.17 a,b | 0.00 a | *** |
Terpinen-4-ol | T12 | 1163 | 3.1 a,b | 3.9 a,b | 4.7 a–c | 9.8 d | 0.5 a | 15.2 e | 7.8 b–d | 9.4 c,d | 1.3 a | 16.4 e | *** |
α-Terpineol | T13 | 1171 | 126 a | 248 a | 229 a | 346 a | 193 a | 699 b | 260 a | 345 a | 263 a | 728 b | *** |
α-Terpinyl acetate 3 | T14 | 1350 | 2.14 d–f | 3.17 f | 1.93 c–f | 0.11 a | 0.08 a | 1.69 c–e | 1.48 b–d | 0.20 a,b | 0.73 a–c | 2.90 e,f | *** |
β-Damascenone | T15 | 1384 | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.67 c | 0.00 a | 0.00 a | 0.00 a | 0.50 b | *** |
Geranyl acetate 3 | T16 | 1392 | 1.62 a | 6.17 b | 3.05 a | 0.63 a | 0.52 a | 1.63 a | 2.89 a | 0.24 a | 0.35 a | 1.67 a | *** |
Geranyl acetone 3 | T17 | 1446 | 2.60 a,b | 1.61 a | 2.71 a,b | 5.45 d | 4.49 c,d | 2.31 a,b | 3.12 b,c | 7.18 e | 2.14 a,b | 3.34 b,c | *** |
Sesquiterpenes | |||||||||||||
β-Farnesene | T18 | 1460 | 0.00 a | 0.00 a | 0.00 a | 0.00 a | 0.53 b | 0.56 b | 0.00 a | 0.00 a | 0.80 c | 0.39 b | *** |
Nerolidol 3 | T19 | 1575 | 0.77 a | 1.48 a–c | 2.33 b–d | 1.30 a,b | 0.79 a | 2.59 c,d | 2.04 b,c | 1.50 a–c | 1.73 a–c | 3.37 d | *** |
2,3-Dihydrofarnesol 3 | T20 | 1696 | 0.64 a | 2.21 a | 1.38 a | 1.96 a | 1.27 a | 6.42 b,c | 0.70 a | 1.30 a | 3.11 a,b | 8.83 c | *** |
Farnesol 3 | T21 | 1718 | 1.85 a | 16.38 d | 3.67 a,b | 1.78 a | 1.44 a | 6.23 b | 1.29 a | 0.76 a | 1.78 a | 9.97 c | *** |
Other | |||||||||||||
Benzothiazole | O1 | 1186 | 1.01 a | 1.85 a | 3.26 a | 9.40 b | 1.69 a | 1.66 a | 3.75 a | 4.76 a | 2.47 a | 0.77 a | *** |
Octane, 1,1’-oxybis- 3 | O2 | 1657 | 0.96 a,b | 0.00 a | 1.43 a,b | 1.09 a,b | 2.31 b,c | 0.55 a,b | 1.14 a,b | 3.94 c | 1.47 a,b | 1.05 a,b | * |
Phenanthrene 3 | O3 | 1778 | 0.26 b,c | 0.19 a,b | 0.00 a | 0.50 d | 0.45 c,d | 0.28 b,c | 0.00 a | 0.53 d | 0.63 d | 0.06 a | *** |
Strains | Color | Aroma | Taste | Clearness | Total |
---|---|---|---|---|---|
Sc | 1.2 ± 0.5 a | 2.3 ± 0.8 a | 7.2 ± 2.4 a,b | 1.1 ± 0.3 a | 11.8 ± 3.4 a,b |
Sk | 1.4 ± 0.4 a,b | 2.3 ± 0.8 a | 7.8 ± 1.8 a,b | 1.3 ± 0.4 a,b | 12.8 ± 2.4 a,b |
Sc + Sk (3:2) | 1.3 ± 0.5 a,b | 1.7 ± 1.0 a | 6.7 ± 1.0 a | 1.4 ± 0.4 a,b | 11.0 ± 2.2 a |
Sc + Sk1 (3:2) | 1.6 ± 0.5 a,b | 2.2 ± 0.7 a | 8.0 ± 1.7 a,b | 1.7 ± 0.4 b | 13.5 ± 2.5 a,b |
Sc + Sk3 (3:2) | 1.5 ± 0.4 a,b | 2.5 ± 0.6 a | 7.2 ± 1.1 a,b | 1.4 ± 0.5 a,b | 12.6 ± 1.2 a,b |
Sc + Sk6 (3:2) | 1.7 ± 0.4 a,b | 2.5 ± 1.0 a | 9.7 ± 2.2 b | 1.7 ± 0.3 b | 15.5 ± 3.2 b |
Sc + Sk (99:1) | 1.2 ± 0.5 a | 1.9 ± 0.9 a | 6.7 ± 1.2 a | 1.2 ± 0.3 a | 10.9 ± 2.2 a |
Sc + Sk1 (99:1) | 1.6 ± 0.5 a,b | 2.2 ± 0.9 a | 7.8 ± 1.6 a,b | 1.6 ± 0.4 a,b | 13.0 ± 2.8 a,b |
Sc + Sk3 (99:1) | 1.3 ± 0.4 a,b | 2.2 ± 0.6 a | 7.6 ± 1.6 a,b | 1.2 ± 0.2 a | 12.2 ± 2.3 a,b |
Sc + Sk6 (99:1) | 1.8 ± 0.3 b | 2.1 ± 1.0 a | 9.1 ± 1.5 b | 1.7 ± 0.4 b | 14.7 ± 2.0 b |
Sig. 1 | * | ns | ** | * | ** |
Code | Strain, Inoculation (Simultaneous or Sequential), Inoculum Ratio of Sc:Sk |
---|---|
Sc | Saccharomyces cerevisiae monoculture |
Sk | Saccharomyces kudriavzevii monoculture |
Sc + Sk (3:2) | simultaneous inoculation of Sc and Sk, inoculum ratio 3:2 |
Sc + Sk1 (3:2) | sequential inoculation of Sc followed Sk after one day, inoculum ratio 3:2 |
Sc + Sk3 (3:2) | sequential inoculation of Sc followed Sk after three days, inoculum ratio 3:2 |
Sc + Sk6 (3:2) | sequential inoculation of Sc followed Sk after six days, inoculum ratio 3:2 |
Sc + Sk (99:1) | simultaneous inoculation of Sc and Sk, inoculum ratio 99:1 |
Sc + Sk1 (99:1) | sequential inoculation of Sc followed Sk after one days, inoculum ratio 99:1 |
Sc + Sk3 (99:1) | sequential inoculation of Sc followed Sk after three days, inoculum ratio 99:1 |
Sc + Sk6 (99:1) | sequential inoculation of Sc followed Sk after six days, inoculum ratio 99:1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błaszczyk, U.; Satora, P.; Noga, Ł. Mixed Cultures of Saccharomyces kudravzevii and S. cerevisiae Modify the Fermentation Process and Improve the Aroma Profile of Semi-Sweet White Wines. Molecules 2022, 27, 7478. https://doi.org/10.3390/molecules27217478
Błaszczyk U, Satora P, Noga Ł. Mixed Cultures of Saccharomyces kudravzevii and S. cerevisiae Modify the Fermentation Process and Improve the Aroma Profile of Semi-Sweet White Wines. Molecules. 2022; 27(21):7478. https://doi.org/10.3390/molecules27217478
Chicago/Turabian StyleBłaszczyk, Urszula, Paweł Satora, and Łukasz Noga. 2022. "Mixed Cultures of Saccharomyces kudravzevii and S. cerevisiae Modify the Fermentation Process and Improve the Aroma Profile of Semi-Sweet White Wines" Molecules 27, no. 21: 7478. https://doi.org/10.3390/molecules27217478
APA StyleBłaszczyk, U., Satora, P., & Noga, Ł. (2022). Mixed Cultures of Saccharomyces kudravzevii and S. cerevisiae Modify the Fermentation Process and Improve the Aroma Profile of Semi-Sweet White Wines. Molecules, 27(21), 7478. https://doi.org/10.3390/molecules27217478