Modification of Polymeric Carbon Nitride with Au–CeO2 Hybrids to Improve Photocatalytic Activity for Hydrogen Evolution
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Synthesis
3.2.1. Synthesis of CeO2
3.2.2. Synthesis of Au–CeO2
3.2.3. Synthesis of CeAu–CN, Ce–CN and CN
3.3. Characterizations
3.4. Photocatalytic Activity Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Hisatomi, T.; Domen, K. Introductory lecture: Sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis. Faraday Discuss. 2017, 198, 11–35. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Mao, J.; Huang, Y.; Qian, Q.; Luo, Y.; Xue, H.; Yang, S. Pt-Chitosan-TiO2 for Efficient Photocatalytic Hydrogen Evolution via Ligand-to-Metal Charge Transfer Mechanism under Visible Light. Molecules 2022, 27, 4673. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev.Mater. 2017, 2, 17050. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef]
- Yang, C.; Wang, B.; Zhang, L.; Yin, L.; Wang, X. Synthesis of Layered Carbonitrides from Biotic Molecules for Photoredox Transformations. Angew. Chem. Int. Ed. 2017, 56, 6627–6631. [Google Scholar] [CrossRef]
- Kessler, F.K.; Zheng, Y.; Schwarz, D.; Merschjann, C.; Schnick, W.; Wang, X.; Bojdys, M.J. Functional carbon nitride materials—design strategies for electrochemical devices. Nat. Rev.Mater. 2017, 2, 17030. [Google Scholar] [CrossRef]
- Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Fang, Y.X.; Wang, X.C. Photocatalytic CO2 conversion by polymeric carbon nitrides. Chem. Commun. 2018, 54, 5674–5687. [Google Scholar] [CrossRef]
- Ou, H.; Chen, X.; Lin, L.; Fang, Y.; Wang, X. Biomimetic Donor-Acceptor Motifs in Conjugated Polymers for Promoting Exciton Splitting and Charge Separation. Angew. Chem. Int. Ed. 2018, 57, 8729–8733. [Google Scholar] [CrossRef]
- Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g-C3N4-Based Heterostructured Photocatalysts. Adv. Energy. Mater. 2018, 8, 1701503. [Google Scholar] [CrossRef]
- Ruan, X.; Cui, X.; Jia, G.; Wu, J.; Zhao, J.; Singh, D.J.; Liu, Y.; Zhang, H.; Zhang, L.; Zheng, W. Intramolecular heterostructured carbon nitride with heptazine-triazine for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 428, 132579. [Google Scholar] [CrossRef]
- Lu, S.-S.; Zhang, L.-M.; Fan, K.; Xie, J.-Y.; Shang, X.; Zhang, J.-Q.; Chi, J.-Q.; Yang, X.-L.; Wang, L.; Chai, Y.-M.; et al. In Situ formation of ultrathin C3N4 layers on metallic WO2 nanorods for efficient hydrogen evolution. Appl. Surf. Sci. 2019, 487, 945–950. [Google Scholar] [CrossRef]
- Moussa, H.; Chouchene, B.; Gries, T.; Balan, L.; Mozet, K.; Medjahdi, G.; Schneider, R. Growth of ZnO Nanorods on Graphitic Carbon Nitride gCN Sheets for the Preparation of Photocatalysts with High Visible-Light Activity. ChemCatChem 2018, 10, 4987–4997. [Google Scholar] [CrossRef]
- Zhou, W.; Jia, T.; Shi, H.; Yu, D.; Hong, W.; Chen, X. Conjugated polymer dots/graphitic carbon nitride nanosheet heterojunctions for metal-free hydrogen evolution photocatalysis. J. Mater. Chem. A 2019, 7, 303–311. [Google Scholar] [CrossRef]
- Lu, X.J.; Jin, Y.L.; Zhang, X.Y.; Xu, G.Q.; Wang, D.M.; Lv, J.; Zheng, Z.X.; Wu, Y.C. Controllable synthesis of graphitic C3N4/ultrathin MoS2 nanosheet hybrid nanostructures with enhanced photocatalytic performance. Dalton Trans. 2016, 45, 15406–15414. [Google Scholar] [CrossRef]
- Liang, Z.Y.; Chen, F.; Huang, R.K.; Huang, W.J.; Wang, Y.; Liang, R.W.; Yan, G.Y. CdS Nanocubes Adorned by Graphitic C3N4 Nanoparticles for Hydrogenating Nitroaromatics: A Route of Visible-Light-Induced Heterogeneous Hollow Structural Photocatalysis. Molecules 2022, 27, 5438. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Li, Y.; Zhang, M.; Zheng, Y. Designing a 0D/1D S-Scheme Heterojunction of Cadmium Selenide and Polymeric Carbon Nitride for Photocatalytic Water Splitting and Carbon Dioxide Reduction. Molecules 2022, 27, 6286. [Google Scholar] [CrossRef]
- Xie, S.; Wang, Z.; Cheng, F.; Zhang, P.; Mai, W.; Tong, Y. Ceria and ceria-based nanostructured materials for photoenergy applications. Nano Energy 2017, 34, 313–337. [Google Scholar] [CrossRef]
- Tran, D.P.H.; Pham, M.T.; Bui, X.T.; Wang, Y.F.; You, S.J. CeO2 as a photocatalytic material for CO2 conversion: A review. Sol. Energy 2022, 240, 443–466. [Google Scholar] [CrossRef]
- Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and Catalytic Applications of CeO2-Based Materials. Chem. Rev. 2016, 116, 5987–6041. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Ding, J.; Li, H.; Wang, W.; Dong, B.; Cao, L. Amorphous Fe(OH)3 Passivating CeO2 Nanorods: A Noble-Metal-Free Photocatalyst for Water Oxidation. ChemSusChem 2021, 14, 3382–3390. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Wang, Y.; Jiang, Z.; Xu, F.; Xian, Q.; Sun, C.; Tong, Q.; Zou, W.; Duan, X.; Wang, S. CeO2 nanocrystal-modified layered MoS2/g-C3N4 as 0D/2D ternary composite for visible-light photocatalytic hydrogen evolution: Interfacial consecutive multi-step electron transfer and enhanced H2O reactant adsorption. Appl. Catal. B 2019, 259, 118072. [Google Scholar] [CrossRef]
- Zou, W.; Deng, B.; Hu, X.; Zhou, Y.; Pu, Y.; Yu, S.; Ma, K.; Sun, J.; Wan, H.; Dong, L. Crystal-plane-dependent metal oxide-support interaction in CeO2/g-C3N4 for photocatalytic hydrogen evolution. Appl. Catal. B 2018, 238, 111–118. [Google Scholar] [CrossRef]
- Wei, X.; Wang, X.; Pu, Y.; Liu, A.; Chen, C.; Zou, W.; Zheng, Y.; Huang, J.; Zhang, Y.; Yang, Y.; et al. Facile ball-milling synthesis of CeO2/g-C3N4 Z-scheme heterojunction for synergistic adsorption and photodegradation of methylene blue: Characteristics, kinetics, models, and mechanisms. Chem. Eng. J. 2021, 420, 127719. [Google Scholar] [CrossRef]
- Song, S.; Li, K.; Pan, J.; Wang, F.; Li, J.; Feng, J.; Yao, S.; Ge, X.; Wang, X.; Zhang, H. Achieving the Trade-Off between Selectivity and Activity in Semihydrogenation of Alkynes by Fabrication of (Asymmetrical Pd@Ag Core)@(CeO2 Shell) Nanocatalysts via Autoredox Reaction. Adv. Mater. 2017, 29, 1605332. [Google Scholar] [CrossRef]
- Yoon, S.; Ha, H.; Kim, J.; Nam, E.; Yoo, M.; Jeong, B.; Kim, H.Y.; An, K. Influence of the Pt size and CeO2 morphology at the Pt–CeO2 interface in CO oxidation. J. Mater. Chem. A 2021, 9, 26381–26390. [Google Scholar] [CrossRef]
- Tanaka, A.; Hashimoto, K.; Kominami, H. Preparation of Au/CeO2 Exhibiting Strong Surface Plasmon Resonance Effective for Selective or Chemoselective Oxidation of Alcohols to Aldehydes or Ketones in Aqueous Suspensions under Irradiation by Green Light. J. Am. Chem. Soc. 2012, 134, 14526–14533. [Google Scholar] [CrossRef]
- Primo, A.; Marino, T.; Corma, A.; Molinari, R.; Garcia, H. Efficient Visible-Light Photocatalytic Water Splitting by Minute Amounts of Gold Supported on Nanoparticulate CeO2 Obtained by a Biopolymer Templating Method. J. Am. Chem. Soc. 2012, 134, 1892. [Google Scholar] [CrossRef]
- Baranchikov, A.E.; Razumov, M.I.; Kameneva, S.V.; Sozarukova, M.M.; Beshkareva, T.S.; Filippova, A.D.; Kozlov, D.A.; Ivanova, O.S.; Shcherbakov, A.B.; Ivanov, V.K. Facile Synthesis of Stable Cerium Dioxide Sols in Nonpolar Solvents. Molecules 2022, 27, 5028. [Google Scholar] [CrossRef]
- Khan, M.M.; Ansari, S.A.; Ansari, M.O.; Min, B.K.; Lee, J.; Cho, M.H. Biogenic Fabrication of Au@CeO2 Nanocomposite with Enhanced Visible Light Activity. J. Phys. Chem. C 2014, 118, 9477–9484. [Google Scholar] [CrossRef]
- Kang, Y.; Yang, Y.; Yin, L.-C.; Kang, X.; Wang, L.; Liu, G.; Cheng, H.-M. Selective Breaking of Hydrogen Bonds of Layered Carbon Nitride for Visible Light Photocatalysis. Adv. Mater. 2016, 28, 6471–6477. [Google Scholar] [CrossRef]
- Kurtikyan, T.S.; Eksuzyan, S.R.; Hayrapetyan, V.A.; Martirosyan, G.G.; Hovhannisyan, G.S.; Goodwin, J.A. Nitric Oxide Dioxygenation Reaction by Oxy-Coboglobin Models: In-situ Low-Temperature FTIR Characterization of Coordinated Peroxynitrite. J. Am. Chem. Soc. 2012, 134, 13861–13870. [Google Scholar] [CrossRef]
- Patterson, E.M.; Shelden, C.E.; Stockton, B.H. Kubelka-Munk optical properties of a barium sulfate white reflectance standard. Appl. Opt. 1977, 16, 729–732. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, X. Ionic Liquid Promoted Synthesis of Conjugated Carbon Nitride Photocatalysts from Urea. ChemSusChem 2014, 7, 1547–1550. [Google Scholar] [CrossRef]
- Xiao, Y.T.; Chen, Y.J.; Xie, Y.; Tian, G.H.; Guo, S.E.; Han, T.R.; Fu, H.G. Hydrogenated CeO2-xSx mesoporous hollow spheres for enhanced solar driven water oxidation. Chem. Commun. 2016, 52, 2521–2524. [Google Scholar] [CrossRef]
- Li, W.; Jin, L.; Gao, F.; Wan, H.; Pu, Y.; Wei, X.; Chen, C.; Zou, W.; Zhu, C.; Dong, L. Advantageous roles of phosphate decorated octahedral CeO2 {111}/g-C3N4 in boosting photocatalytic CO2 reduction: Charge transfer bridge and Lewis basic site. Appl. Catal. B 2021, 294, 120257. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Chen, F.; Cao, F.; Zhao, X.; Meng, S.; Cui, Y. Facile synthesis of oxygen doped carbon nitride hollow microsphere for photocatalysis. Appl. Catal. B 2017, 206, 417–425. [Google Scholar] [CrossRef]
- Tian, N.; Huang, H.; Liu, C.; Dong, F.; Zhang, T.; Du, X.; Yu, S.; Zhang, Y. In situ co-pyrolysis fabrication of CeO2/g-C3N4 n–n type heterojunction for synchronously promoting photo-induced oxidation and reduction properties. J. Mater. Chem. A 2015, 3, 17120–17129. [Google Scholar] [CrossRef]
- Chen, J.; Shen, S.; Wu, P.; Guo, L. Nitrogen-doped CeOx nanoparticles modified graphitic carbon nitride for enhanced photocatalytic hydrogen production. Green Chem. 2015, 17, 509–517. [Google Scholar] [CrossRef]
- Zada, A.; Humayun, M.; Raziq, F.; Zhang, X.; Qu, Y.; Bai, L.; Qin, C.; Jing, L.; Fu, H. Exceptional Visible-Light-Driven Cocatalyst-Free Photocatalytic Activity of g-C3N4 by Well Designed Nanocomposites with Plasmonic Au and SnO2. Adv. Energy Mater. 2016, 6, 1601190. [Google Scholar] [CrossRef]
- Zou, Y.; Shi, J.-W.; Ma, D.; Fan, Z.; Niu, C.; Wang, L. Fabrication of g-C3N4/Au/C-TiO2 Hollow Structures as Visible-Light-Driven Z-Scheme Photocatalysts with Enhanced Photocatalytic H2 Evolution. ChemCatChem 2017, 9, 3752–3761. [Google Scholar] [CrossRef]
- Ishikawa, A.; Takata, T.; Kondo, J.N.; Hara, M.; Kobayashi, H.; Domen, K. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (lambda <= 650 nm). J. Am. Chem. Soc. 2002, 124, 13547–13553. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yu, Y.; Zhang, L. Highly efficient photocatalytic removal of sodium pentachlorophenate with Bi3O4Br under visible light. Appl. Catal. B 2013, 136–137, 112–121. [Google Scholar] [CrossRef]
- Luo, W.; Li, Z.; Jiang, X.; Yu, T.; Liu, L.; Chen, X.; Ye, J.; Zou, Z. Correlation between the band positions of (SrTiO3)1-x.(LaTiO2N)x solid solutions and photocatalytic properties under visible light irradiation. Phys. Chem. Chem. Phys. 2008, 10, 6717–6723. [Google Scholar] [CrossRef]
- Ye, W.; Long, R.; Huang, H.; Xiong, Y. Plasmonic nanostructures in solar energy conversion. J. Mater. Chem. C 2017, 5, 1008–1021. [Google Scholar] [CrossRef]
- Zheng, D.; Pang, C.; Wang, X. The function-led design of Z-scheme photocatalytic systems based on hollow carbon nitride semiconductors. Chem. Commun. 2015, 51, 17467–17470. [Google Scholar] [CrossRef]
- Zhang, L.; Feng, W.; Wang, B.; Wang, K.; Gao, F.; Zhao, Y.; Liu, P. Construction of dual-channel for optimizing Z-scheme photocatalytic system. Appl. Catal. B 2017, 212, 80–88. [Google Scholar] [CrossRef]
- Xu, Q.; Lei, W.; Li, X.; Qi, X.; Yu, J.; Liu, G.; Wang, J.; Zhang, P. Efficient Removal of Formaldehyde by Nanosized Gold on Well-Defined CeO2 Nanorods at Room Temperature. Environ. Sci. Technol. 2014, 48, 9702–9708. [Google Scholar] [CrossRef]
- Kesavan, L.; Tiruvalam, R.; Ab Rahim, M.H.; bin Saiman, M.I.; Enache, D.I.; Jenkins, R.L.; Dimitratos, N.; Lopez-Sanchez, J.A.; Taylor, S.H.; Knight, D.W.; et al. Solvent-Free Oxidation of Primary Carbon-Hydrogen Bonds in Toluene Using Au-Pd Alloy Nanoparticles. Science 2011, 331, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Huang, C.; Wang, X. Dispersing Molecular Cobalt in Graphitic Carbon Nitride Frameworks for Photocatalytic Water Oxidation. Small 2015, 11, 1215–1221. [Google Scholar] [CrossRef]
Photocatalysts | Reaction Conditions | Light Source | H2 Production (μmol h−1 g−1) | Ref. |
---|---|---|---|---|
1.0% CeAu–CN | 0.05 g catalyst, 3 wt%Pt, TEOA solution (10%) | 300 W Xe lamp λ > 420 nm | 1602 | This work |
CeO2–g-C3N4 | 0.05 g catalyst, 3 wt%Pt, TEOA solution (10%) | 300 W Xe lamp λ > 420 nm | 1100 | [25] |
CeO2–g-C3N4 | 0.05 g catalyst, 0.5 wt%Pt, lactic acid solution (20%) | 300 W Xe lamp λ > 420 nm | 73.12 | [40] |
N-CeOx–g-C3N4 | 0.05 g catalyst, 1 wt%Pt, TEOA solution (10%) | 300 W Xe lamp λ > 420 nm | 292.5 | [41] |
Au–SnO2–g-C3N4 | 0.1 g catalyst, methanol solution (20%) | 300 W Xe lamp λ > 400 nm | 770 | [42] |
g-C3N4–Au–C-TiO2 | 0.01 g catalyst, TEOA solution (10%) | 300 W Xe lamp λ > 420 nm | 129 | [43] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Chen, L.; Xia, Y.; Liang, Z.; Huang, R.; Liang, R.; Yan, G. Modification of Polymeric Carbon Nitride with Au–CeO2 Hybrids to Improve Photocatalytic Activity for Hydrogen Evolution. Molecules 2022, 27, 7489. https://doi.org/10.3390/molecules27217489
Zhang L, Chen L, Xia Y, Liang Z, Huang R, Liang R, Yan G. Modification of Polymeric Carbon Nitride with Au–CeO2 Hybrids to Improve Photocatalytic Activity for Hydrogen Evolution. Molecules. 2022; 27(21):7489. https://doi.org/10.3390/molecules27217489
Chicago/Turabian StyleZhang, Linzhu, Lu Chen, Yuzhou Xia, Zhiyu Liang, Renkun Huang, Ruowen Liang, and Guiyang Yan. 2022. "Modification of Polymeric Carbon Nitride with Au–CeO2 Hybrids to Improve Photocatalytic Activity for Hydrogen Evolution" Molecules 27, no. 21: 7489. https://doi.org/10.3390/molecules27217489
APA StyleZhang, L., Chen, L., Xia, Y., Liang, Z., Huang, R., Liang, R., & Yan, G. (2022). Modification of Polymeric Carbon Nitride with Au–CeO2 Hybrids to Improve Photocatalytic Activity for Hydrogen Evolution. Molecules, 27(21), 7489. https://doi.org/10.3390/molecules27217489