Fabrication of Novel Bentonite-Anthracite@Zetag (BT-An@Zetag) Composite for the Removal of Arsenic (V) from an Aqueous Solution
Abstract
:1. Introduction
2. Results and Discussions
2.1. The BT-An@Zetag Composite Characterization
2.1.1. XRD Analysis of the BT-An@Zetag Composite
2.1.2. Thermogravimetric Analysis/Differential Scanning Calorimetry Analysis (TGA)
2.1.3. Raman Spectroscopy
2.1.4. Surface Morphology and Elemental Analysis
2.1.5. N2-Adsorption Analysis
2.2. Controls on As(V) Adsorption
2.2.1. Effect of pH
2.2.2. Effect of Adsorbent Dose
2.2.3. The Agitation Speed Effect
2.2.4. The Initial Concentration Effects
2.2.5. Contact Time Effect
2.3. Kinetics and Mechanism of the Adsorption Process
2.4. Thermodynamic Study
2.5. Isotherm’s Modeling
2.6. Evaluation of Adsorbent Reusability
2.7. Adsorption Mechanism
3. Materials and Methods
3.1. Materials
3.2. Preparation of Bentonite/Anthracite/Zetag (BT-An@Zetag) Composite
3.3. Adsorbent Characterization
3.4. Batch Experiments
3.5. Kinetics, Isotherms, and Thermodynamics
3.6. Reusability Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- World Health Organization. Arsenic Compounds (Environmental Health Criteria 224); World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Stüben, D.; Berner, Z.; Chandrasekharam, D.; Karmakar, J. Arsenic Enrichment in Groundwater of West Bengal, India: Geochemical Evidence for Mobilization of as under Reducing Conditions. Appl. Geochem. 2003, 18, 1417–1434. [Google Scholar] [CrossRef]
- Berg, M.; Luzi, S.; Trang, P.T.K.; Viet, P.H.; Giger, W.; Stüben, D. Arsenic Removal from Groundwater by Household Sand Filters: Comparative Field Study, Model Calculations, and Health Benefits. Environ. Sci. Technol. 2006, 40, 5567–5573. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.; Chaudhuri, M. Adsorption of Arsenate from Aqueous Solution by Rice Husk-Based Adsorbent. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Putrajaya, Malaysia, 5–6 March 2013; IOP Publishing: Bristol, UK, 2013; Volume 16, p. 12095. [Google Scholar]
- McGraw Hill Encyclopedia of Science & Technology (Mcgraw Hill Encyclopedia of Science And Technology). McGraw-Hill Yearbook of Science and Technology; McGraw-Hill Companies: New York, NY, USA, 1982; ISBN 0070454892. [Google Scholar]
- Shi, Y.; Ren, X.; Zheng, H.; Zhang, Y.; Zuo, Q. Hierarchical 13X Zeolite/Reduced Graphene Oxide Porous Material for Trace Pb (II) Capturing from Drinking Water. Microporous Mesoporous Mater. 2022, 329, 111540. [Google Scholar] [CrossRef]
- Karaağaçlıoğlu, İ.E.; Karataş, D.; Özyıldırım, Ö.; Çelik, M.S. Investigation of the Interactions of Arsenic with Gangue Minerals in Colemanite Calcination. Microporous Mesoporous Mater. 2022, 333, 111735. [Google Scholar] [CrossRef]
- Hering, J.G.; Elimelech, M. International Perspective on Arsenic in Groundwater: Problems and Treatment Strategies. In Proceedings of the AWWA 1995 Annual Conference Proceedings Water Quality Technology Conference, Reno, NV, USA, 20 December 1995. [Google Scholar]
- World Health Organization. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2004; Volume 1, ISBN 9241546387. [Google Scholar]
- Nordstrom, D.K. Worldwide Occurrences of Arsenic in Ground Water. Science 2002, 296, 2143–2145. [Google Scholar] [CrossRef]
- Pirnie, M. Technologies and Costs for Removal of Arsenic from Drinking Water; US EPA Rep.; US Environmental Protection Agency: Washington, DC, USA, 2000; Available online: https://www.ircwash.org/resources/technologies-and-costs-removal-arsenic-drinking-water (accessed on 7 October 2022).
- Dobrzyńska, J.; Wysokińska, A.; Olchowski, R. Raspberry Stalks-Derived Biochar, Magnetic Biochar and Urea Modified Magnetic Biochar-Synthesis, Characterization and Application for As (V) and Cr (VI) Removal from River Water. J. Environ. Manag. 2022, 316, 115260. [Google Scholar] [CrossRef]
- Chen, H.; Xu, J.; Lin, H.; Wang, Z.; Liu, Z. Multi-Cycle Aqueous Arsenic Removal by Novel Magnetic N/S-Doped Hydrochars Activated via One-Pot and Two-Stage Schemes. Chem. Eng. J. 2022, 429, 132071. [Google Scholar] [CrossRef]
- Zhang, G.-S.; Qu, J.-H.; Liu, H.-J.; Liu, R.-P.; Li, G.-T. Removal Mechanism of As (III) by a Novel Fe− Mn Binary Oxide Adsorbent: Oxidation and Sorption. Environ. Sci. Technol. 2007, 41, 4613–4619. [Google Scholar] [CrossRef]
- Altundoğan, H.S.; Altundoğan, S.; Tümen, F.; Bildik, M. Arsenic Removal from Aqueous Solutions by Adsorption on Red Mud. Waste Manag. 2000, 20, 761–767. [Google Scholar] [CrossRef]
- Imai, H. Anion Adsorption Behavior of Rare Earth Oxide Hydrates. Nippon Kagaku Kaishi 1987, 5, 807–813. [Google Scholar] [CrossRef]
- Anderson, M.A.; Ferguson, J.F.; Gavis, J. Arsenate Adsorption on Amorphous Aluminum Hydroxide. J. Colloid Interface Sci. 1976, 54, 391–399. [Google Scholar] [CrossRef]
- Lin, T.-F.; Wu, J.-K. Adsorption of Arsenite and Arsenate within Activated Alumina Grains: Equilibrium and Kinetics. Water Res. 2001, 35, 2049–2057. [Google Scholar] [CrossRef]
- Tripathy, S.S.; Raichur, A.M. Enhanced Adsorption Capacity of Activated Alumina by Impregnation with Alum for Removal of As (V) from Water. Chem. Eng. J. 2008, 138, 179–186. [Google Scholar] [CrossRef]
- Singh, T.S.; Pant, K.K. Kinetics and Mass Transfer Studies on the Adsorption of Arsenic onto Activated Alumina and Iron Oxide Impregnated Activated Alumina. Water Qual. Res. J. 2006, 41, 147–156. [Google Scholar] [CrossRef]
- Jang, M.; Chen, W.; Cannon, F.S. Preloading Hydrous Ferric Oxide into Granular Activated Carbon for Arsenic Removal. Environ. Sci. Technol. 2008, 42, 3369–3374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genç-Fuhrman, H.; Tjell, J.C.; McConchie, D. Adsorption of Arsenic from Water Using Activated Neutralized Red Mud. Environ. Sci. Technol. 2004, 38, 2428–2434. [Google Scholar] [CrossRef]
- Zhang, Y.; Lim, C.T.; Ramakrishna, S.; Huang, Z.-M. Recent Development of Polymer Nanofibers for Biomedical and Biotechnological Applications. J. Mater. Sci. Mater. Med. 2005, 16, 933–946. [Google Scholar] [CrossRef]
- Han, C.; Li, H.; Pu, H.; Yu, H.; Deng, L.; Huang, S.; Luo, Y. Synthesis and Characterization of Mesoporous Alumina and Their Performances for Removing Arsenic (V). Chem. Eng. J. 2013, 217, 1–9. [Google Scholar] [CrossRef]
- El-Aassar, M.R.; Mohamed, F.M. Characterization Valorized Anthracite and Its Application in Manganese (VII) Adsorption from Aqueous Solution; Batch and Column Studies. Microporous Mesoporous Mater. 2021, 310, 110641. [Google Scholar] [CrossRef]
- Mohamed, F.M.; Li, Z.; Zayed, A.M. Carbon Nanotube Impregnated Anthracite (An/CNT) as a Superior Sorbent for Azo Dye Removal. RSC Adv. 2020, 10, 25586–25601. [Google Scholar] [CrossRef]
- El-Aassar, M.R.; Hashem, F.S.; Elzain, A.A.; Ali, A.S.M.; Mohamed, F.M. Reduction of Non-Point Source Pollution by Poly (Styrene-Co-Acrylonitrile) Composites Nanofibers Inoculated with Sorbent Materials. Int. J. Environ. Sci. Technol. 2021, 18, 3071–3082. [Google Scholar] [CrossRef]
- El-Aassar, M.R.; Masoud, M.S.; Elkady, M.F.; Elzain, A.A. Synthesis, Optimization, and Characterization of Poly (Styrene-co-Acrylonitrile) Copolymer Prepared via Precipitation Polymerization. Adv. Polym. Technol. 2018, 37, 2021–2029. [Google Scholar] [CrossRef]
- Mohamed, F.M.; Alfalous, K.A. The Effectiveness of Activated Silica Derived from Rice Husk in Coagulation Process Compared with Inorganic Coagulants for Wastewater Treatment. Egypt. J. Aquat. Res. 2020, 46, 131–136. [Google Scholar] [CrossRef]
- Abo-El-Enein, S.A.; Eissa, M.A.; Diafullah, A.A.; Rizk, M.A.; Mohamed, F.M. Removal of Some Heavy Metals Ions from Wastewater by Copolymer of Iron and Aluminum Impregnated with Active Silica Derived from Rice Husk Ash. J. Hazard. Mater. 2009, 172, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Abo-El-Enein, S.A.; Eissa, M.A.; Diafullah, A.A.; Rizk, M.A.; Mohamed, F.M. Utilization of a Low Cost Agro-Residue for Production of Coagulant Aids and Their Applications. J. Hazard. Mater. 2011, 186, 1200–1205. [Google Scholar] [CrossRef] [PubMed]
- El Gamala, M.; Mohamedb, F.M.; Mekewic, M.A.; Hashemc, F.S.; El-Aassard, M.R.; Khalifae, R.E. Adsorptive Removal of Methyl Orange from Aqueous Solutions by Polyvinylidene Fluoride Tri-Flouro Ethylene/Carbon Nanotube/Kaolin Nanocomposite: Kinetics, Isotherm, and Thermodynamics. Desalination Water Treat. 2020, 193, 142–151. [Google Scholar] [CrossRef]
- Chowdhury, R. Using Adsorption and Sulphide Precipitation as the Principal Removal Mechanisms of Arsenic from a Constructed Wetland—A Critical Review. Chem. Ecol. 2017, 33, 560–571. [Google Scholar] [CrossRef]
- Pintor, A.M.A.; Vieira, B.R.C.; Santos, S.C.R.; Boaventura, R.A.R.; Botelho, C.M.S. Arsenate and Arsenite Adsorption onto Iron-Coated Cork Granulates. Sci. Total Environ. 2018, 642, 1075–1089. [Google Scholar] [CrossRef]
- Vieira, B.R.C.; Pintor, A.M.A.; Boaventura, R.A.R.; Botelho, C.M.S.; Santos, S.C.R. Arsenic Removal from Water Using Iron-Coated Seaweeds. J. Environ. Manag. 2017, 192, 224–233. [Google Scholar] [CrossRef]
- Yang, G.; Liu, Y.; Song, S. Competitive Adsorption of As (V) with Co-Existing Ions on Porous Hematite in Aqueous Solutions. J. Environ. Chem. Eng. 2015, 3, 1497–1503. [Google Scholar] [CrossRef]
- Fakour, H.; Pan, Y.-F.; Lin, T.-F. Effect of Humic Acid on Arsenic Adsorption and Pore Blockage on Iron-Based Adsorbent. Water Air Soil Pollut. 2015, 226, 14. [Google Scholar] [CrossRef]
- Hao, L.; Liu, M.; Wang, N.; Li, G. A Critical Review on Arsenic Removal from Water Using Iron-Based Adsorbents. RSC Adv. 2018, 8, 39545–39560. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, R.E.; Omer, A.M.; Tamer, T.M.; Salem, W.M.; Eldin, M.S.M. Removal of Methylene Blue Dye from Synthetic Aqueous Solutions Using Novel Phosphonate Cellulose Acetate Membranes: Adsorption Kinetic, Equilibrium, and Thermodynamic Studies. Desalination Water Treat. 2019, 144, 272–285. [Google Scholar] [CrossRef]
- Koushkbaghi, S.; Zakialamdari, A.; Pishnamazi, M.; Ramandi, H.F.; Aliabadi, M.; Irani, M. Aminated-Fe3O4 Nanoparticles Filled Chitosan/PVA/PES Dual Layers Nanofibrous Membrane for the Removal of Cr (VI) and Pb (II) Ions from Aqueous Solutions in Adsorption and Membrane Processes. Chem. Eng. J. 2018, 337, 169–182. [Google Scholar] [CrossRef]
- Omer, A.M.; Elgarhy, G.S.; El-Subruiti, G.M.; Khalifa, R.E.; Eltaweil, A.S. Fabrication of Novel Iminodiacetic Acid-Functionalized Carboxymethyl Cellulose Microbeads for Efficient Removal of Cationic Crystal Violet Dye from Aqueous Solutions. Int. J. Biol. Macromol. 2020, 148, 1072–1083. [Google Scholar] [CrossRef]
- Toprak, A. The Effect of Pore and Surface Characteristics of Activated Carbon Produced by Coal through N2 and H2O Vapor/H3PO4 Activation on a Single Step for CH4 Adsorption in the Low Pressure. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 42, 1950–1962. [Google Scholar] [CrossRef]
- Kaklidis, N.; Kyriakou, V.; Garagounis, I.; Arenillas, A.; Menendez, J.A.; Marnellos, G.E.; Konsolakis, M. Effect of Carbon Type on the Performance of a Direct or Hybrid Carbon Solid Oxide Fuel Cell. RSC Adv. 2014, 4, 18792–18800. [Google Scholar] [CrossRef]
- Guthrie, G.D.; Dish, D.L.; Reynolds, R.C. Modeling the X-ray Diffraction Pattern of Opal-CT. Am. Mineral. 1995, 80, 869–872. [Google Scholar] [CrossRef]
- Hernández-Ortiz, M.; Hernández-Padrón, G.; Bernal, R.; Cruz-Vázquez, C.; Castaño, V.M. Nanocrystalline Mimetic Opals: Synthesis and Comparative Characterization vs. Natural Stones. Int. J. Basic Appl. Sci. 2015, 4, 238. [Google Scholar] [CrossRef]
- Souza, N.L.G.D.; Salles, T.F.; Brandão, H.M.; Edwards, H.G.M.; de Oliveira, L.F.C. Synthesis, Vibrational Spectroscopic and Thermal Properties of Oxocarbon Cross-Linked Chitosan. J. Braz. Chem. Soc. 2015, 26, 1247–1256. [Google Scholar] [CrossRef]
- Osman, Z.; Arof, A.K. FTIR Studies of Chitosan Acetate Based Polymer Electrolytes. Electrochim. Acta 2003, 48, 993–999. [Google Scholar] [CrossRef]
- Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K.S.; Casiraghi, C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012, 12, 3925–3930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inai, S.; Harao, A.; Nishikawa, H. Correlation between the Luminescence Properties and the Surface Structures of Submicron Silica Particles. J. Non-Cryst. Solids 2007, 353, 510–513. [Google Scholar] [CrossRef]
- Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman Microspectroscopy of Soot and Related Carbonaceous Materials: Spectral Analysis and Structural Information. Carbon 2005, 43, 1731–1742. [Google Scholar] [CrossRef]
- Mohan, A.N.; Manoj, B.; Ramya, A. V Probing the Nature of Defects of Graphene like Nano-Carbon from Amorphous Materials by Raman Spectroscopy. Asian J. Chem. 2016, 28, 1501. [Google Scholar] [CrossRef]
- Byamba-Ochir, N.; Shim, W.G.; Balathanigaimani, M.S.; Moon, H. Highly Porous Activated Carbons Prepared from Carbon Rich Mongolian Anthracite by Direct NaOH Activation. Appl. Surf. Sci. 2016, 379, 331–337. [Google Scholar] [CrossRef]
- Ramya, K.; John, J.; Manoj, B. Raman Spectroscopy Investigation of Camphor Soot: Spectral Analysis and Structural Information. Int. J. Electrochem. Sci. 2013, 8, 9421–9428. [Google Scholar]
- Xue, C.; Wilson, L.D. A Spectroscopic Study of Solid-Phase Chitosan/Cyclodextrin-Based Electrospun Fibers. Fibers 2019, 7, 48. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, X.; Wang, Y.; Jiang, P.; Quek, S.Y. Antibacterial Activity and Mechanism of Cinnamon Essential Oil against Escherichia Coli and Staphylococcus Aureus. Food Control 2015, 59, 282–289. [Google Scholar] [CrossRef]
- Cychosz, K.A.; Thommes, M. Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials. Engineering 2018, 4, 559–566. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, L.; Cui, T.; Tong, G.; Wu, W. Enhanced Photocatalytic Properties of ZnO/Reduced Graphene Oxide Sheets (RGO) Composites with Controllable Morphology and Composition. Appl. Surf. Sci. 2017, 412, 58–68. [Google Scholar] [CrossRef]
- Sharma, V.K.; Sohn, M. Aquatic Arsenic: Toxicity, Speciation, Transformations, and Remediation. Environ. Int. 2009, 35, 743–759. [Google Scholar] [CrossRef] [PubMed]
- Dai Luu, M.; Dao, N.N.; Van Nguyen, D.; Pham, N.C.; Doan, T.D. A New Perovskite-Type NdFeO3 Adsorbent: Synthesis, Characterization, and As (V) Adsorption. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 25015. [Google Scholar]
- Kim, J.; Song, J.; Lee, S.M.; Jung, J. Application of iron-modifed biochar for arsenite removal and toxicity reduction. J. Ind. Eng. Chem. 2019, 80, 17–22. [Google Scholar] [CrossRef]
- Uddin, J.; Jeong, Y.-K. Application of magnesium ferrite nanomaterials for adsorptive removal of arsenic from water: Effects of Mg and Fe ratio. Chemosphere 2022, 307, 135817. [Google Scholar] [CrossRef]
- Lin, L.; Qiu, W.; Wang, D.; Huang, Q.; Song, Z.; Chau, H.W. Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: Characterization and mechanism. Ecotoxicol. Environ. Saf. 2017, 144, 514–521. [Google Scholar] [CrossRef]
- Li, R.; Li, Q.; Gao, S.; Shang, J.K. Exceptional Arsenic Adsorption Performance of Hydrous Cerium Oxide Nanoparticles: Part A. Adsorption Capacity and Mechanism. Chem. Eng. J. 2012, 185, 127–135. [Google Scholar] [CrossRef]
Composite | SBET (m2/g) | Total Pore Volume (Vt) (cm3/g) | Mean Pore Width (nm) |
---|---|---|---|
BT-An@Zetag | 81.935 | 0.0333 | 13.87 |
Kinetic Model | Parameter | Value |
---|---|---|
Pseudo-first-order | qe,cal(mg/g) | 38.65 |
qe,exp (mg/g) | 26.2 | |
K1 (min−1) | 0.026 | |
R2 | 0.925 | |
Pseudo-second-order | qe,cal(mg/g) | 38.65 |
qe,exp (mg/g) | 41.66 | |
R2 | 0.940 | |
Elovich model | α (mg/g min) | 0.135 |
β (mg/g) | 34.293 | |
R2 | 0.907 |
Parameter | ∆H (KJ/mole) | ∆S (J/mol K) | ∆G (KJ/mole) |
---|---|---|---|
36.864 | −107.53 | 67.934 to 71.058 |
Langmuir | Freundlich | Temkin | |||||||
---|---|---|---|---|---|---|---|---|---|
qmax (mg/g) | KL (L/mg) | R2 | RL | kf (mg/g) | 1/n | R2 | BT (J/mol) | KT (L/mg) | R2 |
38.65 | 0.606 | 0.978 | 0.367 | 2.535 | 0.7502 | 0.997 | 12.96 | 0.093 | 0.839 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Aassar, M.R.; Alezbaway, A.K.; Althobaiti, I.O.; El-Sayed, M.Y.; Abu Salem, H.S.; Hassan, H.M.A.; Alolaimi, R.F.; El Agammy, E.F.; Mohy-Eldin, M.S.; Mohamed, F.M. Fabrication of Novel Bentonite-Anthracite@Zetag (BT-An@Zetag) Composite for the Removal of Arsenic (V) from an Aqueous Solution. Molecules 2022, 27, 7635. https://doi.org/10.3390/molecules27217635
El-Aassar MR, Alezbaway AK, Althobaiti IO, El-Sayed MY, Abu Salem HS, Hassan HMA, Alolaimi RF, El Agammy EF, Mohy-Eldin MS, Mohamed FM. Fabrication of Novel Bentonite-Anthracite@Zetag (BT-An@Zetag) Composite for the Removal of Arsenic (V) from an Aqueous Solution. Molecules. 2022; 27(21):7635. https://doi.org/10.3390/molecules27217635
Chicago/Turabian StyleEl-Aassar, Mohamed R., Ahmed K. Alezbaway, Ibrahim O. Althobaiti, Mohamed Y. El-Sayed, Hend S. Abu Salem, Hassan M. A. Hassan, Rawan F. Alolaimi, Emam F. El Agammy, Mohamed S. Mohy-Eldin, and Fathy M. Mohamed. 2022. "Fabrication of Novel Bentonite-Anthracite@Zetag (BT-An@Zetag) Composite for the Removal of Arsenic (V) from an Aqueous Solution" Molecules 27, no. 21: 7635. https://doi.org/10.3390/molecules27217635
APA StyleEl-Aassar, M. R., Alezbaway, A. K., Althobaiti, I. O., El-Sayed, M. Y., Abu Salem, H. S., Hassan, H. M. A., Alolaimi, R. F., El Agammy, E. F., Mohy-Eldin, M. S., & Mohamed, F. M. (2022). Fabrication of Novel Bentonite-Anthracite@Zetag (BT-An@Zetag) Composite for the Removal of Arsenic (V) from an Aqueous Solution. Molecules, 27(21), 7635. https://doi.org/10.3390/molecules27217635