Influence of PCL and PHBV on PLLA Thermal and Mechanical Properties in Binary and Ternary Polymer Blends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extrusion
2.3. Mechanical Properties
2.4. Attenuated Total Reflectance—Fourier Transform Infrared (ATR-FTIR)
2.5. Differential Scanning Calorimetry (DSC)
2.6. Rheological Assessment
3. Results
3.1. Thermal and Chemical Analysis
3.2. Mechanical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, W.; Chu, P.K. Orthopedic implants. In Encyclopedia of Biomedical Engineering 1–3; Elsevier: Amsterdam, The Netherlands, 2018; pp. 425–439. [Google Scholar]
- Moghaddam, N.S.; Andani, M.T.; Amerinatanzi, A.; Haberland, C.; Huff, S.; Miller, M.; Elahinia, M.; Dean, D. Metals for bone implants: Safety, design, and efficacy. Biomanuf. Rev. 2016, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, G. Biodegradable implants in orthopaedic surgery—A review on the state-of-the-art. Clin. Mater. 1992, 10, 75–80. [Google Scholar] [CrossRef]
- Narayanan, G.; Vernekar, V.N.; Kuyinu, E.L.; Laurencin, C.T. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv. Drug Deliv. Rev. 2016, 107, 247–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urquijo, J.; Guerrica-Echevarria, G.; Eguiazábal, J.I. Melt processed PLA/PCL blends: Effect of processing method on phase structure, morphology, and mechanical properties. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Patrício, T.; Bártolo, P. Thermal stability of PCL/PLA blends produced by physical blending process. In Procedia Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2013; Volume 59, pp. 292–297. [Google Scholar]
- Mofokeng, J.P.; Luyt, A.S. Dynamic mechanical properties of PLA/PHBV, PLA/PCL, PHBV/PCL blends and their nanocomposites with TiO2 as nanofiller. Thermochim. Acta 2015, 613, 41–53. [Google Scholar] [CrossRef]
- da Silva, D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky-Roitman, J.; Schroeder, A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J. 2018, 340, 9–14. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef] [Green Version]
- Balani, K.; Verma, V.; Agarwal, A.; Narayan, R. Physical, Thermal, and Mechanical Properties of Polymers. In Biosurfaces; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 329–344. [Google Scholar] [CrossRef]
- Wagner, J.R.; Mount, E.M.; Giles, H.F. Polymer Structure. In Extrusion; Elsevier: Amsterdam, The Netherlands, 2014; pp. 225–232. [Google Scholar] [CrossRef]
- Fortelny, I.; Ujcic, A.; Fambri, L.; Slouf, M. Phase Structure, Compatibility, and Toughness of PLA/PCL Blends: A Review. Front. Mater. 2019, 6, 206. [Google Scholar] [CrossRef]
- Ulery, B.D.; Nair, L.S.; Laurencin, C.T. Biomedical applications of biodegradable polymers. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 832–864. [Google Scholar] [CrossRef] [Green Version]
- Gunatillake, P.; Mayadunne, R.; Adhikari, R. Recent developments in biodegradable synthetic polymers. Biotechnol. Annu. Rev. 2006, 12, 301–347. [Google Scholar]
- Munajad, A.; Subroto, C. Fourier Transform Infrared (FTIR) Spectroscopy Analysis of Transformer Paper in Mineral Oil-Paper Composite Insulation under Accelerated Thermal Aging. Energies 2018, 11, 364. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, M.S.; Ahmed, I.; Muja, N.; Rudd, C.; Bureau, M.N.; Nazhat, S.N. Effect of phosphate-based glass fibre surface properties on thermally produced poly(lactic acid) matrix composites. J. Mater. Sci. Mater. Med. 2011, 22, 2659–2672. [Google Scholar] [CrossRef] [PubMed]
- Nair, L.S.; Laurencin, C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. [Google Scholar] [CrossRef]
- Pouton, C.W.; Akhtar, S. Biosynthetic polyhydroxyalkanoates and their potential in drug delivery. Adv. Drug Deliv. Rev. 1996, 18, 133–162. [Google Scholar] [CrossRef]
- Doyle, C.; Tanner, E.; Bonfield, W. In vitro and in vivo evaluation of polyhydroxybutyrate and of polyhydroxybutyrate reinforced with hydroxyapatite. Biomaterials 1991, 12, 841–847. [Google Scholar] [CrossRef]
- Gerard, T.; Budtova, T. Morphology and molten-state rheology of polylactide and polyhydroxyalkanoate blends. Eur. Polym. J. 2012, 48, 1110–1117. [Google Scholar] [CrossRef]
- Ostafinska, A.; Fortelny, I.; Nevoralova, M.; Hodan, J.; Kredatusova, J.; Slouf, M. Synergistic effects in mechanical properties of PLA/PCL blends with optimized composition, processing, and morphology. RSC Adv. 2015, 5, 98971–98982. [Google Scholar] [CrossRef]
- Todo, M.; Park, S.-D.; Takayama, T.; Arakawa, K. Fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends. Eng. Fract. Mech. 2007, 74, 1872–1883. [Google Scholar] [CrossRef]
- Sultana, N.; Wang, M. PHBV/PLLA-based composite scaffolds containing nano-sized hydroxyapatite particles for bone tissue engineering. J. Exp. Nanosci. 2008, 3, 121–132. [Google Scholar] [CrossRef]
- Krishnan, S.; Pandey, P.; Mohanty, S.; Nayak, S.K. Toughening of Polylactic Acid: An Overview of Research Progress. Polym. Technol. Eng. 2015, 55, 1623–1652. [Google Scholar] [CrossRef]
- El-Hadi, A.M. Increase the elongation at break of poly (lactic acid) composites for use in food packaging films. Sci. Rep. 2017, 7, 46767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, B.M.P.; Zavaglia, C.A.C.; Duek, E.A.R. Films of PLLA/PHBV: Thermal, morphological, and mechanical characterization. J. Appl. Polym. Sci. 2002, 86, 2898–2906. [Google Scholar] [CrossRef]
- Zhang, M.; Thomas, N.L. Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties. Adv. Polym. Technol. 2011, 30, 67–79. [Google Scholar] [CrossRef]
- Hedrick, M.M.; Wu, F.; Mohanty, A.K.; Misra, M. Morphology and performance relationship studies on biodegradable ternary blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), polylactic acid, and polypropylene carbonate. RSC Adv. 2020, 10, 44624–44632. [Google Scholar] [CrossRef]
- Zhang, K.; Mohanty, A.K.; Misra, M. Fully Biodegradable and Biorenewable Ternary Blends from Polylactide, Poly(3-hydroxybutyrate-co-hydroxyvalerate) and Poly(butylene succinate) with Balanced Properties. ACS Appl. Mater. Interfaces 2012, 4, 3091–3101. [Google Scholar] [CrossRef]
- Rao, R.U.; Venkatanarayana, B.; Suman, K.N.S. Enhancement of Mechanical Properties of PLA/PCL (80/20) Blend by Reinforcing with MMT Nanoclay. Mater. Today Proc. 2019, 18, 85–97. [Google Scholar]
- Zhao, H.; Cui, Z.; Sun, X.; Turng, L.-S.; Peng, X. Morphology and Properties of Injection Molded Solid and Microcellular Polylactic Acid/Polyhydroxybutyrate-Valerate (PLA/PHBV) Blends. Ind. Eng. Chem. Res. 2013, 52, 2569–2581. [Google Scholar] [CrossRef]
- Javadi, A.; Pilla, S.; Gong, S.; Turng, L.S. Biobased and Biodegradable PHBV-Based Polymer Blends and Biocomposites: Properties and Applications. In Handbook of Bioplastics and Biocomposites Engineering Applications; John Wiley and Sons: Hoboken, NJ, USA, 2011; pp. 372–396. [Google Scholar] [CrossRef]
- Lajewski, S.; Mauch, A.; Geiger, K.; Bonten, C. Rheological Characterization and Modeling of Thermally Unstable Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Polymers 2021, 13, 2294. [Google Scholar] [CrossRef]
- Matta, A.; Rao, R.U.; Suman, K.; Rambabu, V. Preparation and Characterization of Biodegradable PLA/PCL Polymeric Blends. Procedia Mater. Sci. 2014, 6, 1266–1270. [Google Scholar] [CrossRef]
- Jia, S.; Yu, D.; Zhu, Y.; Wang, Z.; Chen, L.; Fu, L. Morphology, Crystallization and Thermal Behaviors of PLA-Based Composites: Wonderful Effects of Hybrid GO/PEG via Dynamic Impregnating. Polymers 2017, 9, 528. [Google Scholar] [CrossRef] [Green Version]
- Lagazzo, A.; Moliner, C.; Bosio, B.; Botter, R.; Arato, E. Evaluation of the Mechanical and Thermal Properties Decay of PHBV/Sisal and PLA/Sisal Biocomposites at Different Recycle Steps. Polymers 2019, 11, 1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chieng, B.W.; Ibrahim, N.A.; Yunus, W.M.Z.W.; Hussein, M.Z. Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets. Polymers 2014, 6, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Jing, N.; Jiang, X.; Wang, Q.; Tang, Y.; Zhang, P. Attenuated total reflectance/Fourier transform infrared (ATR/FTIR) mapping coupled with principal component analysis for the study of in vitro degradation of porous polylactide/hydroxyapatite composite material. Anal. Methods 2014, 6, 5590–5595. [Google Scholar] [CrossRef]
- Prasad, B.; Borgohain, R.; Mandal, B. Advances in Bio-based Polymer Membranes for CO2 Separation. In Advances in Sustainable Polymers; Springer: Singapore, 2019; pp. 277–307. [Google Scholar] [CrossRef]
- Bergström, J.S.; Hayman, D. An Overview of Mechanical Properties and Material Modeling of Polylactide (PLA) for Medical Applications. Ann. Biomed. Eng. 2016, 44, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.F.; Unnikrisnan, G.U.; Hussein, A.I. Bone Mechanical Properties in Healthy and Diseased States. Annu. Rev. Biomed. Eng. 2018, 20, 119–143. [Google Scholar] [CrossRef]
Polymer | Temperature (°C) | ||||
---|---|---|---|---|---|
Z1 | Z2 | Z3 | Z4 | Die | |
PLLA and blended materials | 125 | 240 | 240 | 220 | 180 |
PCL | 95 | 120 | 100 | 100 | 90 |
Polymer | Tg (°C) | Tcc (°C) | Tm (°C) | (J/g) | (J/g) | Xc (%) |
---|---|---|---|---|---|---|
PLLA (Pre-extrusion) | 76 | nm | 190 | 74.4 | ~0 | 79.4 |
PLLA (Post-extrusion) | 60 | 98 | 182 | 57.7 | 29.2 | 30.4 |
PCL (Pre-extrusion) | omr | nm | 64 | 86.7 | ~0 | 62.4 |
PCL (Post-extrusion) | omr | nm | 64 | 73.4 | ~0 | 53.0 |
PHBV (Pre-extrusion) | omr | nm | 143/157 | 44.0 | ~0 | 30.0 |
PLLA/PCL (70:30) | 68 | nm | 178 | 31.3 (PLLA); 5.9 (PCL) | ~0 | 24.7 |
PLLA/PHBV (85:15) | 59 | 83 | 178 | 53.6 | 20.2 | 42.5 |
PLLA/PCL/PHBV (80:10:10) | 59 | 83 | 178 | 34.5 (PLLA and PHBV); 27.4 (PCL) | 14.1 (PLLA and PHBV) | 21.7 |
PLLA/PCL/PHBV (90:5:5) | 54 | 90 | 180 | 37.5 (PLLA and PHBV); 2.3 (PCL) | 9.0 (PLLA and PHBV) | 26.5 |
Material | Ratio (wt %) | E (GPa) | Yield Stress (MPa) | Elongation at Break (%) |
---|---|---|---|---|
PLLA | 100 | 2.23 ± 0.14 | 34.4 ± 1.90 | 2.69 ± 0.31 |
PCL | 100 | 0.27 ± 0.12 | 10.30 ± 3.10 | No break |
PLLA/PCL | 70/30 | 1.40 ± 0.07 | 21.40 ± 2.94 | No break |
PLLA/PHBV | 85/15 | 2.80 ± 0.49 | 42.94 ± 5.90 | 66 ± 17 |
PLLA/PCL/PHBV | 90/5/5 | 2.65 ± 0.17 | 53.29 ± 4.62 | 2.94 ± 0.21 |
PLLA/PCL/PHBV | 80/10/10 | 1.94 ± 0.11 | 36.80 ± 5.0 | 133 ± 10 |
Material | Average Creep Rate (s−1) Mean ± s.d. n = 3 | Viscosity at 1 Hz (Pa.s) | Viscosity at 600 Hz (Pa.s) |
---|---|---|---|
PLLA | 1.31 ± 0.20 | 3148.3 | 941.2 |
PLLA/PCL (70/30) | 1.35 ± 0.004 | 1245.9 | 391.4 |
PLLA/PHBV (85/15) | 1.35 ± 0.034 | 2120.4 | 470.2 |
PLLA/PCL/PHBV (90/5/5) | 1.33 ± 0.11 | 3482.3 | 960.7 |
PLLA/PCL/PHBV (80/10/10) | 1.60 ± 0.10 | 2436.7 | 500.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naseem, R.; Montalbano, G.; German, M.J.; Ferreira, A.M.; Gentile, P.; Dalgarno, K. Influence of PCL and PHBV on PLLA Thermal and Mechanical Properties in Binary and Ternary Polymer Blends. Molecules 2022, 27, 7633. https://doi.org/10.3390/molecules27217633
Naseem R, Montalbano G, German MJ, Ferreira AM, Gentile P, Dalgarno K. Influence of PCL and PHBV on PLLA Thermal and Mechanical Properties in Binary and Ternary Polymer Blends. Molecules. 2022; 27(21):7633. https://doi.org/10.3390/molecules27217633
Chicago/Turabian StyleNaseem, Raasti, Giorgia Montalbano, Matthew J. German, Ana M. Ferreira, Piergiorgio Gentile, and Kenneth Dalgarno. 2022. "Influence of PCL and PHBV on PLLA Thermal and Mechanical Properties in Binary and Ternary Polymer Blends" Molecules 27, no. 21: 7633. https://doi.org/10.3390/molecules27217633
APA StyleNaseem, R., Montalbano, G., German, M. J., Ferreira, A. M., Gentile, P., & Dalgarno, K. (2022). Influence of PCL and PHBV on PLLA Thermal and Mechanical Properties in Binary and Ternary Polymer Blends. Molecules, 27(21), 7633. https://doi.org/10.3390/molecules27217633