The Ability of Acid-Based Natural Deep Eutectic Solvents to Co-Extract Elements from the Roots of Glycyrrhiza glabra L. and Associated Health Risks
Abstract
:1. Introduction
2. Results and Discussion
2.1. Content of Glycyrrhizic Acid in NADES Extracts
2.2. Co-Extraction of Trace Elements with NADES
2.3. Human Health Risk Assessments of NADES Extracts
3. Materials and Methods
3.1. Materials and Reagents
3.2. NADES Preparation and Extraction Conditions
3.3. Analysis of Glycyrrhizic Acid Content
3.4. Elements Analysis
3.5. Metal Pollution Index
3.6. Human Health Risk Assessments
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sokolov, P.D. Plant Resources of the USSR: Flowering Plants, Their Chemical Composition, the Use; The Families Hidrangeaceae–Haloragaceae; Science: Leningrad, Russia, 1987. (In Russian) [Google Scholar]
- Shikov, A.N.; Narkevich, I.A.; Flisyuk, E.V.; Luzhanin, V.G.; Pozharitskaya, O.N. Medicinal plants from the 14th edition of the Russia, Pharmacopoeia, recent updates. J. Ethnopharmacol. 2021, 268, 113685. [Google Scholar] [CrossRef] [PubMed]
- EMA/HMPC. Community Herbal Monograph on Glycyrrhiza glabra L. and/or Glycyrrhiza inflata Bat. and/or Glycyrrhiza uralensis Fisch, Radix; European Medicines Agency/Herbal Medicinal Products Committee: London, UK, 2011; Available online: https://www.google.ru/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi8iMq72tz5AhWSmIsKHWkIDAIQFnoECAgQAQ&url=https%3A%2F%2Fwww.ema.europa.eu%2Fen%2Fdocuments%2Fherbal-monograph%2Ffinal-community-herbal-monograph-glycyrrhiza-glabra-l%2Fglycyrrhiza-inflata-bat%2Fglycyrrhiza-uralensis-fisch-radix-first-version_en.pdf&usg=AOvVaw2L5iVUTDKKKE2ijQ94orMZ (accessed on 11 October 2022).
- Delbò, R.M. Assessment Report on Glycyrrhiza glabra L. and/or Glycyrrhiza Inflata Bat and/or Glycyrrhiza uralensis Fisch, Radix; European Medicines Agency: Amsterdam, The Netherlands, 2013; 40p. [Google Scholar]
- Wang, X.Y.; Zhang, H.; Chen, L.L.; Shan, L.H.; Fan, G.W.; Gao, X.M. Liquorice, a unique “guide drug” of traditional chinese medicine: A review of its role in drug interactions. J. Ethnopharmacol. 2013, 150, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Zarubaev, V.V.; Anikin, V.B.; Smirnov, V.S. Anti-viral activity of glycirrhetinic and glycirrhizic acids. Russ. J. Infect. Immun. 2016, 6, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Chen, L.; Xu, C.; Shi, J.; Chen, S.; Tan, M.; Chen, J.; Zou, L.; Chen, C.; Liu, Z.; et al. A Comprehensive review for phytochemical, pharmacological, and biosynthesis studies on Glycyrrhiza spp. Am. J. Chin. Med. 2020, 48, 17–45. [Google Scholar] [CrossRef]
- Wahab, S.; Annadurai, S.; Abullais, S.S.; Das, G.; Ahmad, W.; Ahmad, M.F.; Kandasamy, G.; Vasudevan, R.; Ali, M.S.; Amir, M. Glycyrrhiza glabra (Licorice): A Comprehensive review on its phytochemistry, biological activities, clinical evidence and toxicology. Plants 2021, 10, 2751. [Google Scholar] [CrossRef]
- Cheng, M.; Zhang, J.; Yang, L.; Shen, S.; Li, P.; Yao, S.; Qu, H.; Li, J.; Yao, C.; Wei, W.; et al. Recent advances in chemical analysis of licorice (Gan-Cao). Fitoterapia 2021, 149, 104803. [Google Scholar] [CrossRef]
- Choi, Y.H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I.W.C.E.; Witkamp, G.-J.; Verpoorte, R. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 2011, 156, 1701–1705. [Google Scholar] [CrossRef] [Green Version]
- Shikov, A.N.; Kosman, V.M.; Flissyuk, E.V.; Smekhova, I.E.; Elameen, A.; Pozharitskaya, O.N. Natural deep eutectic solvents for the extraction of phenyletanes and phenylpropanoids of Rhodiola rosea L. Molecules 2020, 25, 1826. [Google Scholar] [CrossRef] [Green Version]
- Panić, M.; Gunjević, V.; Radošević, K.; Cvjetko Bubalo, M.; Ganić, K.K.; Redovniković, I.R. COSMOtherm as an effective tool for selection of deep eutectic solvents based ready-to-use extracts from Graševina Grape Pomace. Molecules 2021, 26, 4722. [Google Scholar] [CrossRef]
- Saini, R.; Kumar, S.; Sharma, A.; Kumar, V.; Sharma, R.; Janghu, S.; Suthar, P. Deep eutectic solvents: The new generation sustainable and safe extraction systems for bioactive compounds in agri food sector: An update. J. Food Process. Preserv. 2021, 46, e16250. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Zakharova, L.V.; Daurtseva, A.V.; Flisyuk, E.V.; Shikov, A.N. Efficacy of natural deep eutectic solvents for extraction of hydrophilic and lipophilic compounds from Fucus vesiculosus. Molecules 2021, 26, 4198. [Google Scholar] [CrossRef] [PubMed]
- Pavlić, B.; Mrkonjić, Ž.; Teslić, N.; Kljakić, A.C.; Pojić, M.; Mandić, A.; Stupar, A.; Santos, F.; Duarte, A.R.C.; Mišan, A. Natural deep eutectic solvent (NADES) extraction improves polyphenol yield and antioxidant activity of wild thyme (Thymus serpyllum L.) extracts. Molecules 2022, 27, 1508. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, M.; Wang, Q.; Du, H.; Zhang, L. Deep eutectic solvent-based microwave-assisted method for extraction of hydrophilic and hydrophobic components from radix Salviae miltiorrhizae. Molecules 2016, 21, 1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanjekar, K.J.; Rathod, V.K. Application of Ultrasound and Natural Deep Eutectic Solvent for the extraction of glycyrrhizic acid from Glycyrrhiza glabra: Optimization and kinetic evaluation. Ind. Eng. Chem. Res. 2021, 60, 9532–9538. [Google Scholar] [CrossRef]
- Boyko, N.; Zhilyakova, E.; Malyutina, A.; Novikov, O.; Pisarev, D.; Abramovich, R.; Potanina, O.; Lazar, S.; Mizina, P.; Sahaidak-Nikitiuk, R. Studying and modeling of the extraction properties of the natural deep eutectic solvent and sorbitol-based solvents in regard to biologically active substances from Glycyrrhizae Roots. Molecules 2020, 25, 1482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, C.; Cui, W.Q.; Zhang, Y.; Zou, X.S.; Hao, J.Y.; Zheng, S.D.; Wang, T.T.; Wang, X.Z.; Wu, T.; Liu, Y.Y.; et al. Ultrasound-assisted deep eutectic solvents extraction of glabridin and isoliquiritigenin from Glycyrrhiza glabra: Optimization, extraction mechanism and in vitro bioactivities. Ultrason. Sonochem. 2022, 83, 105946. [Google Scholar] [CrossRef] [PubMed]
- Gravel, I.V. The content of trace elements in biologically active additives and their aqueous extracts. Pharmacy (Farmatsiya) 2005, 3, 43–44. (In Russian) [Google Scholar]
- Gravel, I.V.; Tsoi, Y.E.; Denisova, T.V.; Khotimchenko, S.A. Heavy metals in the raw materials and infusions of peppermint (Mentha piperita). Pharmacy (Farmatsiya) 2010, 3, 27–30. (In Russian) [Google Scholar]
- Tsvetov, N.S.; Drogobuzhskaya, S.V. Recovery of some elements from Empetrum nigrum L. growing in the Kola Peninsula using acid-based deep eutectic solvents. IOP Conf. Ser. Earth Environ. Sci. 2021, 848, 012107. [Google Scholar] [CrossRef]
- Shikov, A.N.; Obluchinskaya, E.D.; Flisyuk, E.V.; Terninko, I.I.; Generalova, Y.E.; Pozharitskaya, O.N. The impact of natural deep eutectic solvents and extraction method on the co-extraction of trace metals from Fucus vesiculosus. Mar. Drugs 2022, 20, 324. [Google Scholar] [CrossRef]
- Fuad, F.M.; Nadzir, M.M.; Harun, A. Hydrophilic natural deep eutectic solvent: A review on physicochemical properties and extractability of bioactive compounds. J. Mol. Liq. 2021, 339, 116923. [Google Scholar] [CrossRef]
- Lanjekar, K.J.; Rathod, V.K. Green extraction of Glycyrrhizic acid from Glycyrrhiza glabra using choline chloride based natural deep eutectic solvents (NADESs). Process Biochem. 2021, 102, 22–32. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Paengkoum, S.; Paengkoum, P. Development of a simple high-performance liquid chromatography-based method to quantify synergistic compounds and their composition in dried leaf extracts of Piper sarmentosum Roxb. Separations 2021, 8, 152. [Google Scholar] [CrossRef]
- Ercişli, S.; Çoruh, İ.; Gormez, A.; Şengül, M.; Bilen, S. Total phenolics, mineral contents, antioxidant and antibacterial activities of Glycyrrhiza glabra L. roots grown wild in Turkey. Ital. J. Food Sci. 2008, 20, 91–99. [Google Scholar]
- Grankina, V.P.; Savchenko, T.I.; Chankina, O.V.; Kovalskaya, G.A.; Kutzenogii, K.P. Trace element composition of Ural licorice Glycyrrhiza uralensis Fisch. (Fabaceae family). Contemp. Probl. Ecol. 2009, 2, 396–399. [Google Scholar] [CrossRef]
- Gravel, I.V.; Ivashchenko, N.V.; Samylina, I.A. Trace element composition of spasmolytic herbal tea and its components. Pharmacy (Farmatsiya) 2011, 1, 9–11. (In Russian) [Google Scholar]
- Levushkin, D.V.; Gravel, I.V. Multicomponent medicinal species as a source of macronutrients. Vestnik Farmatsii. 2021, 94, 9–14. (In Russian) [Google Scholar] [CrossRef]
- Mišan, A.; Nađpal, J.; Stupar, A.; Pojić, M.; Mandić, A.; Verpoorte, R.; Choi, Y.H. The perspectives of natural deep eutectic solvents in agri-food sector. Crit. Rev. Food Sci. Nutr. 2019, 60, 2564–2592. [Google Scholar] [CrossRef]
- Sablonský, M.; Šima, J. Phytomass valorization by deep eutectic solvents—Achievements, perspectives, and limitations. Crystals 2020, 10, 800. [Google Scholar] [CrossRef]
- Chen, S.C.; Liao, C.M. Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci. Total Environ. 2006, 366, 112–123. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund: Human Health Evaluation Manual [Part A]: Interim Final; [EPA/540/1–89/002]; Environmental Protection Agency: Washington, DC, USA, 1989. [Google Scholar]
- Alam, M.F.; Akhter, M.; Mazumder, B.; Ferdous, A.; Hossain, M.D.; Dafader, N.C.; Ahmed, F.T.; Kundu, S.K.; Taheri, T.; Ullah, A.A. Assessment of some heavy metals in selected cosmetics commonly used in Bangladesh and human health risk. J. Anal. Sci. Technol. 2019, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Evaluation of Certain Food Additives and Contaminants: Seventy-Second Report of the Joint FAO/WHO Expert Committee on Food Additives; WHO Technical Report Series No. 959; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- World Health Organization. Evaluation of Certain Food Additives and Contaminants: Seventy-Third Report of the Joint FAO/WHO Expert Committee on Food Additives, Geneva, 2010; WHO Technical Report Series No. 960; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Joint FAO/WHO. Expert Committee on Food Additives. In Proceedings of the Summary and Conclusions of the Sixty-Seventh Meeting of the Joint FAO/WHO Expert Committee on Food Additives, Rome, Italy, 20–29 June 2006. [Google Scholar]
- European Food Safety Authority. Tolerable Upper Intake Levels for Vitamins and Minerals. February 2006. Available online: www.efsa.europa.eu/sites/default/files/efsa_rep/blobserver_assets/ndatolerableuil.pdf (accessed on 11 October 2022).
- Norms of Physiological Needs Energy and Nutrients for Various Groups of the Population of the Russian Federation; Methodical Recommendations MR 3.1.2432−08; Federal Center for Hygiene and Epidemiology of Rospotrebnadzor: Moscow, Russia, 2009.
- Dai, Y.; Van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Liu, J.; Li, H.; Li, L.; Lee, F.S.; Wang, X. The application of macroporous resins in the separation of licorice flavonoids and glycyrrhizic acid. J. Chromatogr. A 2005, 1089, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemists (AOAC). Standard method performance requirements (AOAC SMPR 211.009) for Cr, Mo and Se in infant formula and adult/pediatric nutritional formula. J. AOAC Int. 2012, 95, 297.
- Usero, J.; Morillo, J.; Gracia, I. Heavy metal concentrations in molluscs from the Atlantic coast of southern Spain. Chemosphere 2005, 59, 1175–1181. [Google Scholar] [CrossRef]
- USEPA (US Environmental Protection Agency). Integrated Risk Information System (IRIS). 2005. Available online: https://www.epa.gov/iris (accessed on 11 October 2022).
- US EPA. Guidance Manual for Assessing Human Health Risks from Chemically Contaminated, Fish and Shellfish; EPA-503/8-89-002; USEPA Office of Marine and Estuarine Protection: Washington, DC, USA, 1989.
NADES Code | Composition | Ratio |
---|---|---|
NADES1 | Sucrose:Citric acid | 3:1 |
NADES2 | Sorbitol:Citric acid | 3:1 |
NADES3 | Sucrose:Lactic acid | 3:1 |
NADES4 | Sorbitol:Lactic acid | 3:1 |
NADES5 | Choline chloride:Lactic acid | 1:3 |
Elements | Wave Lenght (nm) | LOQ (µg/L) | NADES1 | NADES2 | NADES3 | NADES4 | NADES5 | Water | Decoction |
---|---|---|---|---|---|---|---|---|---|
Al | 396.153 | 86 | 1.19 ± 0.05 | 2.25 ± 0.03 | 1.40 ± 0.02 | 1.61 ± 0.06 | 5.10 ± 0.05 | 0.183 ± 0.021 | 0.160 ± 0.011 |
Ca | 317.933 | 198 | 47.5 ± 0.6 | 68.1 ± 0.3 | 76.5 ± 0.7 | 123 ± 54 | 97.1 ± 0.1 | 36.7 ± 0.4 | 41.0 ± 1.0 |
Cu | 327.393 | 17 | 0.096 ± 0.017 | 0.309 ± 0.023 | 0.169 ± 0.012 | 0.204 ± 0.002 | 0.172 ± 0.011 | 0.060 ± 0.018 | 0.069 ± 0.006 |
Fe | 238.204 | 12 | 5.43 ± 0.027 | 45.5 ± 0.1 | 3.94 ± 0.04 | 2.42 ± 0.07 | 4.96 ± 0.40 | 0.286 ± 0.032 | 0.332 ± 0.006 |
K | 766.491 | 48 | 114 ± 2 | 175 ± 2 | 166 ± 1 | 203 ± 4 | 177 ± 2 | 78.0 ± 5.7 | 130 ± 2 |
Li | 670.784 | 9 | 0.007 ± 0.001 | 0.012 ± 0.001 | 0.022 ± 0.001 | 0.025 ± 0.002 | 0.031 ± 0.002 | 0.002 ± 0.001 | 0.003 ± 0.001 |
Mg | 279.077 | 47 | 41.4 ± 0.5 | 72.3 ± 0.1 | 69.2 ± 0.4 | 91.6 ± 2.2 | 87.2 ± 0.4 | 43.9 ± 5.9 | 66.8 ± 0.6 |
Mn | 257.610 | 38 | 0.230 ± 0.001 | 0.333 ± 0.001 | 0.294 ± 0.001 | 0.373 ± 0.009 | 0.493 ± 0.004 | 0.133 ± 0.013 | 0.192 ± 0.002 |
Na | 589.592 | 64 | 13.60 ± 0.01 | 21.9 ± 0.1 | 87.5 ± 0.1 | 105 ± 6 | 40.3 ± 0.6 | 12.1 ± 1.5 | 16.2 ± 0.4 |
Element | NADES | Maximum Concentration | Daily Dose for 20 g Consumption | Daily Dose from Risk Estimators | Daily Nutritional Requirements |
---|---|---|---|---|---|
Al | NADES5 | 5.1 | 0.102 | 10 1 | |
Ca | NADES4 | 123.1 | 2.462 | 2500 2 | 1000 3 |
Cu | NADES2 | 0.31 | 0.006 | 5 2,5 | 0.9 4/1.0 5 |
Fe | NADES1 | 5.43 | 0.109 | 45 5 | 10 3,5 |
K | NADES4 | 203.35 | 4.08 | 3500 | 2500 |
Li | NADES5 | 0.031 | 0.0006 | 0.3 | 0.1 |
Mg | NADES4 | 91.61 | 1.83 | 800 5 | 400 5 |
Mn | NADES5 | 0.49 | 0.01 | 11 5 | 2.7 3/2.0 5 |
Na | NADES4 | 104.80 | 2.10 | 2000 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shikov, A.N.; Shikova, V.A.; Whaley, A.O.; Burakova, M.A.; Flisyuk, E.V.; Whaley, A.K.; Terninko, I.I.; Generalova, Y.E.; Gravel, I.V.; Pozharitskaya, O.N. The Ability of Acid-Based Natural Deep Eutectic Solvents to Co-Extract Elements from the Roots of Glycyrrhiza glabra L. and Associated Health Risks. Molecules 2022, 27, 7690. https://doi.org/10.3390/molecules27227690
Shikov AN, Shikova VA, Whaley AO, Burakova MA, Flisyuk EV, Whaley AK, Terninko II, Generalova YE, Gravel IV, Pozharitskaya ON. The Ability of Acid-Based Natural Deep Eutectic Solvents to Co-Extract Elements from the Roots of Glycyrrhiza glabra L. and Associated Health Risks. Molecules. 2022; 27(22):7690. https://doi.org/10.3390/molecules27227690
Chicago/Turabian StyleShikov, Alexander N., Veronika A. Shikova, Anastasiia O. Whaley, Marina A. Burakova, Elena V. Flisyuk, Andrei K. Whaley, Inna I. Terninko, Yulia E. Generalova, Irina V. Gravel, and Olga N. Pozharitskaya. 2022. "The Ability of Acid-Based Natural Deep Eutectic Solvents to Co-Extract Elements from the Roots of Glycyrrhiza glabra L. and Associated Health Risks" Molecules 27, no. 22: 7690. https://doi.org/10.3390/molecules27227690
APA StyleShikov, A. N., Shikova, V. A., Whaley, A. O., Burakova, M. A., Flisyuk, E. V., Whaley, A. K., Terninko, I. I., Generalova, Y. E., Gravel, I. V., & Pozharitskaya, O. N. (2022). The Ability of Acid-Based Natural Deep Eutectic Solvents to Co-Extract Elements from the Roots of Glycyrrhiza glabra L. and Associated Health Risks. Molecules, 27(22), 7690. https://doi.org/10.3390/molecules27227690