Farang (Psidium guajava L.) Dried Leaf Extracts: Phytochemical Profiles, Antioxidant, Anti-Diabetic, and Anti-Hemolytic Properties for Ruminant Health and Production
Abstract
:1. Introduction
2. Results
2.1. Phytochemistry Profiling
2.2. Antioxidant Activity
2.3. α-Glucosidase Inhibitory Activity
2.4. Evaluation of Farang Leaf Extracts on Oxidative Damage in Ruminant Blood Erythrocytes
3. Discussion
4. Materials and Methods
4.1. Standards and Reagents
4.2. Leave Sample, Extraction and Phytochemistry Profiling
4.3. Assay Preparations for Antioxidant Activity
4.4. Assay Preparation for α-Glucosidase Inhibitory Activity
4.5. Assay Preparation for In Vitro ROO•-Induced Oxidative Damage in Ruminant Erythrocytes
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Takeda, L.N.; Laurindo, L.F.; Guiguer, E.L.; Bishayee, A.; Araújo, A.C.; Ubeda, L.C.C.; Goulart, R.D.A.; Barbalho, S.M. Psidium guajava L.: A systematic review of the multifaceted health benefits and economic importance. Food Rev. Int. 2022, 1–31. [Google Scholar] [CrossRef]
- Kapoor, S.; Gandhi, N.; Kapoor, A. Guava (Psidium guajava). In Antioxidants in Fruits: Properties and Health Benefits; Springer: Berlin/Heidelberg, Germany, 2020; pp. 227–249. [Google Scholar]
- FAO. Major Tropical Fruits: Market Review 2020; FAO: Rome, Italy, 2021. [Google Scholar]
- Zhang, D.; Ivane, N.M.A.; Haruna, S.A.; Zekrumah, M.; Elysé, F.K.R.; Tahir, H.E.; Wang, G.; Wang, C.; Zou, X. Recent trends in the micro-encapsulation of plant-derived compounds and their specific application in meat as antioxidants and antimicrobials. Meat Sci. 2022, 191, 108842. [Google Scholar] [CrossRef] [PubMed]
- Celi, P. Biomarkers of oxidative stress in ruminant medicine. Immunopharmacol. Immunotoxicol. 2011, 33, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Purba, R.A.P.; Suong, N.T.M.; Paengkoum, S.; Schonewille, J.T.; Paengkoum, P. Dietary inclusion of anthocyanin-rich black cane silage treated with ferrous sulfate heptahydrate reduces oxidative stress and promotes tender meat production in goats. Front. Vet. Sci. 2022, 9, 969321. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Paengkoum, S.; Yuangklang, C.; Paengkoum, P.; Salem, A.Z.M.; Liang, J.B. Mammary gene expressions and oxidative indicators in ruminal fluid, blood, milk, and mammary tissue of dairy goats fed a total mixed ration containing piper meal (Piper betle L.). Ital. J. Anim. Sci. 2022, 21, 129–141. [Google Scholar] [CrossRef]
- Suong, N.T.M.; Paengkoum, P.; Schonewille, J.T.; Purba, R.A.P.; Paengkoum, P. Growth performance, blood biochemical indices, rumen bacterial community, and carcass characteristics in goats fed anthocyanin-rich black cane silage. Front. Vet. Sci. 2022, 9, 880838. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Suong, N.T.M.; Paengkoum, S.; Paengkoum, P.; Liang, J.B. Iron sulfate and molasses treated anthocyanin-rich black cane silage improves growth performance, rumen fermentation, antioxidant status, and meat tenderness in goats. Asian-Australas. J. Anim. Sci. 2022. [Google Scholar] [CrossRef]
- Ma, Z.; Fang, L.; Ungerfeld, E.; Li, X.; Zhou, C.; Tan, Z.; Jiang, L.; Han, X. Supplementation of rumen-protected glucose increased the risk of disturbance of hepatic metabolism in early postpartum holstein cows. Antioxidants 2022, 11, 469. [Google Scholar] [CrossRef]
- Wu, J.; Liu, J.; Wang, D. Effects of body condition on the insulin resistance, lipid metabolism and oxidative stress of lactating dairy cows. Lipids Health Dis. 2020, 19, 56. [Google Scholar] [CrossRef] [Green Version]
- Suong, N.T.M.; Paengkoum, S.; Purba, R.A.P.; Paengkoum, P. Optimizing anthocyanin-rich black cane (Saccharum sinensis Robx.) silage for ruminants using molasses and iron sulphate: A sustainable alternative. Fermentation 2022, 8, 248. [Google Scholar] [CrossRef]
- Naseer, S.; Hussain, S.; Naeem, N.; Pervaiz, M.; Rahman, M. The phytochemistry and medicinal value of Psidium guajava (guava). Clin. Phytosci. 2018, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Purba, R.A.P.; Paengkoum, S.; Paengkoum, P. Development of a simple high-performance liquid chromatography-based method to quantify synergistic compounds and their composition in dried leaf extracts of Piper sarmentosum Robx. Separations 2021, 8, 152. [Google Scholar] [CrossRef]
- Paengkoum, P.; Traiyakun, S.; Khotsakdee, J.; Srisaikham, S.; Paengkoum, S. Evaluating the degradability of the guava and jack fruit leaves using in sacco technique and three-step techniques. Pak. J. Nutr. 2012, 11, 16–20. [Google Scholar] [CrossRef] [Green Version]
- Al-Sagheer, A.A.; Elwakeel, E.A.; Ahmed, M.G.; Sallam, S.M.A. Potential of guava leaves for mitigating methane emissions and modulating ruminal fermentation characteristics and nutrient degradability. Environ. Sci. Pollut. Res. 2018, 25, 31450–31458. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Paengkoum, P. Bioanalytical HPLC method of Piper betle L. for quantifying phenolic compound, water-soluble vitamin, and essential oil in five different solvent extracts. J. Appl. Pharm. Sci. 2019, 9, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Petrus, A.J.A. Sauropus androgynus (L.) Merrill-a potentially nutritive functional leafy-vegetable. Asian J. Chem. 2013, 25, 9425–9433. [Google Scholar] [CrossRef]
- Vijaya, A.; Manikandan; Vijaya, K.; Sampath, K.; Pushpa; Agaath, H. Phytopharmacological overview of Psidium guajava Linn. Pharmacogn. J. 2016, 8, 314–320. [Google Scholar]
- Abubakar, A.; Haque, M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Lu, S.; Taethaisong, N.; Meethip, W.; Surakhunthod, J.; Sinpru, B.; Sroichak, T.; Archa, P.; Thongpea, S.; Paengkoum, S.; Purba, R.A.P.; et al. Nutritional composition of black soldier fly larvae (Hermetia illucens L.) and its potential uses as alternative protein sources in animal diets: A review. Insects 2022, 13, 831. [Google Scholar] [CrossRef]
- Tiengtam, N.; Paengkoum, P.; Sirivoharn, S.; Phonsiri, K.; Boonanuntanasarn, S. The effects of dietary inulin and Jerusalem artichoke (Helianthus tuberosus) tuber on the growth performance, haematological, blood chemical and immune parameters of Nile tilapia (Oreochromis niloticus) fingerlings. Aquac. Res. 2017, 48, 5280–5288. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Paengkoum, P. Exploring the phytochemical profiles and antioxidant, antidiabetic, and antihemolytic properties of Sauropus androgynus dried leaf extracts for ruminant health and production. Molecules 2022, 27, 8580. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.C.; Hsieh, C.L.; Huang, K.D.; Ker, Y.B.; Chyau, C.C.; Peng, R.Y. Anticancer activity of rhamnoallosan against du-145 cells is kinetically complementary to coexisting polyphenolics in Psidium guajava budding leaves. J. Agric. Food Chem. 2009, 57, 6114–6122. [Google Scholar] [CrossRef] [PubMed]
- Adisakwattana, S.; Chantarasinlapin, P.; Thammarat, H.; Yibchok-Anun, S. A series of cinnamic acid derivatives and their inhibitory activity on intestinal α-glucosidase. J. Enzyme Inhib. Med. Chem. 2009, 24, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Deng, Q.; Xu, J.; Wang, X.; Hu, C.; Tang, H.; Huang, F. Sinapic acid and resveratrol alleviate oxidative stress with modulation of gut microbiota in high-fat diet-fed rats. Food Res. Int. 2019, 116, 1202–1211. [Google Scholar] [CrossRef]
- Proença, C.; Freitas, M.; Ribeiro, D.; Oliveira, E.F.T.; Sousa, J.L.C.; Tomé, S.M.; Ramos, M.J.; Silva, A.M.S.; Fernandes, P.A.; Fernandes, E. α-Glucosidase inhibition by flavonoids: An in vitro and in silico structure–activity relationship study. J. Enzyme Inhib. Med. Chem. 2017, 32, 1216–1228. [Google Scholar] [CrossRef] [Green Version]
- Pool, H.; Quintanar, D.; Figueroa, J.D.D.; Mano, C.M.; Bechara, J.E.H.; Godínez, L.A.; Mendoza, S. Antioxidant effects of quercetin and catechin encapsulated into PLGA nanoparticles. J. Nanomater. 2012, 2012, 145380. [Google Scholar] [CrossRef]
- Jung, U.J.; Lee, M.K.; Park, Y.B.; Jeon, S.M.; Choi, M.S. Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J. Pharmacol. Exp. Ther. 2006, 318, 476. [Google Scholar] [CrossRef] [Green Version]
- Morera, D.; MacKenzie, S.A. Is there a direct role for erythrocytes in the immune response? Vet. Res. 2011, 42, 89. [Google Scholar] [CrossRef] [Green Version]
- Chisté, R.C.; Freitas, M.; Mercadante, A.Z.; Fernandes, E. Carotenoids inhibit lipid peroxidation and hemoglobin oxidation, but not the depletion of glutathione induced by ROS in human erythrocytes. Life Sci. 2014, 99, 52–60. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Yuangklang, C.; Paengkoum, S.; Paengkoum, P. Piper oil decreases in vitro methane production with shifting ruminal fermentation in a variety of diets. Int. J. Agric. Biol. 2021, 25, 231–240. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Yuangklang, C.; Paengkoum, P. Enhanced conjugated linoleic acid and biogas production after ruminal fermentation with Piper betle L. supplementation. Ciênc. Rural 2020, 50, e20191001. [Google Scholar] [CrossRef]
- Ban, C.; Paengkoum, S.; Yang, S.; Tian, X.Z.; Thongpea, S.; Purba, R.A.P.; Paengkoum, P. Feeding meat goats mangosteen (Garcinia mangostana L.) peel rich in condensed tannins, flavonoids, and cinnamic acid improves growth performance and plasma antioxidant activity under tropical conditions. J. Appl. Anim. Res. 2022, 50, 307–315. [Google Scholar] [CrossRef]
- Umbreit, J. Methemoglobin—It’s not just blue: A concise review. Am. J. Hematol. 2007, 82, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Soman, S.; Rauf, A.A.; Indira, M.; Rajamanickam, C. Antioxidant and antiglycative potential of ethyl acetate fraction of Psidium guajava leaf extract in streptozotocin-induced diabetic rats. Plant Foods Hum. Nutr. 2010, 65, 386–391. [Google Scholar] [CrossRef] [PubMed]
- González-Romero, J.; Guerra-Hernández, E.J.; Rodríguez-Pérez, C. Chapter 19—Bioactive compounds from Moringa oleifera as promising protectors of in vivo inflammation and oxidative stress processes. In Current Advances for Development of Functional Foods Modulating Inflammation and Oxidative Stress; Hernández-Ledesma, B., Martínez-Villaluenga, C., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 379–399. [Google Scholar]
- Purba, R.A.P.; Paengkoum, S.; Yuangklang, C.; Paengkoum, P. Flavonoids and their aromatic derivatives in Piper betle powder promote in vitro methane mitigation in a variety of diets. Cienc. Agrotec. 2020, 44, e012420. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Rjeibi, I.; Ncib, S.; Saad, A.B.; Souid, S. Evaluation of nutritional values, phenolic profile, aroma compounds and biological properties of Pittosporum tobira seeds. Lipids Health Dis. 2017, 16, 206. [Google Scholar] [CrossRef] [Green Version]
- Darwish, W.S.; Khadr, A.E.S.; Kamel, M.A.E.N.; Eldaim, M.A.A.; Sayed, I.E.T.E.; Abdel-Bary, H.M.; Ullah, S.; Ghareeb, D.A. Phytochemical characterization and evaluation of biological activities of egyptian carob pods (Ceratonia siliqua L.) aqueous extract: In vitro study. Plants 2021, 10, 2626. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Yuangklang, C.; Paengkoum, S.; Paengkoum, P. Milk fatty acid composition, rumen microbial population and animal performance in response to diets rich in linoleic acid supplemented with Piper betle leaves in Saanen goats. Anim. Prod. Sci. 2022, 62, 1391–1401. [Google Scholar] [CrossRef]
- Paengkoum, S.; Petlum, A.; Purba, R.A.P.; Paengkoum, P. Protein-binding affinity of various condensed tannin molecular weights from tropical leaf peel. J. Appl. Pharm. Sci. 2021, 11, 114–120. [Google Scholar] [CrossRef]
- Suong, N.T.M.; Paengkoum, S.; Salem, A.Z.M.; Paengkoum, P.; Purba, R.A.P. Silage fermentation quality, anthocyanin stability, and in vitro rumen fermentation characteristic of ferrous sulfate heptahydrate-treated black cane (Saccharum sinensis R.). Front. Vet. Sci. 2022, 9, 896270. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.R.; Azevedo, J.; Pereira, M.J.; Carro, L.; Velazquez, E.; Peix, A.; Valentão, P.; Andrade, P.B. Inoculation of the nonlegume Capsicum annuum (L.) with Rhizobium strains. 1. Effect on bioactive compounds, antioxidant activity, and fruit ripeness. J. Agric. Food Chem. 2014, 62, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.R.; Teixeira, R. Phenolic profile and biological potential of Endopleura uchi extracts. Asian Pac. J. Trop. Med. 2015, 8, 889–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paengkoum, S.; Tatsapong, P.; Taethaisong, N.; Sorasak, T.; Purba, R.A.P.; Paengkoum, P. Empirical evaluation and prediction of protein requirements for maintenance and growth of 18–24 months old thai swamp buffaloes. Animals 2021, 11, 1405. [Google Scholar] [CrossRef] [PubMed]
- Vorlaphim, T.; Paengkoum, P.; Purba, R.A.P.; Yuangklang, C.; Paengkoum, S.; Schonewille, J.T. Treatment of rice stubble with Pleurotus ostreatus and urea improves the growth performance in slow-growing goats. Animals 2021, 11, 1053. [Google Scholar] [CrossRef]
- Paengkoum, P.; Liang, J.B.; Jelan, Z.A.; Basery, M. Utilization of steam-treated oil palm fronds in growing saanen goats: II. Supplementation with energy and urea. Asian-Australas. J. Anim. Sci. 2006, 19, 1623–1631. [Google Scholar] [CrossRef]
Organic Compound | Wavelength Detection (nm) | Concentration (mg/g on Dry Weight Basis) a | ||
---|---|---|---|---|
Methanol | Hexane | Average | ||
CS1 | ||||
Ascorbic acid | 272, 280, 310 | 0.18 ± 0.02 | non-detectable | 0.09 ± 0.01 |
Gallic acid | 272, 280, 310 | 0.46 ± 0.10 | 0.01 ± 0.001 | 0.23 ± 0.05 |
Catechin | 272, 280, 310 | 2.14 ± 0.11 | 0.01 ± 0.002 | 1.07 ± 0.06 |
Caffeic acid | 272, 280, 310 | 0.47 ± 0.04 | 0.004 ± 0.001 | 0.24 ± 0.02 |
Syringic acid | 272, 280, 310 | 0.15 ± 0.02 | 0.007 ± 0.002 | 0.08 ± 0.01 |
Rutin | 272, 280, 310 | 0.34 ± 0.09 | 0.003 ± 0.001 | 0.17 ± 0.04 |
P-coumaric acid | 272, 280, 310 | 0.90 ± 0.10 | 0.01 ± 0.001 | 0.45 ± 0.05 |
Sinapic acid | 272, 280, 310 | 1.31 ± 0.22 | non-detectable | 0.65 ± 0.11 |
Ferulic acid | 272, 280, 310 | 0.49 ± 0.10 | 0.020 ± 0.005 | 0.25 ±0.05 |
Myricetin | 272, 280, 310 | 0.33 ± 0.07 | 0.01 ± 0.002 | 0.17 ± 0.03 |
Quercetin | 272, 280, 310 | 0.17 ± 0.03 | 0.02 ± 0.002 | 0.10 ± 0.01 |
Apigenin | 272, 280, 310 | 0.43 ± 0.001 | 0.23 ± 0.053 | 0.33 ± 0.03 |
Kaempferol | 272, 280, 310 | 0.11 ± 0.01 | 0.04 ± 0.006 | 0.07 ± 0.01 |
Eugenol | 272, 280, 310 | 0.26 ± 0.06 | 0.16 ± 0.22 | 0.21 ± 0.03 |
CS2 | ||||
Ascorbic acid | 272, 280, 310 | 0.19 ± 0.05 | non-detectable | 0.09 ± 0.03 |
Gallic acid | 272, 280, 310 | 0.51 ± 0.01 | 0.006 ± 0.001 | 0.26 ± 0.01 |
Catechin | 272, 280, 310 | 2.13 ± 0.14 | 0.006 ± 0.002 | 1.07 ± 0.07 |
Caffeic acid | 272, 280, 310 | 0.45 ± 0.01 | 0.005 ± 0.001 | 0.23 ± 0.01 |
Syringic acid | 272, 280, 310 | 0.14 ± 0.01 | 0.004 ± 0.001 | 0.07 ± 0.003 |
Rutin | 272, 280, 310 | 0.38 ± 0.01 | 0.002 ± 0.001 | 0.19 ± 0.01 |
P-coumaric acid | 272, 280, 310 | 0.95 ± 0.07 | 0.01 ± 0.002 | 0.48 ± 0.04 |
Sinapic acid | 272, 280, 310 | 1.41 ± 0.04 | non-detectable | 0.70 ± 0.02 |
Ferulic acid | 272, 280, 310 | 0.52 ± 0.01 | 0.02 ± 0.004 | 0.27 ± 0.01 |
Myricetin | 272, 280, 310 | 0.32 ± 0.01 | 0.01 ± 0.001 | 0.16 ± 0.005 |
Quercetin | 272, 280, 310 | 0.18 ± 0.03 | 0.02 ± 0.01 | 0.10 ± 0.02 |
Apigenin | 272, 280, 310 | 0.43 ± 0.01 | 0.26 ± 0.06 | 0.34 ± 0.03 |
Kaempferol | 272, 280, 310 | 0.11 ± 0.03 | 0.04 ± 0.01 | 0.08 ± 0.01 |
Eugenol | 272, 280, 310 | 0.25 ± 0.05 | 0.16 ± 0.03 | 0.20 ± 0.04 |
Organic Compound | CS1 | CS2 | SEM | p Value 1 | ||
---|---|---|---|---|---|---|
Cultivated Site | Sampling Time | Interaction | ||||
Ascorbic acid | 0.10 | 0.10 | 0.017 | 0.834 | 0.589 | 0.274 |
Gallic acid | 0.36 | 0.34 | 0.105 | 0.887 | 0.980 | 0.343 |
Catechin | 1.21 | 1.24 | 0.208 | 0.829 | 0.906 | 0.677 |
Caffeic acid | 0.25 | 0.20 | 0.054 | 0.330 | 0.633 | 0.659 |
Syringic acid | 0.08 | 0.07 | 0.012 | 0.271 | 0.129 | 0.609 |
Rutin | 0.20 | 0.21 | 0.055 | 0.822 | 0.802 | 0.771 |
P-coumaric acid | 0.69 | 0.62 | 0.112 | 0.432 | 0.364 | 0.136 |
Sinapic acid | 0.78 | 0.87 | 0.126 | 0.328 | 0.585 | 0.130 |
Ferulic acid | 0.29 | 0.29 | 0.072 | 0.972 | 0.794 | 0.846 |
Myricetin | 0.24 | 0.24 | 0.057 | 0.962 | 0.492 | 0.592 |
Quercetin | 0.12 | 0.10 | 0.023 | 0.394 | 0.061 | 0.229 |
Apigenin | 0.52 | 0.44 | 0.134 | 0.390 | 0.997 | 0.949 |
Kaempferol | 0.13 | 0.08 | 0.038 | 0.187 | 0.815 | 0.389 |
Eugenol | 0.27 | 0.28 | 0.069 | 0.890 | 0.854 | 0.990 |
Total tannin | 0.36 | 0.34 | 0.105 | 0.887 | 0.980 | 0.343 |
Total flavonoid | 2.43 | 2.33 | 0.350 | 0.714 | 0.937 | 0.906 |
Total cinnamic acid | 2.13 | 2.08 | 0.252 | 0.818 | 0.741 | 0.226 |
Total essential oil | 0.27 | 0.28 | 0.069 | 0.890 | 0.854 | 0.990 |
Total vitamin | 0.10 | 0.10 | 0.017 | 0.834 | 0.589 | 0.274 |
Item | Methanolic Extract | Hexanoic Extract |
---|---|---|
DPPH• | 10.33 ± 0.008 a | 16.72 ± 0.007 b |
•NO | 39.15 ± 0.019 a | 91.71 ± 0.169 b |
O2•− | 10.35 ± 0.048 a | 18.72 ± 0.028 b |
α-Glucosidase | 8.649 ± 0.020 a | 22.82 ± 0.016 b |
Hemoglobin oxidation | 10.32 ± 0.030 a | 24.40 ± 0.884 b |
Lipid peroxidation | 24.96 ± 0.023 a | 79.92 ± 0.126 b |
Hemolysis | 10.26 ± 0.040 a | 18.14 ± 0.029 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purba, R.A.P.; Paengkoum, P. Farang (Psidium guajava L.) Dried Leaf Extracts: Phytochemical Profiles, Antioxidant, Anti-Diabetic, and Anti-Hemolytic Properties for Ruminant Health and Production. Molecules 2022, 27, 8987. https://doi.org/10.3390/molecules27248987
Purba RAP, Paengkoum P. Farang (Psidium guajava L.) Dried Leaf Extracts: Phytochemical Profiles, Antioxidant, Anti-Diabetic, and Anti-Hemolytic Properties for Ruminant Health and Production. Molecules. 2022; 27(24):8987. https://doi.org/10.3390/molecules27248987
Chicago/Turabian StylePurba, Rayudika Aprilia Patindra, and Pramote Paengkoum. 2022. "Farang (Psidium guajava L.) Dried Leaf Extracts: Phytochemical Profiles, Antioxidant, Anti-Diabetic, and Anti-Hemolytic Properties for Ruminant Health and Production" Molecules 27, no. 24: 8987. https://doi.org/10.3390/molecules27248987
APA StylePurba, R. A. P., & Paengkoum, P. (2022). Farang (Psidium guajava L.) Dried Leaf Extracts: Phytochemical Profiles, Antioxidant, Anti-Diabetic, and Anti-Hemolytic Properties for Ruminant Health and Production. Molecules, 27(24), 8987. https://doi.org/10.3390/molecules27248987