Coordination Polymers of Polyphenyl-Substituted Potassium Cyclopentadienides
Abstract
:1. Introduction
2. Results and Discussions
2.1. Synthesis and Crystallization
2.2. Crystal Structures
2.2.1. General Remarks
2.2.2. Crystal Structure of [K(1,3-Ph2C5H3)(diglyme)], 1a
2.2.3. Crystal Structure of [K(THF){1,2-Ph2-4-(2-MeOC6H4)C5H2}], 3
2.2.4. Crystal Structure of [{K(1,2,4-Ph3C5H2)(THF)2}7(hexane)(THF)3], 2b
2.2.5. Crystal Structure of [{K(diglyme)[1,2-Ph2-(4-MeOC6H4)C5H2]}6 {K(diglyme)0.25(THF)1.5[1,2-Ph2-(4-MeOC6H4)C5H2]}(diglyme)0.87], 4a
2.2.6. Crystal Structures of [K(1,2,4-Ph3C5H2)(toluene)0.5]•(toluene)0.5, 2a
2.3. Luminescent Studies
3. Materials and Methods
3.1. General Experimental Remarks
3.2. Synthesis and Crystallization
3.3. X-ray Structure Determination
3.4. Optical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kealy, T.J.; Pauson, P.L. A New Type of Organo-Iron Compound. Nature 1951, 168, 1039–1040. [Google Scholar] [CrossRef]
- Wilkinson, G.; Birmingham, J.M. Cyclopentadienyl Compounds of Sc, Y, La, Ce and Some Lanthanide Elements. J. Am. Chem. Soc. 1954, 76, 6210. [Google Scholar] [CrossRef]
- Guo, F.-S.; Day, B.M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamäki, A.; Layfield, R.A. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 2018, 362, 1400–1403. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, C.A.P.; Ortu, F.; Reta, D.; Chilton, N.F.; Mills, D.P. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 2017, 548, 439–442. [Google Scholar] [CrossRef] [Green Version]
- Edelmann, F.T. Complexes of Group 3 and Lanthanide Elements. In Comprehensive Organometallic Chemistry, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 4, pp. 1–190. [Google Scholar]
- Elschenbroich, C. Organometallics, 3rd, Completely Revised and Extended Edition, 3rd ed.; Wiley-VCH: Weinheim, Germany, 2016; p. 817. [Google Scholar]
- Lochmann, L.; Trekoval, J. Lithium-potassium exchange in alkyllithium/potassium t-pentoxide systems: XIV. Interactions of alkoxides. J. Organomet. Chem. 1987, 326, 1–7. [Google Scholar] [CrossRef]
- Panda, T.K.; Gamer, M.T.; Roesky, P.W. An Improved Synthesis of Sodium and Potassium Cyclopentadienide. Organometallics 2003, 22, 877–878. [Google Scholar] [CrossRef]
- Roitershtein, D.M.; Puntus, L.N.; Vinogradov, A.A.; Lyssenko, K.A.; Minyaev, M.E.; Dobrokhodov, M.D.; Taidakov, I.V.; Varaksina, E.A.; Churakov, A.V.; Nifant’ev, I.E. Polyphenylcyclopentadienyl Ligands as an Effective Light-Harvesting π-Bonded Antenna for Lanthanide +3 Ions. Inorg. Chem. 2018, 57, 10199–10213. [Google Scholar] [CrossRef]
- Greifenstein, L.G.; Lambert, J.B.; Nienhuis, R.J.; Drucker, G.E.; Pagani, G.A. Response of Acidity and Magnetic Resonance Properties to Aryl Substitution in Carbon Acids and Derived Carbanions: 1-Aryl-4-phenylcyclopenta-1,3-dienes. Dependence of Ionic Structure on Aryl Substitution. J. Am. Chem. Soc. 1981, 103, 7753–7761. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. 2016, B72, 171–179. [Google Scholar] [CrossRef]
- Groom, C.R.; Allen, F.H. The Cambridge Structural Database in Retrospect and Prospect. Angew. Chem. Int. Ed. Eng. 2014, 53, 662–671. [Google Scholar] [CrossRef]
- Bock, H.; Hauck, T.; Näther, C.; Havlas, Z. News from an Old Ligand: The Triple-Decker Ion Triple, Tris([18]Crown-6)-disodium Bis(tetraphenycyclopentadienide). Angew. Chem. Int. Ed. Eng. 1997, 36, 638–639. [Google Scholar] [CrossRef]
- Bock, H.; Hauck, T.; Näther, C.; Havlas, Z. Interactions in Molecular Crystals, 126 [1,2]. The Cation Solvation in Solvent-Shared and Solvent-Separated Ion Multiples of 1,2,3,4-Tetraphenylcyclopentadienyl-Sodium Salts. Z. Nat. Chem. Sci. 1997, B52, 524–534. [Google Scholar]
- Näther, C.; Hauck, T.; Bock, H. Sodium Tetraphenylcyclopentadienide Bis(dimethoxyethane). Acta Crystallogr. Sect. C 1996, C52, 570–572. [Google Scholar] [CrossRef]
- Deacon, G.B.; Jaroschik, F.; Junk, P.C.; Kelly, R.P. Bulky Group 2 Octaphenylmetallocenes and Direct Access to Calcium and Ytterbium Pseudo-Grignard Complexes. Organometallics 2015, 34, 2369–2377. [Google Scholar] [CrossRef]
- Holl, S.; Bock, H.; Gharagozloo-Hubmann, K. Tris(1,2-dimethoxyethane-O,O′)sodium pentaphenylcyclopentadienide. Acta Crystallogr. Sect. E 2001, E57, m31–m32. [Google Scholar] [CrossRef]
- Giesbrecht, G.R.; Gordon, J.C.; Clark, D.L.; Scott, B.L. Synthesis, structure and solution dynamics of lithium salts of superbulky cyclopentadienyl ligands. Dalton Trans. 2003, 3, 2658–2665. [Google Scholar] [CrossRef]
- Hierlmeier, G.; Wolf, R. Bulking up CpBIG: A Penta-Terphenyl Cyclopentadienyl Ligand. Organometallics 2022, 41, 776–784. [Google Scholar] [CrossRef]
- Schulte, Y.; Stienen, C.; Wölper, C.; Schulz, S. Synthesis and Structures of s- and p-Block Metal Complexes Containing Sterically Demanding Pentaarylcyclopentadienyl Substituents. Organometallics 2019, 38, 2381–2390. [Google Scholar] [CrossRef]
- Harder, S.; Ruspic, C. Insight in cyclopentadienyl metal complexes with superbulky ligands: The crystal structure of [CpBIGK]∞. J. Organomet. Chem. 2009, 694, 1180–1184. [Google Scholar] [CrossRef]
- Nishinaga, T.; Yamazaki, D.; Stahr, H.; Wakamiya, A.; Komatsu, K. Synthesis, Structure, and Dynamic Behavior of Cyclopentadienyl-Lithium, -Sodium, and -Potassium Annelated with Bicyclo[2.2.2]octene Units: A Systematic Study on Site Exchange of Alkali Metals on a Cyclopentadienyl Ring in Tetrahydrofuran. J. Am. Chem. Soc. 2003, 125, 7324–7335. [Google Scholar] [CrossRef]
- Ogawa, K.; Komatsu, K.; Kitagawa, T. Allyl Radical Nature of a Phenylcyclopentadienyl Radical Annelated with Two Homoadamantene Frameworks. J. Org. Chem. 2011, 76, 6095–6100. [Google Scholar] [CrossRef]
- Veinot, A.J.; Todd, A.D.K.; Masuda, J.D. A Bulky m-Terphenyl Cyclopentadienyl Ligand and Its Alkali-Metal Complexes. Angew. Chem. Int. Ed. 2017, 56, 11615–11619. [Google Scholar] [CrossRef]
- Kutlescha, K.; Venkanna, G.T.; Kempe, R. The potassium hydride mediated trimerization of imines. Chem. Commun. 2011, 47, 4183–4185. [Google Scholar] [CrossRef]
- Adas, S.K.; Balaich, G.J. Sodium naphthalenide reduction of 1,3–diphenyl–6–(tert-butyl) fulvene: Stabilizing Eu2+ with a sterically demanding ansa–ligand framework. J. Organomet. Chem. 2018, 857, 200–206. [Google Scholar] [CrossRef]
- Ellis, J.E.; Minyaev, M.E.; Nifant’ev, I.E.; Churakov, A.V. Scandium complexes with the tetraphenylethylene and anthracene dianions. Acta Crystallogr. 2018, C74, 769–781. [Google Scholar] [CrossRef]
- Spek, A.L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. Sect. C 2015, C71, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ye, J.; Xu, L.; Yang, L.; Deng, D.; Ning, G. Synthesis, crystal Structures and aggregation-induced emission enhancement of aryl-substituted cyclopentadiene derivatives. J. Lumin. 2013, 139, 28–34. [Google Scholar] [CrossRef]
- Puntus, L.N.; Zolin, V.F.; Kudryashova, V.A.; Tsaryuk, V.I.; Legendziewicz, J.; Gawryszewska, P.; Szostak, R. Charge transfer bands in the Eu3+ luminescence excitation spectra of isomeric europium pyridine-dicarboxylates. Phys. Solid State 2002, 44, 1440–1444. [Google Scholar] [CrossRef]
- Puntus, L.N.; Zolin, V.F.; Babushkina, T.A.; Kutuza, I.B. Luminescence properties of isomeric and tautomeric lanthanide pyridinedicarboxylates. J. Alloys Comp. 2004, 380, 310–314. [Google Scholar] [CrossRef]
- Schlosser, M.; Hartmann, J. Transmetalation and Double Metal Exchange: A Convenient Route to Organolithium Compounds of the Benzyl and Allyl Type. Angew. Chem. Int. Ed. Eng. 1973, 12, 508–510. [Google Scholar] [CrossRef]
- Minyaev, M.E.; Vinogradov, A.A.; Roitershtein, D.M.; Borisov, R.S.; Ananyev, I.V.; Churakov, A.V.; Nifant’ev, I.E. Catalytic activity of phenyl substituted cyclopentadienyl neodymium complexes in the ethylene oligomerization process. J. Organomet. Chem. 2016, 818, 128–136. [Google Scholar] [CrossRef]
- Hirsch, S.S.; Bailey, W.J. Base-Catalyzed Alkylation of Cyclopentadiene Rings with Alcohols and Amines. J. Org. Chem. 1978, 43, 4090–4094. [Google Scholar] [CrossRef]
- Roitershtein, D.M.; Minyaev, M.E.; Mikhailyuk, A.A.; Lyssenko, K.A.; Belyakov, P.A.; Antipin, M.Y. Lutetium complexes with the 1,3-diphenylcyclopentadienyl ligand. Syntheses and molecular structures of the complexes {(Ph2C5H3)Lu(C2Ph4)(THF)} and {(Ph2C5H3)LuCl2(THF)3}. Russ. Chem. Bull. 2007, 56, 1978–1985. [Google Scholar] [CrossRef]
- Bruker. APEX-III; Bruker AXS Inc.: Madison, WI, USA, 2019. [Google Scholar]
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef] [Green Version]
- Spek, A.L. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D 2009, D65, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Wrighton, M.S.; Ginley, D.S.; Morse, D.L. Technique for the determination of absolute emission quantum yields of powdered samples. J. Phys. Chem. 1974, 78, 2229–2233. [Google Scholar] [CrossRef]
- de Mello, J.C.; Wittmann, H.F.; Friend, R.H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 1997, 9, 230–232. [Google Scholar] [CrossRef]
- Greenham, N.C.; Samuel, D.W.; Hayes, G.R.; Phillips, R.T.; Kessener, Y.A.R.R.; Moratti, S.C.; Holmes, A.B.; Friend, R.H. Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers. Chem. Phys. Lett. 1995, 241, 89–96. [Google Scholar] [CrossRef]
K1—O1 | 2.7658(9) | K1—C1 ii | 3.1134(14) | C2—C4 | 1.4651(14) |
K1—O2 | 2.9706(12) | K1—C2 ii | 3.1290(10) | C3—C3 i | 1.400(2) |
K1—C1 | 3.0546(14) | K1—C3 ii | 3.1661(11) | C4—C9 | 1.4026(15) |
K1—C2 | 3.1252(10) | C1—C2 | 1.4175(12) | ||
K1—C3 | 3.2004(11) | C2—C3 | 1.4241(14) |
K1—C1 | 3.0910(12) | K1—C1i | 2.9694(12) | C1—C2 | 1.4332(17) |
K1—C2 | 3.2552(12) | K1—C2 i | 2.9747(12) | C1—C5 | 1.4176(17) |
K1—C3 | 3.1708(13) | K1—C3 i | 3.0513(12) | C2—C3 | 1.4130(17) |
K1—C4 | 2.9617(12) | K1—C4 i | 3.1067(12) | C3—C4 | 1.4154(18) |
K1—C5 | 2.9112(12) | K1—C5 i | 3.0385(12) | C4—C5 | 1.4204(17) |
K1—O1 | 2.9403(11) | O1—C23 | 1.3791(18) | C1—C6 | 1.4756(17) |
K1—O2 | 2.7006(13) | O1—C24 | 1.4279(17) | C2—C12 | 1.4722(17) |
C4—C18 | 1.4737(17) |
K-O1 | K-O2 | K-CCp1 | K-Cp1centroid | K-CCp2 | K-Cp2centroid | |
---|---|---|---|---|---|---|
K1 | 2.681(3) | 2.689(3) | 3.032(3)–3.113(3) * | 2.8366(15) * | 3.063(3)–3.142(3) | 2.8536(15) |
K2 | 2.702(3) | 2.685(3) | 2.995(3)–3.110(3) | 2.8092(15) | 2.965(3)–3.201(3) | 2.8328(15) |
K3 | 2.687(3) | 2.721(2) | 2.988(3)–3.156(3) | 2.8292(15) | 3.008(3)–3.142(3) | 2.8309(14) |
K4 | 2.692(2) | 2.693(3) | 2.988(3)–3.131(3) | 2.8121(14) | 2.998(3)–3.138(3) | 2.8173(15) |
K5 | 2.721(3) | 2.674(3) | 3.017(3)–3.151(3) | 2.8272(14) | 2.945(3)–3.214(3) | 2.8484(14) |
K6 | 2.677(3) | 2.744(3) | 2.989(3)–3.207(3) | 2.8539(14) | 2.997(3)–3.126(3) | 2.8191(15) |
K7 | 2.753(5) | 2.677(4) | 3.048(3)–3.137(4) | 2.8451(16) | 3.064(3)–3.153(3) | 2.8710(15) |
K-O | K-CCp1 | K-Cp1centroid | K-CCp2 | K-Cp2centroid | |
---|---|---|---|---|---|
K1 | 2.688(11)–3.379(13) | 3.053(6)–3.210(5) * | 2.889(3) * | 3.063(6)–3.117(5) | 2.852(3) |
K2 | 2.678(4)–3.037(4) | 3.058(5)–3.151(5) | 2.858(3) | 3.085(5)–3.157(5) | 2.844(2) |
K3 | 2.617(16)–3.106(18) | 3.012(5)–3.245(5) | 2.884(3) | 3.066(5)–3.181(5) | 2.862(3) |
K4 | 2.704(4)–3.060(4) | 3.056(5)–3.177(5) | 2.872(2) | 3.076(6)–3.133(5) | 2.867(3) |
K5 | 2.599(11)–2.989(13) | 2.959(6)–3.295(5) | 2.900(3) | 3.064(6)–3.296(6) | 2.947(3) |
K6 | 2.566(7)–3.118(16) | 2.984(6)–3.136(5) | 2.814(3) | 3.051(6)–3.203(6) | 2.862(3) |
K7 | 2.667(11)–3.23(2) | 2.989(5)–3.183(6) | 2.849(3) | 3.040(5)–3.123(6) | 2.831(3) |
K1–C1 | 2.9585(13) | K1–C1 i | 2.9761(13) | C1–C2 | 1.4304(16) |
K1–C2 | 3.1991(12) | K1–C2 i | 3.0151(13) | C1–C5 | 1.4129(17) |
K1–C3 | 3.3569(13) | K1–C3 i | 3.1192(13) | C2–C3 | 1.4083(17) |
K1–C4 | 3.2543(13) | K1–C4 i | 3.1556(13) | C3–C4 | 1.4154(17) |
K1–C5 | 3.0015(13) | K1–C5 i | 3.0507(13) | C4–C5 | 1.4192(18) |
K1–C6 | 3.4972(14) | K1–C11 | 3.4750(16) | C1–C6 | 1.4757(18) |
K1–C24 | 3.328(4) | K1 ii–C28 | 3.421(8) | C2–C12 | 1.4720(17) |
K1–C29 | 3.277(8) | K1 ii–C29 | 3.434(8) | C4–C18 | 1.4716(18) |
Compound | 1a | 2a | 2b | 3 | 4a |
---|---|---|---|---|---|
Formula | C23H27KO3 | C30H25K | C235H269K7O17 | C28H27KO2 | C216.70H244.64K7O29.85 |
Mr | 390.54 | 424.60 | 3639.19 | 434.59 | 514.36 |
Temperature (K) | 120(2) | 150(2) | 150(2) | 120(2) | 120(2) |
Crystal system | Orthorhombic | Monoclinic | Triclinic | Monoclinic | Monoclinic |
Space group | Pnma | C2/c | P21/c | P21/c | |
Unit cell dimensions | |||||
a (Å) | 9.9849(5) | 18.1331(9) | 18.4374(10) | 17.0562(13) | 20.1862(16) |
b (Å) | 22.9124(12) | 10.1328(5) | 24.5483(13) | 13.6321(11) | 48.268(4) |
c (Å) | 9.1867(5) | 26.6768(16) | 25.7246(14) | 10.5027(8) | 20.8018(18) |
α (°) | 90 | 90 | 68.2280(10) | 90 | 90 |
β (°) | 90 | 108.2070(10) | 72.4000(10) | 102.100(2) | 102.1869(17) |
γ (°) | 90 | 90 | 80.0790(10) | 90 | 90 |
Volume, Å3 | 2101.72(19) | 4656.2(4) | 10282.7(10) | 2387.7(3) | 19811(3) |
Z | 4 | 8 | 2 | 4 | 4 |
Calcd. density (g/cm3) | 1.234 | 1.211 | 1.175 | 1.209 | 1.207 |
µ (mm−1) | 0.272 | 0.242 | 0.210 | 0.244 | 0.221 |
F(000) | 832 | 1792 | 3896 | 920 | 7666.6 |
Θ range (°) | 1.78–29.00 | 2.33–29.99 | 0.90–25.05 | 1.93–29.00 | 1.31–26.00 |
Complentess to Θfull/Θmax | 1.000/1.000 | 0.999/0.995 | 1.000/1.000 | 1.000/1.000 | 0.998/0.997 |
Index ranges | −13 ≤ h ≤ 13 | −25 ≤ h ≤ 25 | −21 ≤ h ≤ 21 | −23 ≤ h ≤ 23 | −21 ≤ h ≤ 24 |
−31 ≤ k ≤ 31 | −14 ≤ k ≤ 14 | −29 ≤ k ≤ 29 | −18 ≤ k ≤ 18 | −59 ≤ k ≤ 59 | |
−12 ≤ l ≤ 12 | −37 ≤ l ≤ 37 | −30 ≤ l ≤ 30 | −14 ≤ l ≤ 14 | −25 ≤ l ≤ 25 | |
Reflections | |||||
measured | 40173 | 25269 | 85405 | 48850 | 140087 |
independent [Rint] | 2857 [0.0346] | 6764 [0.0303] | 36397 [0.0374] | 6342 [0.0309] | 38825 [0.1016] |
observed [I > 2σ(I)] | 2472 | 5107 | 20230 | 5264 | 19851 |
Data/Parameters/Restraints | 2857/155/0 | 6764/345/42 | 36,397/2153/1911 | 6342/345/0 | 38,825/825/2481 |
R1/wR2 [I > 2σ(I)] | 0.0313/0.0806 | 0.0452/0.1155 | 0.0660/0.1851 | 0.0403/0.1076 | 0.0966/0.1915 |
R1/wR2 (all data) | 0.0384/0.0864 | 0.0637/0.1267 | 0.1107/0.2047 | 0.0507/0.1171 | 0.1959/0.2499 |
GooF on F2 | 1.062 | 1.038 | 0.971 | 1.039 | 1.081 |
Δρmax/Δρmin (e Å−3) | 0.353/−0.198 | 0.366/−0.230 | 0.705/−0.520 | 0.848/−0.442 | 0.721/−0.566 |
CCDC number | 2206799 | 2206800 | 2206801 | 2206802 | 2206803 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komarov, P.D.; Birin, K.P.; Vinogradov, A.A.; Varaksina, E.A.; Puntus, L.N.; Lyssenko, K.A.; Churakov, A.V.; Nifant’ev, I.E.; Minyaev, M.E.; Roitershtein, D.M. Coordination Polymers of Polyphenyl-Substituted Potassium Cyclopentadienides. Molecules 2022, 27, 7725. https://doi.org/10.3390/molecules27227725
Komarov PD, Birin KP, Vinogradov AA, Varaksina EA, Puntus LN, Lyssenko KA, Churakov AV, Nifant’ev IE, Minyaev ME, Roitershtein DM. Coordination Polymers of Polyphenyl-Substituted Potassium Cyclopentadienides. Molecules. 2022; 27(22):7725. https://doi.org/10.3390/molecules27227725
Chicago/Turabian StyleKomarov, Pavel D., Kirill P. Birin, Alexander A. Vinogradov, Evgenia A. Varaksina, Lada N. Puntus, Konstantin A. Lyssenko, Andrei V. Churakov, Ilya E. Nifant’ev, Mikhail E. Minyaev, and Dmitrii M. Roitershtein. 2022. "Coordination Polymers of Polyphenyl-Substituted Potassium Cyclopentadienides" Molecules 27, no. 22: 7725. https://doi.org/10.3390/molecules27227725
APA StyleKomarov, P. D., Birin, K. P., Vinogradov, A. A., Varaksina, E. A., Puntus, L. N., Lyssenko, K. A., Churakov, A. V., Nifant’ev, I. E., Minyaev, M. E., & Roitershtein, D. M. (2022). Coordination Polymers of Polyphenyl-Substituted Potassium Cyclopentadienides. Molecules, 27(22), 7725. https://doi.org/10.3390/molecules27227725