Formulation of the Polysaccharide FucoPol into Novel Emulsified Creams with Improved Physicochemical Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. O/W Emulsions’ Optimization
2.2. Characterization of the Emulsified Formulations
2.2.1. Physicochemical Characterization
2.2.2. Rheological Assessment
2.2.3. Textural Assessment
2.3. Comparison of FucoPol-Based Formulation with Commercial Cosmetic Creams
3. Materials and Methods
3.1. Materials
3.2. Factorial Design of Experiments
3.3. Preparation of Fucopol-Based Emulsion Formulations
3.4. Formulations’ Characterization
3.4.1. Physicochemical Properties
3.4.2. Viscoelastic Properties
3.4.3. Texture Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baptista, S.; Freitas, F. Bacterial Polysaccharides: Cosmetic Applications. In Polysaccharides of Microbial Origin; Oliveira, J., Radhouani, H., Reis, R.L., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 1–42. ISBN 9783030357344. [Google Scholar]
- Semenzato, A.; Costantini, A.; Baratto, G. Green Polymers in Personal Care Products: Rheological Properties of Tamarind Seed Polysaccharide. Cosmetics 2015, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bom, S.; Fitas, M.; Martins, A.M.; Pinto, P.; Ribeiro, H.M.; Marto, J. Replacing Synthetic Ingredients by Sustainable Natural Alternatives: A Case Study Using Topical O/W Emulsions. Molecules 2020, 25, 4887. [Google Scholar] [CrossRef] [PubMed]
- Freitas, F.; Alves, V.; Reis, M.A.M. Bacterial Polysaccharides: Production and Applications in Cosmetic Industry. In Polysaccharides; Springer: Cham, Switzerland, 2014; pp. 1–24. [Google Scholar] [CrossRef]
- Nadzir, M.M.; Nurhayati, R.W.; Idris, F.N.; Nguyen, M.H. Biomedical Applications of Bacterial Exopolysaccharides: A Review. Polymers 2021, 13, 530. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Dai, L.; Wang, D.; Mao, L.; Gao, Y. Stabilization and Rheology of Concentrated Emulsions Using the Natural Emulsifiers Quillaja Saponins and Rhamnolipids. J. Agric. Food Chem. 2018, 66, 3922–3929. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Huang, G. Improving Method, Properties and Application of Polysaccharide as Emulsifier. Food Chem. 2022, 376, 131937. [Google Scholar] [CrossRef] [PubMed]
- Gu, R.; Li, C.; Shi, X.; Xiao, H. Naturally Occurring Protein/Polysaccharide Hybrid Nanoparticles for Stabilizing Oil-in-Water Pickering Emulsions and the Formation Mechanism. Food Chem. 2022, 395, 133641. [Google Scholar] [CrossRef] [PubMed]
- Santamaria-Echart, A.; Fernandes, I.P.; Silva, S.C.; Rezende, S.C.; Colucci, G.; Dias, M.M.; Barreiro, M.F. New Trends in Natural Emulsifiers and Emulsion Technology for the Food Industry. In Natural Food Additives; Prieto, M.A., Otero, P., Eds.; IntechOpen: London, UK, 2022; Chapter 6; pp. 1–31. [Google Scholar] [CrossRef]
- Dapueto, N.; Troncoso, E.; Mella, C.; Zúñiga, R.N. The Effect of Denaturation Degree of Protein on the Microstructure, Rheology and Physical Stability of Oil-in-Water (O/W) Emulsions Stabilized by Whey Protein Isolate. J. Food Eng. 2019, 263, 253–261. [Google Scholar] [CrossRef]
- Burgos-Díaz, C.; Wandersleben, T.; Marqués, A.M.; Rubilar, M. Multilayer Emulsions Stabilized by Vegetable Proteins and Polysaccharides. Curr. Opin. Colloid Interface Sci. 2016, 25, 51–57. [Google Scholar] [CrossRef]
- Caritá, A.C.; Resende de Azevedo, J.; Vinícius Buri, M.; Bolzinger, M.A.; Chevalier, Y.; Riske, K.A.; Ricci Leonardi, G. Stabilization of Vitamin C in Emulsions of Liquid Crystalline Structures. Int. J. Pharm. 2021, 592, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Melanie, H.; Taarji, N.; Zhao, Y.; Khalid, N.; Neves, M.A.; Kobayashi, I.; Tuwo, A.; Nakajima, M. Formulation and Characterization of O/W Emulsions Stabilized with Modified Seaweed Polysaccharides. Int. J. Food Sci. Technol. 2020, 55, 211–221. [Google Scholar] [CrossRef]
- Baptista, S.; Pereira, J.R.; Gil, C.V.; Torres, C.A.V.; Reis, M.A.M.; Freitas, F. Development of Olive Oil and α -Tocopherol Containing Emulsions Stabilized by FucoPol: Rheological and Textural Analyses. Polymers 2022, 14, 2349. [Google Scholar] [CrossRef] [PubMed]
- Medina-Torres, L.; Calderas, F.; Sanchez-Olivares, G.; Nuñez-Ramirez, D.M. Rheology of Sodium Polyacrylate as an Emulsifier Employed in Cosmetic Emulsions. Ind. Eng. Chem. Res. 2014, 53, 18346–18351. [Google Scholar] [CrossRef]
- Calvo, F.; Gómez, J.M.; Ricardez-Sandoval, L.; Alvarez, O. Integrated Design of Emulsified Cosmetic Products: A Review. Chem. Eng. Res. Des. 2020, 161, 279–303. [Google Scholar] [CrossRef]
- Baptista, S.; Torres, C.A.V.; Sevrin, C.; Grandfils, C.; Reis, M.A.M.; Freitas, F. Extraction of the Bacterial Extracellular Polysaccharide FucoPol by Membrane-Based Methods: Efficiency and Impact on Biopolymer Properties. Polymers 2022, 14, 390. [Google Scholar] [CrossRef]
- Freitas, F.; Alves, V.D.; Gouveia, A.R.; Pinheiro, P.; Torres, C.A.V.; Grandfils, C.; Reis, M.A.M. Controlled Production of Exopolysaccharides from Enterobacter A47 as a Function of Carbon Source with Demonstration of Their Film and Emulsifying Abilities. Appl. Biochem. Biotechnol. 2014, 172, 641–657. [Google Scholar] [CrossRef] [PubMed]
- Freitas, F.; Alves, V.D.; Torres, C.A.V.; Cruz, M.; Sousa, I.; João, M.; Ramos, A.M.; Reis, M.A.M. Fucose-Containing Exopolysaccharide Produced by the Newly Isolated Enterobacter strain A47 DSM 2313. Carbohydr. Polym. 2011, 83, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Antunes, S.A.D.C.S. Biological Conversion of Industrial By-Products/Wastes into Value-Added Bacterial Exopolysaccharides. Ph.D. Thesis, Universidade Nova de Lisboa, Lisbon, Portugal, 2018. [Google Scholar]
- Concórdio-Reis, P.; Pereira, C.V.; Batista, M.P.; Sevrin, C.; Grandfils, C.; Marques, A.C.; Fortunato, E.; Gaspar, F.B.; Matias, A.A.; Freitas, F.; et al. Silver Nanocomposites Based on the Bacterial Fucose-Rich Polysaccharide Secreted by Enterobacter A47 for Wound Dressing Applications: Synthesis, Characterization and in Vitro Bioactivity. Int. J. Biol. Macromol. 2020, 163, 959–969. [Google Scholar] [CrossRef]
- Guerreiro, B.M.; Freitas, F.; Lima, J.C.; Silva, J.C.; Reis, M.A.M. Photoprotective Effect of the Fucose-Containing Polysaccharide FucoPol. Carbohydr. Polym. 2021, 259, 117761. [Google Scholar] [CrossRef]
- Guerreiro, B.M.; Silva, J.C.; Lima, J.C.; Reis, M.A.M.; Freitas, F. Antioxidant Potential of the Bio-Based Fucose-Rich Polysaccharide FucoPol Supports Its Use in Oxidative Stress-Inducing Systems. Polymers 2021, 13, 3020. [Google Scholar] [CrossRef]
- Torres, C.A.V.; Ferreira, A.R.V.; Freitas, F.; Reis, M.A.M.; Coelhoso, I.; Sousa, I.; Alves, V.D. Rheological Studies of the Fucose-Rich Exopolysaccharide FucoPol. Int. J. Biol. Macromol. 2015, 79, 611–617. [Google Scholar] [CrossRef]
- Khuri, A.I.; Mukhopadhyay, S. Response Surface Methodology. Wiley. Interdiscip. Rev. Comput. Stat. 2010, 2, 128–149. [Google Scholar] [CrossRef]
- Jaslina, N.F.; Faujan, N.H.; Mohamad, R.; Ashari, S.E. Effect of Addition of PVA/PG to Oil-in-Water Nanoemulsion Kojic Monooleate Formulation on Droplet Size: Three-Factors Response Surface. Cosmetics 2020, 7, 73. [Google Scholar] [CrossRef]
- Yu, L.; Li, S.; Stubbs, L.P.; Lau, H.C. Effects of Salinity and pH on the Stability of Clay-Stabilized Oil-in-Water Pickering Emulsions. SPE J. 2021, 26, 1402–1421. [Google Scholar] [CrossRef]
- Dammak, M.; Hlima, H.; Smaoui, S.; Fendri, I.; Michaud, P.; Ayadi, M.A.; Abdelkafi, S. Conception of an Environmental Friendly O/W Cosmetic Emulsion from Microalgae. Environ. Sci. Pollut. Res. 2022, 29, 73896–73909. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowska, M.; Nowak, I. Lipid Nanoparticles Loaded with Selected Iridoid Glycosides as Effective Components of Hydrogel Formulations. Materials 2021, 14, 4090. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Pla, J.J.; Martín-Biosca, Y.; Sagrado, S.; Villanueva-Camañas, R.M.; Medina-Hernández, M.J. Evaluation of the PH Effect of Formulations on the Skin Permeability of Drugs by Biopartitioning Micellar Chromatography. J. Chromatogr. A 2004, 1047, 255–262. [Google Scholar] [CrossRef]
- Khan, B.A.; Akhtar, N.; Khan, H.; Braga, V.A. Development, Characterization and Antioxidant Activity of Polysorbate Based O/W Emulsion Containing Polyphenols Derived from Hippophae rhamnoides and Cassia fistula. Braz. J. Pharm. Sci. 2013, 49, 763–773. [Google Scholar] [CrossRef] [Green Version]
- Kaur, N.; Kaur, M.; Mahajan, M.; Jain, S.K. Development, Characterization and Evaluation of Nanocarrier Based Formulations of Antipsoriatic Drug “Acitretin” for Skin Targeting. J. Drug Deliv. Sci. Technol. 2020, 60, 106–112. [Google Scholar] [CrossRef]
- Masmoudi, H.; Dréau, Y.L.; Piccerelle, P.; Kister, J. The Evaluation of Cosmetic and Pharmaceutical Emulsions Aging Process Using Classical Techniques and a New Method: FTIR. Int. J. Pharm. 2005, 289, 117–131. [Google Scholar] [CrossRef]
- Afifah, S.N.; Azhar, S.; Ashari, S.E.; Salim, N. Development of a Kojic Monooleate-Enriched Oil-in-Water Nanoemulsion as a Potential Carrier for Hyperpigmentation Treatment. Int. J. Nanomed. 2018, 13, 6465–6479. [Google Scholar] [CrossRef] [Green Version]
- Kavitake, D.; Balyan, S.; Devi, P.B.; Shetty, P.H. Evaluation of Oil-in-Water (O/W) Emulsifying Properties of Galactan Exopolysaccharide from Weissella confusa KR780676. J. Food Sci. Technol. 2020, 57, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
- Kavitake, D.; Balyan, S.; Devi, P.B.; Shetty, P.H. Interface between Food Grade Flavour and Water Soluble Galactan Biopolymer to Form a Stable Water-in-Oil-in-Water Emulsion. Int. J. Biol. Macromol. 2019, 135, 445–452. [Google Scholar] [CrossRef]
- McClements, D.J. Critical Review of Techniques and Methodologies for Characterization of Emulsion Stability. Crit. Rev. Food Sci. Nutr. 2007, 47, 611–649. [Google Scholar] [CrossRef]
- Shkreli, R.; Terziu, R.; Memushaj, L.; Dhamo, K. Formulation and Stability Evaluation of a Cosmetics Emulsion Loaded with Different Concentrations of Synthetic and Natural Preservative. Polymers 2022, 5, 2349. [Google Scholar]
- Huber, P. Sensory Measurement-Evaluation and Testing of Cosmetic Products. In Cosmetic Science and Technology: Theoretical Principles and Applications; Yamashita, Y., Maibach, H., Lochhead, R., Sakamoto, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780128020548. [Google Scholar]
- Niu, F.; Han, B.; Fan, J.; Kou, M.; Zhang, B.; Feng, Z.J.; Pan, W.; Zhou, W. Characterization of Structure and Stability of Emulsions Stabilized with Cellulose Macro/Nano Particles. Carbohydr. Polym. 2018, 199, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Estanqueiro, M.; Conceição, J.; Amaral, M.H.; Sousa Lobo, J.M. Characterization, Sensorial Evaluation and Moisturizing Efficacy of Nanolipidgel Formulations. Int. J. Cosmet. Sci. 2014, 36, 159–166. [Google Scholar] [CrossRef]
- Karbstein, H.; Schubert, H. Developments in the Continuous Mechanical Production of Oil-in-Water Macro-Emulsions. Chem. Eng. Process. Process Intensif. 1995, 34, 205–211. [Google Scholar] [CrossRef]
- Venkataramani, D.; Tsulaia, A.; Amin, S. Fundamentals and Applications of Particle Stabilized Emulsions in Cosmetic Formulations. Adv. Colloid Interface Sci. 2020, 283, 102234. [Google Scholar] [CrossRef] [PubMed]
- Akbari, S.; Nour, A.H. Emulsion Types, Stability Mechanisms and Rheology: A Review. Int. J. Innov. Res. Sci. Stud. 2018, 1, 14–21. [Google Scholar] [CrossRef]
- Gullapalli, R.P.; Sheth, B.B. Influence of an Optimized Non-Ionic Emulsifier Blend on Properties of Oil-in-Water Emulsions. Eur. J. Pharm. Biopharm. 1999, 48, 233–238. [Google Scholar] [CrossRef]
- Dapčević Hadnadev, T.; Dokić, P.; Krstonošić, V.; Hadnadev, M. Influence of Oil Phase Concentration on Droplet Size Distribution and Stability of Oil-in-Water Emulsions. Eur. J. Lipid Sci. Technol. 2013, 115, 313–321. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and Zeta Potential—What They Are and What They Are Not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, E. Hydrocolloids and Emulsion Stability. In Handbook of Hydrocolloids; Phillips, G.O., Williams, P.A., Eds.; Woodhead Publishing: Sawston, UK, 2009; ISBN 9781845695873. [Google Scholar]
- Nunes, A.; Gonçalves, L.; Marto, J.; Martins, A.M.; Silva, A.N.; Pinto, P.; Martins, M.; Fraga, C.; Ribeiro, H.M. Investigations of Olive Oil Industry By-Products Extracts with Potential Skin Benefits in Topical Formulations. Pharmaceutics 2021, 13, 465. [Google Scholar] [CrossRef] [PubMed]
- Paximada, P.; Tsouko, E.; Kopsahelis, N.; Koutinas, A.A.; Mandala, I. Bacterial Cellulose as Stabilizer of o/w Emulsions. Food Hydrocoll. 2016, 53, 225–232. [Google Scholar] [CrossRef]
- Tafuro, G.; Costantini, A.; Baratto, G.; Francescato, S.; Busata, L.; Semenzato, A. Characterization of Polysaccharidic Associations for Cosmetic Use: Rheology and Texture Analysis. Cosmetics 2021, 8, 62. [Google Scholar] [CrossRef]
- Douguet, M.; Picard, C.; Savary, G.; Merlaud, F.; Loubat-bouleuc, N.; Grisel, M. Spreading Properties of Cosmetic Emollients Use of Synthetic Skin Surface to Elucidate Structural Effect. Colloids Surf. B Biointerfaces 2017, 154, 307–314. [Google Scholar] [CrossRef] [PubMed]
- César, F.C.S.; Maia Campos, P.M.B.G. Influence of Vegetable Oils in the Rheology, Texture Profile and Sensory Properties of Cosmetic Formulations Based on Organogel. Int. J. Cosmet. Sci. 2020, 42, 494–500. [Google Scholar] [CrossRef]
- Savary, G.; Grisel, M.; Picard, C. Impact of Emollients on the Spreading Properties of Cosmetic Products: A Combined Sensory and Instrumental Characterization. Colloids Surf. B Biointerfaces 2013, 102, 371–378. [Google Scholar] [CrossRef]
- Miastkowska, M.; Kulawik-Pióro, A.; Szczurek, M. Nanoemulsion Gel Formulation Optimization for Burn Wounds: Analysis of Rheological and Sensory Properties. Processes 2020, 8, 1416. [Google Scholar] [CrossRef]
- Danila, E.; Moldovan, Z.; Albu Kaya, M.G.; Ghica, M.V. Formulation and Characterization of Some Oil in Water Cosmetic Emulsions Based on Collagen Hydrolysate and Vegetable Oils Mixtures. Pure Appl. Chem. 2019, 91, 1493–1507. [Google Scholar] [CrossRef]
- Martinez, R.M.; Magalhães, W.V.; Sufi, B.D.S.; Padovani, G.; Nazato, L.I.S.; Velasco, M.V.R.; Lannes, S.C.S.; Baby, A.R. Vitamin E-Loaded Bigels and Emulsions: Physicochemical Characterization and Potential Biological Application. Colloids Surf. B Biointerfaces 2021, 201. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, P.V.; Ijeri, V.S.; Srivastava, A.K. Voltammetric Behavior of α-Tocopherol and Its Determination Using Surfactant + Ethanol + Water and Surfactant + Acetonitrile + Water Mixed Solvent Systems. Anal. Chim. Acta 2001, 441, 201–206. [Google Scholar] [CrossRef]
- Andersen, A.F. Final Report on the Safety Assessment of Cetearyl Alcohol, Cetyl Alcohol, Isostearyl Alcohol, Myristyl Alcohol, and Behenyl Alcohol. Int. J. Toxicol. 1988, 7, 359–413. [Google Scholar] [CrossRef]
- Djuris, J.; Vasiljevic, D.; Jokic, S.; Ibric, S. Application of D-Optimal Experimental Design Method to Optimize the Formulation of O/W Cosmetic Emulsions. Int. J. Cosmet. Sci. 2014, 36, 79–87. [Google Scholar] [CrossRef]
- Dastbaz, Z.; Ashrafizadeh, S.N. Preparation, Stabilization, and Characterization of Polyisobutylene Aqueous Suspension. Colloid. Polym. Sci. 2020, 298, 1335–1347. [Google Scholar] [CrossRef]
- Huynh, A.; Abou-Dahech, M.S.; Reddy, C.M.; O’Neil, G.W.; Chandler, M.; Baki, G. Alkenones, a Renewably Sourced, Biobased Wax as an SPF Booster for Organic Sunscreens. Cosmetics 2019, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Martins, M.S.; Ferreira, M.S.; Almeida, I.F.; Sousa, E. Occurrence of Allergens in Cosmetics for Sensitive Skin. Cosmetics 2022, 9, 32. [Google Scholar] [CrossRef]
- Cheng, Y.S.; Lam, K.W.; Ng, K.M.; Ko, R.K.M.; Wibowo, C. An Integrative Approach to Product Development-A Skin-Care Cream. Comput. Chem. Eng. 2009, 33, 1097–1113. [Google Scholar] [CrossRef]
- Motia, S.; Bouchikhi, B.; Llobet, E.; Bari, N. Synthesis and Characterization of a Highly Sensitive and Selective Electrochemical Sensor Based on Molecularly Imprinted Polymer with Gold Nanoparticles Modified Screen-Printed Electrode for Glycerol Determination in Wastewater. Talanta 2020, 216, 120953. [Google Scholar] [CrossRef]
- Becker, L.C.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety Assessment of Glycerin as Used in Cosmetics. Int. J. Toxicol. 2019, 38, 6S–22S. [Google Scholar] [CrossRef]
- Fiume, M.M.; Heldreth, B.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; et al. Safety Assessment of Triethanolamine and Triethanolamine-Containing Ingredients as Used in Cosmetics. Int. J. Toxicol. 2013, 32, 59S–83S. [Google Scholar] [CrossRef]
- Gupta, N.; Dubey, A.; Prasad, P.; Roy, A. Formulation and Evaluation of Herbal Fairness Cream Comprising Hydroalcoholic Extracts of Pleurotus ostreatus, Glycyrrhiza glabra and Camellia sinensis. Pharm. Biosci. J. 2015, 3, 40–45. [Google Scholar] [CrossRef]
- Isabella, E.; Pohan, T. Formulation of Oil-in-Water Cream from Mangosteen (Garcinia mangostana L.) Pericarp Extract Preserved by Gamma Irradiation. Atom Indones. 2013, 39, 136–144. [Google Scholar] [CrossRef]
- Kusumawati, L.A.I.; Dewi, E.N.A.; Xenograf, O.C.; Rifrianasari, K.; Hidayat, M.A. Tyrosinase Inhibition Assay and Skin Whitening Cream Formulation of Edamame Extract (Glycine Max). Int. J. Pharmacogn. Phytochem. Res. 2015, 7, 1167–1171. [Google Scholar]
- Soni, M.G.; Taylor, S.L.; Greenberg, N.A.; Burdock, G.A. Evaluation of the Health Aspects of Methyl Paraben: A Review of the Published Literature. Food Chem. Toxicol. 2002, 40, 1335–1373. [Google Scholar] [CrossRef]
- Matwiejczuk, N.; Galicka, A.; Brzóska, M.M. Review of the Safety of Application of Cosmetic Products Containing Parabens. J. Appl. Toxicol. 2020, 40, 176–210. [Google Scholar] [CrossRef]
- Gore, E.; Picard, C.; Savary, G. Spreading Behavior of Cosmetic Emulsions: Impact of the Oil Phase. Biotribology 2018, 16, 17–24. [Google Scholar] [CrossRef]
- Aziz, A.A.; Nordin, F.N.M.; Zakaria, Z.; Abu Bakar, N.K. A Systematic Literature Review on the Current Detection Tools for Authentication Analysis of Cosmetic Ingredients. J. Cosmet. Derm. 2022, 21, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Vidhyalakshmi, R.; Valli Nachiyar, C.; Narendra Kumar, G.; Sunkar, S.; Badsha, I. Production, Characterization and Emulsifying Property of Exopolysaccharide Produced by Marine Isolate of Pseudomonas fluorescens. Biocatal. Agric. Biotechnol. 2018, 16, 320–325. [Google Scholar] [CrossRef]
- Liebert, M.A. Final Report on the Safety Assessment of Oleic Acid, Lauric Acid, Palmitic Acid, Myristic Acid, and Stearic Acid. Int. J. Toxicol. 1987, 6, 321–401. [Google Scholar] [CrossRef]
- Berenguer, D.; Sosa, L.; Alcover, M.; Sessa, M.; Halbaut, L.; Guillén, C.; Fisa, R.; Calpena-Campmany, A.C.; Riera, C. Development and Characterization of a Semi-Solid Dosage Form of Meglumine Antimoniate for Topical Treatment of Cutaneous Leishmaniasis. Pharmaceutics 2019, 11, 613. [Google Scholar] [CrossRef] [Green Version]
- Lundstedt, T.; Seifert, E.; Abramo, L.; Thelin, B.; Nystrom, A.; Pettersen, J.; Bergman, R. Experimental Design and Optimization. Chemom. Intell. Lab. Syst. 1998, 42, 3–40. [Google Scholar] [CrossRef]
- Favero, J.S.; Santos, V.; Weiss-Angeli, V.; Gomes, L.B.; Veras, D.G.; Dani, N.; Mexias, A.S.; Bergmann, C.P. Evaluation and Characterization of Melo Bentonite Clay for Cosmetic Applications. Appl. Clay Sci. 2019, 175, 40–46. [Google Scholar] [CrossRef]
- Khan, B.A.; Akhtar, N.; Menaa, A.; Menaa, F. A Novel Cassia fistula (L.)-Based Emulsion Elicits Skin Anti-Aging Benefits in Humans. Cosmetics 2015, 2, 368–383. [Google Scholar] [CrossRef] [Green Version]
- Semenzato, A.; Costantini, A.; Meloni, M.; Maramaldi, G.; Meneghin, M.; Baratto, G. Formulating O/W Emulsions with Plant-Based Actives: A Stability Challenge for an Effective Product. Cosmetics 2018, 5, 59. [Google Scholar] [CrossRef]
Run | FucoPol, A (wt.%) | Cetyl Alcohol, B (wt.%) | Glycerin, C (wt.%) | E24 (%) | Ƞ (Pa.s) | Organoleptic Characteristics | Physical Stability | ||
---|---|---|---|---|---|---|---|---|---|
Color | Appearance | Odor | |||||||
1 | 1.50 | 0.00 | 3.00 | 95 | 206 | YW | SCV | OS | Yes |
2 | 0.75 | 0.75 | 2.00 | 100 | 20 | YW | SCV | OS | No |
3 | 1.50 | 0.00 | 1.00 | 98 | 206 | YW | SCV | OS | Yes |
4 | 1.50 | 1.50 | 3.00 | 98 | 249 | YW | SCV | OS | Yes |
5 | 0.75 | 0.75 | 2.00 | 100 | 52 | YW | SCV | OS | No |
6 | 1.50 | 1.50 | 1.00 | 98 | 244 | YW | SCV | OS | Yes |
7 | 0.00 | 0.00 | 1.00 | 0.00 | - | - | - | - | - |
8 | 0.00 | 1.50 | 3.00 | 0.00 | - | - | - | - | - |
9 | 0.00 | 1.50 | 1.00 | 0.00 | - | - | - | - | - |
10 | 0.75 | 0.75 | 2.00 | 100 | 21 | YW | SCV | OS | No |
11 | 0.00 | 0.00 | 3.00 | 0.00 | - | - | - | - | - |
Time (Days) | A | B | C | ||||||
---|---|---|---|---|---|---|---|---|---|
Ƞ (Pa.s) | G′ (Pa) | G″ (Pa) | Ƞ (Pa.s) | G′ (Pa) | G″ (Pa) | Ƞ (Pa.s) | G′ (Pa) | G″ (Pa) | |
1 | 8.72 | 64.8 | 36.6 | 19.5 | 94.6 | 55.7 | 34.3 | 137 | 58.8 |
3 | 7.91 | 41.8 | 29.8 | 19.7 | 53.2 | 38.0 | 27.2 | 87.1 | 43.4 |
7 | 7.97 | 23.8 | 22.8 | 19.6 | 78.8 | 48.5 | 30.6 | 151 | 59.2 |
30 | 6.42 | 21.1 | 19.3 | 16.0 | 58.2 | 36.5 | 23.7 | 82.5 | 40.1 |
60 | 6.10 | 11.8 | 14.9 | 15.5 | 35.1 | 28.2 | 22.4 | 56.2 | 35.2 |
Time (Days) | D | E | F | ||||||
Ƞ (Pa.s) | G′ (Pa) | G″ (Pa) | Ƞ (Pa.s) | G′ (Pa) | G″ (Pa) | Ƞ (Pa.s) | G′ (Pa) | G″ (Pa) | |
1 | 8.75 | 949 | 249 | 59.6 | 1329 | 94.2 | 6.19 | 286 | 75.6 |
3 | 8.30 | 708 | 198 | 54.9 | 1219 | 84.7 | 8.72 | 267 | 72.7 |
7 | 8.97 | 573 | 146 | 54.0 | 1349 | 97.7 | 7.51 | 269 | 74.6 |
30 | 6.98 | 492 | 188 | 36.0 | 1217 | 98.9 | 5.83 | 284 | 92.4 |
60 | 6.57 | 483 | 125 | 38.8 | 1262 | 93.9 | 7.69 | 269 | 80.1 |
Formulation | Time (Days) | Textural Parameters | |||
---|---|---|---|---|---|
Firmness (N) | Consistency (mJ) | Cohesiveness (N) | Adhesiveness (mJ) | ||
A | 1 | 0.064 | 0.261 | 0.741 | 0.244 |
60 | 0.029 | 0.119 | 0.970 | 0.133 | |
B | 1 | 0.162 | 0.505 | 0.925 | 0.467 |
60 | 0.088 | 0.198 | 0.921 | 0.266 | |
C | 1 | 0.194 | 0.387 | 1.034 | 0.387 |
60 | 0.047 | 0.160 | 1.004 | 0.129 | |
D | 1 | 0.115 | 0.445 | 0.931 | 0.338 |
60 | 0.067 | 0.225 | 0.891 | 0.169 | |
E | 1 | 0.136 | 0.504 | 0.852 | 0.499 |
60 | 0.086 | 0.231 | 1.087 | 0.188 | |
F | 1 | 0.097 | 0.319 | 0.976 | 0.317 |
60 | 0.049 | 0.273 | 0.844 | 0.126 |
Product | pH | Conductivity (µS/cm) | Droplet Size (µm) | Rheological Parameters | Textural Parameters | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ƞ (Pa.s) | G′ (Pa) | G″ (Pa) | Firmness (N) | Consistency (mJ) | Cohesiveness (N) | Adhesiveness (mJ) | ||||
Cien® Body lotion | 5.78 | 739 | 15.9 | 12.1 | 800 | 156 | 0.056 | 0.329 | 0.832 | 0.273 |
Uriage® Pruriced | 7.95 | 727 | 13.5 | 14.2 | 25.1 | 9.27 | 0.062 | 0.224 | 0.980 | 0.245 |
Shiseido® Primer | 8.17 | 257 | 22.0 | 6.93 | 207 | 57.6 | 0.068 | 0.198 | 0.897 | 0.193 |
Sephora® Hand cream | 8.18 | 105 | 27.9 | 73.4 | 5575 | 625 | 0.190 | 0.699 | 0.931 | 0.471 |
Uriage® Xémose | 6.68 | 510 | 19.0 | 25.9 | 25.1 | 9.27 | 0.130 | 0.543 | 1.049 | 0.449 |
Formulation C | 6.30 | 138 | 24.2 | 23.7 | 203 | 68.7 | 0.047 | 0.117 | 0.943 | 0.192 |
Independent Variables | Coded Variables | Factor Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
FucoPol (wt.%) Cetyl alcohol (wt.%) | A | 0.00 | 0.75 | 1.50 |
B | 0.00 | 0.75 | 1.50 | |
Glycerin (wt.%) | C | 1.00 | 2.00 | 3.00 |
INCI Name | Function | Concentration (wt.%) | |||||
---|---|---|---|---|---|---|---|
Aqueous Phase | A | B | C | D | E | F | |
Water | Solvent | q.s. | q.s. | q.s. | q.s. | q.s. | q.s. |
FucoPol | Emulsifier agent | 1.5 | 1.5 | 1.5 | - | - | - |
Sepigel® 305 | Emulsifier agent | - | - | - | - | 1.5 | - |
Glycerin | Emollient/humectant | - | - | 3 | 3 | 3 | 3 |
Methyl paraben | Preservative | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
TEA | pH regulator | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Oil phase | |||||||
Cetyl alcohol | Co-emulsifier agent | - | 1.5 | 1.5 | 1.5 | - | 1.5 |
Stearic acid | Emulsifier agent | - | - | - | 5 | 1.5 | 1.5 |
Olea europaea (Olive) fruit oil | Oil, dispersed phase | 30 | 30 | 30 | 30 | 30 | 30 |
α-tocopherol | Antioxidant | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baptista, S.; Freitas, F. Formulation of the Polysaccharide FucoPol into Novel Emulsified Creams with Improved Physicochemical Properties. Molecules 2022, 27, 7759. https://doi.org/10.3390/molecules27227759
Baptista S, Freitas F. Formulation of the Polysaccharide FucoPol into Novel Emulsified Creams with Improved Physicochemical Properties. Molecules. 2022; 27(22):7759. https://doi.org/10.3390/molecules27227759
Chicago/Turabian StyleBaptista, Sílvia, and Filomena Freitas. 2022. "Formulation of the Polysaccharide FucoPol into Novel Emulsified Creams with Improved Physicochemical Properties" Molecules 27, no. 22: 7759. https://doi.org/10.3390/molecules27227759
APA StyleBaptista, S., & Freitas, F. (2022). Formulation of the Polysaccharide FucoPol into Novel Emulsified Creams with Improved Physicochemical Properties. Molecules, 27(22), 7759. https://doi.org/10.3390/molecules27227759