An Efficient UPLC-MS/MS Method for the Determination of Pyrroloquinoline Quinone in Rat Plasma and Its Application to a Toxicokinetic Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Development of Method
2.1.1. Conditions of Mass Spectrometry
2.1.2. Conditions of Liquid Chromatography
2.2. Method Validation
2.2.1. Selectivity
2.2.2. Linearity and Carry-over
2.2.3. Precision and Accuracy
2.2.4. Matrix Effect and Recovery
2.2.5. Stability
2.2.6. Dilution Integrity
2.3. Application to Toxicokinetic Study
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instruments
3.3. LC-MS/MS Conditions
3.4. Preparation of Calibration Standard and Quality Control Solution
3.5. Sample Preparation
3.6. Method Validation
3.6.1. Selectivity
3.6.2. Linearity and Carry-Over
3.6.3. Precision and Accuracy
3.6.4. Matrix Effect and Recovery
3.6.5. Stability
3.6.6. Dilution Integrity
3.7. Animals
3.8. Toxicokinetic Study
3.9. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dai, X.; Yi, X.; Wang, Y.; Xia, W.; Tao, J.; Wu, J.; Miao, D.; Chen, L. PQQ Dietary Supplementation Prevents Alkylating Agent-Induced Ovarian Dysfunction in Mice. Front. Endocrinol. 2022, 13, 781404. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, X.; Wang, W.; Song, Y.; Jia, X. A subchronic oral toxicity study on pyrroloquinoline quinone (PQQ) disodium salt in rats. Food. Chem. Toxicol. 2015, 75, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Akagawa, M.; Nakano, M.; Ikemoto, K. Recent progress in studies on the health benefits of pyrroloquinoline quinone. Biosci. Biotechnol. Biochem. 2016, 80, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhao, M.; Lin, Z. Pyrroloquinoline quinone (PQQ) alleviated sepsis-induced acute liver injury, inflammation, oxidative stress and cell apoptosis by downregulating CUL3 expression. Bioengineered 2021, 12, 2459–2468. [Google Scholar] [CrossRef]
- Akagawa, M.; Minematsu, K.; Shibata, T.; Kondo, T.; Ishii, T.; Uchida, K. Identification of lactate dehydrogenase as a mammalian pyrroloquinoline quinone (PQQ)-binding protein. Sci. Rep. 2016, 6, 26723. [Google Scholar] [CrossRef]
- Kasahara, T.; Kato, T. Nutritional biochemistry: A new redox-cofactor vitamin for mammals. Nature 2003, 422, 832. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Kar, A. Pyrroloquinoline quinone (PQQ) has potential to ameliorate streptozotocin-induced diabetes mellitus and oxidative stress in mice: A histopathological and biochemical study. Chem.-Biol. Interact. 2015, 240, 278–290. [Google Scholar] [CrossRef]
- Yang, C.; Yu, L.; Kong, L.; Ma, R.; Zhang, J.; Zhu, Q.; Zhu, J.; Hao, D. Pyrroloquinoline quinone (PQQ) inhibits lipopolysaccharide induced inflammation in part via downregulated NF-kappaB and p38/JNK activation in microglial and attenuates microglia activation in lipopolysaccharide treatment mice. PLoS ONE 2014, 9, e109502. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, N.; Miao, D. Biological effects of pyrroloquinoline quinone on liver damage in Bmi-1 knockout mice. Exp. Ther. Med. 2015, 10, 451–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.Q.; Yao, Z.W.; Peng, Y.; Mao, S.S.; Xu, D.; Qin, X.F.; Zhang, R.J. PQQ ameliorates D-galactose induced cognitive impairments by reducing glutamate neurotoxicity via the GSK-3beta/Akt signaling pathway in mouse. Sci. Rep. 2018, 8, 8894. [Google Scholar] [CrossRef]
- Nakano, M.; Takahashi, H.; Koura, S.; Chung, C.; Tafazoli, S.; Roberts, A. Acute and subchronic toxicity studies of pyrroloquinoline quinone (PQQ) disodium salt (BioPQQ) in rats. Regul. Toxicol. Pharmacol. 2014, 70, 107–121. [Google Scholar] [CrossRef]
- Turck, D.; Bresson, J.L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of pyrroloquinoline quinone disodium salt as a novel food pursuant to Regulation (EC)No 258/97. Efsa J. 2017, 15, e05058. [Google Scholar]
- Lin, L.H.; Duan, M.Y.; Chen, G.; You, X.H.; Liu, C.L.; Guo, X.J. An LC-MS/MS method for determination of novel fungicide pyraoxystrobin in rat plasma and tissues: Toxicokinetics and tissue distribution study. Talanta 2015, 136, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Yu, W.; Pang, Y.; Sun, C.; Meng, Q.; Li, X.; Guo, X. Validation of an LC-MS/MS method for the quantitative determination of a novel fungicide: Pyraoxystrobin in rat plasma and its application to a toxicokinetics study. Anal. Bioanal. Chem. 2014, 406, 5521–5526. [Google Scholar] [CrossRef] [PubMed]
- Noji, N.; Nakamura, T.; Kitahata, N.; Taguchi, K.; Kudo, T.; Yoshida, S.; Tsujimoto, M.; Sugiyama, T.; Asami, T. Simple and sensitive method for pyrroloquinoline quinone (PQQ) analysis in various foods using liquid chromatography/electrospray-lonization tandem mass spectrometry. J. Agric. Food Chem. 2007, 55, 7258–7263. [Google Scholar] [CrossRef] [PubMed]
- Kato, C.; Kawai, E.; Shimizu, N.; Mikekado, T.; Kimura, F.; Miyazawa, T.; Nakagawa, K. Determination of pyrroloquinoline quinone by enzymatic and LC-MS/MS methods to clarify its levels in foods. PLoS ONE 2018, 13, e0209700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.Q.; Qin, X.F.; Cao, G.X.; Zhang, J.K. Ion-Pair LC Analysis of Pyrroloquinoline Quinone in Neurotransmitter Amino Acid Incubations: Determination of Chemical Kinetics. Chromatographia 2012, 75, 521–526. [Google Scholar] [CrossRef]
- Fukuda, M.; El-Maghrabey, M.H.; Kishikawa, N.; Ikemoto, K.; Kuroda, N. Ultrasensitive determination of pyrroloquinoline quinone in human plasma by HPLC with chemiluminescence detection using the redox cycle of quinone. J. Pharm. Biomed. Anal. 2017, 145, 814–820. [Google Scholar] [CrossRef]
- Smith, A.R.; Kirchhoff, J.R.; Zhang, Z.; Tillekeratne, L.M.; Hudson, R.A. Separation of the enzyme cofactor pyrroloquinoline quinone and three isomeric analogues by capillary electrophoresis with ion-pairing media. J. Chromatogr. A 2000, 876, 193–199. [Google Scholar] [CrossRef]
- Kumazawa, T.; Seno, H.; Urakami, T.; Matsumoto, T.; Suzuki, O. Trace levels of pyrroloquinoline quinone in human and rat samples detected by gas chromatography/mass spectrometry. Biochim. Biophys. Acta 1992, 1156, 62–66. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Z.; Liu, W.; Jin, H.; Zhang, J. Toxicokinetics of strychnine and brucine after the oral administration of Biqi capsule to rats by RRLC-MS/MS. Biomed. Chromatogr. 2018, 32, e4117. [Google Scholar] [CrossRef]
- Jin, Y.; Li, Y.; Uddin, M.E.; Sparreboom, A.; Hu, S. Rapid quantification of vincristine in mouse plasma using ESI-LC-MS/MS: Application to pharmacokinetic studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021, 1168, 122591. [Google Scholar] [CrossRef]
- Ping, L.; Xu, B.; Zhou, Q.; Hong, Y.; Sun, Q.; Wang, J.; Zhu, D. Comparative Pharmacokinetic Study of Forchlorfenuron in Adult and Juvenile Rats. Molecules 2021, 26, 4276. [Google Scholar] [CrossRef]
- Li, C.; Wei, F.; Muhammad, S.; Yang, G.; Wang, S.; Liu, X. A cost-effective LC-MS/MS method for identification and quantification of alpha-amanitin in rat plasma: Application to toxicokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1064, 36–39. [Google Scholar] [CrossRef]
Compound | Precursor Ion (m/z) | Product Ion (m/z) | Capillary Voltage (kV) | Collision Energy (eV) | Cone Voltage (V) |
---|---|---|---|---|---|
PQQ | 328.99 | 197.05 | 3.00 | 26 | 31 |
Levofloxacin impurity 27 (IS) | 280.04 | 195.04 | 3.00 | 18 | 34 |
Concentration of PQQ (ng/mL) | Intra-Day | Inter-Day | ||||
---|---|---|---|---|---|---|
Mean ± SD | Precision (RSD%) | Accuracy (RE%) | Mean ± SD | Precision (RSD%) | Accuracy (RE%) | |
10 | 10.50 ± 1.13 | 10.73 | 5.02 | 10.73 ± 0.32 | 2.98 | 7.30 |
30 | 30.34 ± 2.03 | 6.69 | 1.13 | 28.33 ± 2.30 | 8.13 | −5.57 |
500 | 468.40 ± 10.43 | 2.23 | −6.32 | 461.33 ± 11.55 | 2.50 | −7.73 |
8000 | 7972.00 ± 225.54 | 2.83 | −0.35 | 8079.33 ± 144.78 | 1.79 | 0.99 |
Concentration of PQQ (ng/mL) | Recovery | Matrix Effect (%) | ||
---|---|---|---|---|
Average (%) | RSD% | Average (%) | RSD% | |
30 | 65.26 ± 3.36 | 5.14 | 90.73 ± 3.72 | 4.10 |
500 | 72.47 ± 3.08 | 4.24 | / | / |
8000 | 73.26 ± 1.83 | 2.50 | 100.73 ± 1.38 | 1.37 |
Concentration of PQQ (ng/mL) | Calculated Concentration (ng/mL) | RSD% | RE% | |
---|---|---|---|---|
Processed samples at 2–8 °C 19.5 h | 30 | 28.80 ± 0.60 | 2.08 | −4.00 |
8000 | 9053 ± 638.46 | 7.05 | 13.17 | |
Processed samples at room temperature 19.5 h | 30 | 27.60 ± 0.72 | 2.61 | −8.00 |
8000 | 8427 ± 161.66 | 1.92 | 5.33 | |
Plasma samples at room temperature 19.5 h | 30 | 32.23 ± 1.05 | 3.26 | 7.44 |
8000 | 8050 ± 141.07 | 1.75 | 0.63 | |
Plasma samples at −80 °C 106 days | 30 | 30.33 ± 2.59 | 8.54 | 1.11 |
8000 | 8810 ± 316.07 | 3.59 | 10.13 | |
Three freeze—thaw cycles (−80 °C) | 30 | 28.87 ± 4.19 | 14.51 | −3.78 |
8000 | 8707 ± 156.31 | 1.80 | 8.83 |
Concentration of PQQ (ng/mL) | Calculated Concentration(ng/mL) | RSD% | RE% |
---|---|---|---|
8000 | 8146 ± 193.98 | 2.38 | 1.83 |
Dose | Sex | Cmax | Tmax | t1/2 | AUC(0-t) | Vz/F | CLz/F | MRT | |
---|---|---|---|---|---|---|---|---|---|
mg/kg | Male/Female | μg/L | h | h | μg/L×h | L/kg | L/h/kg | h | |
D1 | 250 | Male | 111.67 ± 7.64 | 1.67 ± 0.58 | 2.44 ± 0.19 | 464.81 ± 24.04 | 1667.14 ± 180.20 | 473.47 ± 16.44 | 2.87 ± 0.11 |
Female | 209.00 ± 13.45 | 1.33 ± 0.58 | 1.92 ± 0.15 | 759.68 ± 199.68 | 889.45 ± 220.83 | 324.83 ± 99.25 | 2.51 ± 0.31 | ||
Average | 160.33 ± 54.20 | 1.50 ± 0.55 | 2.18 ± 0.32 | 612.24 ± 205.58 | 1278.29 ± 462.53 | 399.15 ± 103.32 | 2.69 ± 0.28 | ||
500 | Male | 169.67 ± 44.47 | 2.00 ± 1.73 | 3.22 ± 0.78 | 818.35 ± 140.65 | 2444.08 ± 727.56 | 519.94 ± 47.08 | 3.56 ± 0.23 | |
Female | 353.67 ± 114.69 | 0.58 ± 0.38 | 3.29 ± 1.40 | 1393.19 ± 433.09 | 1405.49 ± 212.89 | 331.96 ± 140.57 | 3.20 ± 0.36 | ||
Average | 261.67 ± 127.32 | 1.29 ± 1.36 | 3.26 ± 1.01 | 1105.77 ± 426.70 | 1924.78 ± 743.96 | 425.95 ± 139.25 | 3.38 ± 0.33 | ||
1000 | Male | 226.33 ± 82.85 | 4.33 ± 3.51 | 13.20 ± 12.85 | 3157.43 ± 1335.85 | 3728.86 ± 2542.34 | 236.44 ± 89.85 | 8.72 ± 3.02 | |
Female | 723.00 ± 480.63 | 5.33 ± 2.31 | 7.26 ± 2.25 | 7266.55 ± 4018.11 | 1621.20 ± 987.94 | 176.56 ± 143.33 | 7.64 ± 1.12 | ||
Average | 474.67 ± 411.28 | 4.83 ± 2.71 | 10.23 ± 8.87 | 5211.99 ± 3498.19 | 2675.03 ± 2075.69 | 206.50 ± 111.90 | 8.18 ± 2.12 | ||
D28 | 250 | Male | 234.00 ± 166.14 | 1.00 ± 0.00 | 2.50 ± 0.62 | 707.05 ± 126.78 | 1171.60 ± 369.75 | 323.76 ± 45.49 | 2.64 ± 0.45 |
Female | 241.67 ± 29.74 | 1.00 ± 0.00 | 2.66 ± 1.77 | 985.88 ± 476.52 | 799.02 ± 103.99 | 266.25 ± 138.29 | 2.70 ± 0.64 | ||
Average | 237.83 ± 106.83 | 1.00 ± 0.00 | 2.58 ± 1.19 | 846.47 ± 347.25 | 985.31 ± 317.27 | 295.01 ± 97.31 | 2.67 ± 0.49 | ||
500 | Male | 448.67 ± 54.64 | 0.58 ± 0.38 | 10.61 ± 7.41 | 2552.09 ± 277.59 | 2678.86 ± 1440.52 | 188.76 ± 33.14 | 11.22 ± 2.14 | |
Female | 447.00 ± 49.87 | 1.83 ± 1.89 | 4.31 ± 1.88 | 3810.28 ± 2001.67 | 820.75 ± 209.34 | 156.69 ± 101.20 | 5.21 ± 2.36 | ||
Average | 447.83 ± 46.79 | 1.21 ± 1.40 | 7.46 ± 5.94 | 3181.18 ± 1452.03 | 1749.81 ± 1372.35 | 172.73 ± 69.60 | 8.22 ± 3.86 | ||
1000 | Male | 1053.00 ± 240.58 | 5.33 ± 2.31 | 7.39 ± 2.73 | 11,444.24 ± 2381.41 | 903.29 ± 210.51 | 88.76 ± 17.45 | 8.81 ± 0.21 | |
Female | 823.33 ± 250.10 | 4.00 ± 0.00 | 10.09 ± 2.29 | 10,055.09 ± 2936.18 | 1360.58 ± 181.32 | 97.32 ± 30.34 | 10.13 ± 2.48 | ||
Average | 938.17 ± 252.97 | 4.67 ± 1.63 | 8.74 ± 2.70 | 10,749.67 ± 2509.15 | 1131.94 ± 305.96 | 93.04 ± 22.63 | 9.47 ± 1.73 | ||
D28/D21 | 250 | Average | 1.48 | / | / | 1.38 | / | / | / |
500 | Average | 1.71 | / | / | 2.88 | / | / | / | |
1000 | Average | 1.98 | / | / | 2.06 | / | / | / | |
D1 | 250 | Female/male | 1.87 | / | / | 1.63 | / | / | / |
500 | 2.08 | / | / | 1.70 | / | / | / | ||
1000 | 3.19 | / | / | 2.30 | / | / | / | ||
D28 | 250 | Female/male | 1.03 | / | / | 1.39 | / | / | / |
500 | 1.00 | / | / | 1.49 | / | / | / | ||
1000 | 0.78 | / | / | 0.88 | / | / | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Hong, Y.; Yang, Z.; He, P.; Chen, C.; Wang, J.; Weng, Q. An Efficient UPLC-MS/MS Method for the Determination of Pyrroloquinoline Quinone in Rat Plasma and Its Application to a Toxicokinetic Study. Molecules 2022, 27, 7947. https://doi.org/10.3390/molecules27227947
Sun Q, Hong Y, Yang Z, He P, Chen C, Wang J, Weng Q. An Efficient UPLC-MS/MS Method for the Determination of Pyrroloquinoline Quinone in Rat Plasma and Its Application to a Toxicokinetic Study. Molecules. 2022; 27(22):7947. https://doi.org/10.3390/molecules27227947
Chicago/Turabian StyleSun, Qingmei, Yawen Hong, Zhaoxu Yang, Peixia He, Chao Chen, Jincheng Wang, and Qinjie Weng. 2022. "An Efficient UPLC-MS/MS Method for the Determination of Pyrroloquinoline Quinone in Rat Plasma and Its Application to a Toxicokinetic Study" Molecules 27, no. 22: 7947. https://doi.org/10.3390/molecules27227947
APA StyleSun, Q., Hong, Y., Yang, Z., He, P., Chen, C., Wang, J., & Weng, Q. (2022). An Efficient UPLC-MS/MS Method for the Determination of Pyrroloquinoline Quinone in Rat Plasma and Its Application to a Toxicokinetic Study. Molecules, 27(22), 7947. https://doi.org/10.3390/molecules27227947