Red Flags and Adversities on the Way to the Robust CE-ICP-MS/MS Quantitative Monitoring of Self-Synthesized Magnetic Iron Oxide(II, III)-Based Nanoparticle Interactions with Human Serum Proteins
Abstract
:1. Introduction
2. Results and Discussion
2.1. ICP-MS/MS Detection Method Optimization
2.2. CE Separation Method Optimization
2.3. Evaluation of the Optimized Method
2.4. Investigation of Synthesized SPIONs
2.5. Interactions of SPIONs with Albumin and Transferrin
3. Materials and Methods
3.1. Chemicals
3.2. SPIONs Synthesis
3.3. Sample Preparation
3.4. CE-ICP-MS/MS Instrumentation
3.5. ζ-Potential Measurement
3.6. Morphology Characterization of Synthesized SPIONs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 17 November 2022).
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Gavas, S.; Quazi, S.; Karpiński, T.M. Nanoparticles for Cancer Therapy: Current Progress and Challenges. Nanoscale Res. Lett. 2021, 16, 173. [Google Scholar] [CrossRef]
- Bai, R.G.; Muthoosamy, K.; Manickam, S. Chapter 12–Nanomedicine in Theranostics. In Nanotechnology Applications for Tissue Engineering; Thomas, S., Grohens, Y., Nina, N., Eds.; William Andrew Publishing: Oxford, UK, 2015; pp. 195–213. [Google Scholar]
- Mauro, N.; Utzeri, M.A.; Varvarà, P.; Cavallaro, G. Functionalization of Metal and Carbon Nanoparticles with Potential in Cancer Theranostics. Molecules 2021, 26, 3085. [Google Scholar] [CrossRef]
- Soares, P.I.P.; Romão, J.; Matos, R.; Silva, J.C.; Borges, J.P. Design and Engineering of Magneto-Responsive Devices for Cancer Theranostics: Nano to Macro Perspective. Prog. Mater. Sci. 2021, 116, 100742. [Google Scholar] [CrossRef]
- Maity, D.; Kandasamy, G.; Sudame, A. Superparamagnetic Iron Oxide Nanoparticles for Cancer Theranostic Applications. In Nanotheranostics; Springer International Publishing: Cham, Switzerland, 2019; pp. 245–276. [Google Scholar]
- Janko, C.; Ratschker, T.; Nguyen, K.; Zschiesche, L.; Tietze, R.; Lyer, S.; Alexiou, C. Functionalized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as Platform for the Targeted Multimodal Tumor Therapy. Front. Oncol. 2019, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Khizar, S.; Ahmad, N.M.; Zine, N.; Jaffrezic-Renault, N.; Errachid-el-salhi, A.; Elaissari, A. Magnetic Nanoparticles: From Synthesis to Theranostic Applications. ACS Appl. Nano Mater. 2021, 4, 4284–4306. [Google Scholar] [CrossRef]
- Ali, A.; Zafar, H.; Zia, M.; ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, Characterization, Applications, and Challenges of Iron Oxide Nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67. [Google Scholar] [CrossRef] [Green Version]
- Samrot, A.V.; Sahithya, C.S.; Selvarani, A.J.; Purayil, S.K.; Ponnaiah, P. A Review on Synthesis, Characterization and Potential Biological Applications of Superparamagnetic Iron Oxide Nanoparticles. Curr. Res. Green Sustain. Chem. 2021, 4, 100042. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, M.; Singh, A. Synthesis and Characterization of Iron Oxide Nanoparticles (Fe2O3, Fe3O4): A Brief Review. Contemp. Phys. 2021, 62, 144–164. [Google Scholar] [CrossRef]
- Timerbaev, A.R. How Well Can We Characterize Human Serum Transformations of Magnetic Nanoparticles? Analyst 2020, 145, 1103–1109. [Google Scholar] [CrossRef]
- Stepien, G.; Moros, M.; Pérez-Hernández, M.; Monge, M.; Gutiérrez, L.; Fratila, R.M.; de Las Heras, M.; Menao Guillén, S.; Puente Lanzarote, J.J.; Solans, C.; et al. Effect of Surface Chemistry and Associated Protein Corona on the Long-Term Biodegradation of Iron Oxide Nanoparticles In Vivo. ACS Appl. Mater. Interfaces 2018, 10, 4548–4560. [Google Scholar] [CrossRef] [Green Version]
- González-García, L.E.; MacGregor, M.N.; Visalakshan, R.M.; Lazarian, A.; Cavallaro, A.A.; Morsbach, S.; Mierczynska-Vasilev, A.; Mailänder, V.; Landfester, K.; Vasilev, K. Nanoparticles Surface Chemistry Influence on Protein Corona Composition and Inflammatory Responses. Nanomaterials 2022, 12, 682. [Google Scholar] [CrossRef]
- Vogt, C.; Pernemalm, M.; Kohonen, P.; Laurent, S.; Hultenby, K.; Vahter, M.; Lehtiö, J.; Toprak, M.S.; Fadeel, B. Proteomics Analysis Reveals Distinct Corona Composition on Magnetic Nanoparticles with Different Surface Coatings: Implications for Interactions with Primary Human Macrophages. PLoS ONE 2015, 10, e0129008. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Aslanian, A.; Yates, J.R. Mass Spectrometry for Proteomics. Curr. Opin. Chem. Biol. 2008, 12, 483–490. [Google Scholar] [CrossRef] [Green Version]
- Kruszewska, J.; Zajda, J.; Matczuk, M. How to Effectively Prepare a Sample for Bottom-up Proteomic Analysis of Nanoparticle Protein Corona? A Critical Review. Talanta 2021, 226, 122153. [Google Scholar] [CrossRef]
- Yu, S.-M.; Laromaine, A.; Roig, A. Enhanced Stability of Superparamagnetic Iron Oxide Nanoparticles in Biological Media Using a PH Adjusted-BSA Adsorption Protocol. J. Nanoparticle Res. 2014, 16, 2484. [Google Scholar] [CrossRef] [Green Version]
- Sikorski, J.; Matczuk, M.; Kamińska, A.; Kruszewska, J.; Trzaskowski, M.; Timerbaev, A.R.; Jarosz, M. Protein-Mediated Transformations of Superparamagnetic Nanoparticles Evidenced by Single-Particle Inductively Coupled Plasma Tandem Mass Spectrometry: A Disaggregation Phenomenon. Int. J. Mol. Sci. 2022, 23, 1088. [Google Scholar] [CrossRef]
- Kuznetsova, O.V.; Mokhodoeva, O.B.; Maksimova, V.V.; Dzhenloda, R.K.; Jarosz, M.; Shkinev, V.M.; Timerbaev, A.R. High-Resolution ICP-MS Approach for Characterization of Magnetic Nanoparticles for Biomedical Applications. J. Pharm. Biomed. Anal. 2020, 189, 113479. [Google Scholar] [CrossRef]
- Kuznetsova, O.V.; Jarosz, M.; Keppler, B.K.; Timerbaev, A.R. Toward a Deeper and Simpler Understanding of Serum Protein-Mediated Transformations of Magnetic Nanoparticles by ICP-MS. Talanta 2021, 229, 122287. [Google Scholar] [CrossRef]
- Alves, M.N.; Nesterenko, P.N.; Paull, B.; Haddad, P.R.; Macka, M. Separation of Superparamagnetic Magnetite Nanoparticles by Capillary Zone Electrophoresis Using Non-Complexing and Complexing Electrolyte Anions and Tetramethylammonium as Dispersing Additive. Electrophoresis 2018, 39, 1429–1436. [Google Scholar] [CrossRef]
- Baharifar, H.; Fakhari, A.R.; Ziyadi, H.; Oghabian, M.A.; Amani, A.; Faridi-Majidi, R. Influence of Polymeric Coating on Capillary Electrophoresis of Iron Oxide Nanoparticles. J. Iran. Chem. Soc. 2014, 11, 279–284. [Google Scholar] [CrossRef]
- Chetwynd, A.; Guggenheim, E.; Briffa, S.; Thorn, J.; Lynch, I.; Valsami-Jones, E. Current Application of Capillary Electrophoresis in Nanomaterial Characterisation and Its Potential to Characterise the Protein and Small Molecule Corona. Nanomaterials 2018, 8, 99. [Google Scholar] [CrossRef] [Green Version]
- Matczuk, M.; Anecka, K.; Scaletti, F.; Messori, L.; Keppler, B.K.; Timerbaev, A.R.; Jarosz, M. Speciation of Metal-Based Nanomaterials in Human Serum Characterized by Capillary Electrophoresis Coupled to ICP-MS: A Case Study of Gold Nanoparticles. Metallomics 2015, 7, 1364–1370. [Google Scholar] [CrossRef]
- Matczuk, M.; Legat, J.; Shtykov, S.N.; Jarosz, M.; Timerbaev, A.R. Characterization of the Protein Corona of Gold Nanoparticles by an Advanced Treatment of CE-ICP-MS Data. Electrophoresis 2016, 37, 2257–2259. [Google Scholar] [CrossRef]
- Matczuk, M.; Legat, J.; Timerbaev, A.R.; Jarosz, M. A Sensitive and Versatile Method for Characterization of Protein-Mediated Transformations of Quantum Dots. Analyst 2016, 141, 2574–2580. [Google Scholar] [CrossRef] [Green Version]
- Kruszewska, J.; Sikorski, J.; Samsonowicz-Górski, J.; Matczuk, M. A CE-ICP-MS/MS Method for the Determination of Superparamagnetic Iron Oxide Nanoparticles under Simulated Physiological Conditions. Anal. Bioanal. Chem. 2020, 412, 8145–8153. [Google Scholar] [CrossRef]
- Mohammad-Beigi, H.; Yaghmaei, S.; Roostaazad, R.; Bardania, H.; Arpanaei, A. Effect of PH, Citrate Treatment and Silane-Coupling Agent Concentration on the Magnetic, Structural and Surface Properties of Functionalized Silica-Coated Iron Oxide Nanocomposite Particles. Phys. E Low Dimens. Syst. Nanostruct. 2011, 44, 618–627. [Google Scholar] [CrossRef]
- LaGrow, A.P.; Besenhard, M.O.; Hodzic, A.; Sergides, A.; Bogart, L.K.; Gavriilidis, A.; Thanh, N.T.K. Unravelling the Growth Mechanism of the Co-Precipitation of Iron Oxide Nanoparticles with the Aid of Synchrotron X-Ray Diffraction in Solution. Nanoscale 2019, 11, 6620–6628. [Google Scholar] [CrossRef] [Green Version]
- Daniels, T.R.; Delgado, T.; Rodriguez, J.A.; Helguera, G.; Penichet, M.L. The Transferrin Receptor Part I: Biology and Targeting with Cytotoxic Antibodies for the Treatment of Cancer. Clin. Immunol. 2006, 121, 144–158. [Google Scholar] [CrossRef]
- Jarosz, M.; Matczuk, M.; Pawlak, K.; Timerbaev, A.R. Molecular Mass Spectrometry in Metallodrug Development: A Case of Mapping Transferrin-Mediated Transformations for a Ruthenium(III) Anticancer Drug. Anal. Chim. Acta 2014, 851, 72–77. [Google Scholar] [CrossRef]
- Sikorski, J.; Obarski, N.; Trzaskowski, M.; Matczuk, M. Simple Ultraviolet–Visible Spectroscopy-Based Assay for Fast Evaluation of Magnetic Nanoparticle Selectivity Changes After Doping. Appl. Spectrosc. 2021, 75, 1305–1311. [Google Scholar] [CrossRef]
Parameter | Setting |
---|---|
RF power | 1570 W |
Sample Depth | 8.40 mm |
Torch Width | 1.5 mm |
Nebulizer (Ar) gas flow | 0.90 L/min |
Reaction (O2) gas flow | 30% |
Sampler and skimmer cones | Pt |
Monitored masses | 51V16O+, 32S16O+, 56Fe16O+ |
Parameter | Setting |
---|---|
Background electrolyte | Tris hydrochloride 5 mM, pH 7.4 |
Temperature | 37 °C |
Voltage | +15 kV |
Current | 6–7 µA |
Sample injection | 20 mbar × 5 s |
Capillary | Polyimide-coated fused silica capillary, i.d. 1 75 μm, o.d. 2 375 μm, length 70 cm |
Analyte | Linearity, R2 | Capillary Recovery (%) (n = 3) | RSD (%) | |||
---|---|---|---|---|---|---|
Migration time | Peak area | |||||
Intraday (n = 3) | Inter-day (n = 3) | Intraday (n = 3) | Inter-day (n = 3) | |||
Albumin | 0.9968 | 88.61 | 0.25 | 5.17 | 7.52 | 15.54 |
Transferrin | 0.9982 | 89.62 | 2.14 | 5.28 | 7.99 | 16.18 |
SPIONs | 0.9996 | 89.31 | 1.02 | 5.84 | 4.71 | 13.35 |
SPIONs | ζ-Potential |
---|---|
Fe3O4 | 24.8 ± 0.2 |
Fe3O4@PEG | −3.7 ± 0.5 |
Fe3O4@PEI | 48.6 ± 0.5 |
Fe3O4@Citr | −29.0 ± 1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikorski, J.; Drozd, M.; Matczuk, M. Red Flags and Adversities on the Way to the Robust CE-ICP-MS/MS Quantitative Monitoring of Self-Synthesized Magnetic Iron Oxide(II, III)-Based Nanoparticle Interactions with Human Serum Proteins. Molecules 2022, 27, 8442. https://doi.org/10.3390/molecules27238442
Sikorski J, Drozd M, Matczuk M. Red Flags and Adversities on the Way to the Robust CE-ICP-MS/MS Quantitative Monitoring of Self-Synthesized Magnetic Iron Oxide(II, III)-Based Nanoparticle Interactions with Human Serum Proteins. Molecules. 2022; 27(23):8442. https://doi.org/10.3390/molecules27238442
Chicago/Turabian StyleSikorski, Jacek, Marcin Drozd, and Magdalena Matczuk. 2022. "Red Flags and Adversities on the Way to the Robust CE-ICP-MS/MS Quantitative Monitoring of Self-Synthesized Magnetic Iron Oxide(II, III)-Based Nanoparticle Interactions with Human Serum Proteins" Molecules 27, no. 23: 8442. https://doi.org/10.3390/molecules27238442
APA StyleSikorski, J., Drozd, M., & Matczuk, M. (2022). Red Flags and Adversities on the Way to the Robust CE-ICP-MS/MS Quantitative Monitoring of Self-Synthesized Magnetic Iron Oxide(II, III)-Based Nanoparticle Interactions with Human Serum Proteins. Molecules, 27(23), 8442. https://doi.org/10.3390/molecules27238442