Oral Cell-Targeted Delivery Systems Constructed of Edible Materials: Advantages and Challenges
Abstract
:1. Introduction
2. Advantages of Oral CDSEMs
2.1. Advantages of Edible Materials
2.2. Advantages of Oral Administration
2.3. Advantages of Cell Targeting
3. Challenges of Oral CDSEMs
3.1. Harsh Gastrointestinal Environment
3.2. Mucosal Barrier
4. Existing Oral CDSEMs
4.1. Enterocyte Targeting
4.1.1. Vitamin-Based Targeting
4.1.2. Lactoferrin-Based Targeting
4.1.3. Arginine–Glycine–Aspartate (RGD)-Based Targeting
4.1.4. Fucoidan-Based Targeting
4.2. Macrophage Targeting
4.2.1. HA- or CS-Based Targeting
4.2.2. β-Glucan-Based Targeting
4.2.3. Galactose-Based Targeting
4.2.4. Mannose-Based Targeting
4.2.5. PGP-Me-Based Targeting
4.3. M Cell Targeting
4.3.1. Lectin-Based Targeting
4.3.2. β-Glucan-Based Targeting
4.4. Dendritic Cell Targeting
4.5. Tumour Cell Targeting
4.5.1. Folic Acid-Based Targeting
4.5.2. Fucoidan-Based Targeting
5. Future Perspectives
5.1. Simple Cell-Targeted Delivery Systems
5.2. Emulsion-Based Cell Targeting
5.3. Digestive Stability of the Delivery Systems
5.4. Mucus Penetration Ability
5.5. Dual-Ligand Modification
5.6. Hepatic First-Pass Metabolism
5.7. Oral Effectiveness
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bashyal, S.; Seo, J.E.; Choi, Y.W.; Lee, S. Bile acid transporter-mediated oral absorption of insulin via hydrophobic ion-pairing approach. J. Control. Release 2021, 338, 644–661. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Peng, H.; Feng, M.; Zhang, W.; Li, Y. Yeast microcapsule-mediated oral delivery of IL-1beta shRNA for post-traumatic osteoarthritis therapy. Mol. Ther.-Nucl. Acids 2021, 23, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Chen, Q.; Zhang, Z.; Wang, L.; Kang, Y.; Denning, T.; Merlin, D. TNFα gene silencing mediated by orally targeted nanoparticles combined with interleukin-22 for synergistic combination therapy of ulcerative colitis. J. Control. Release 2018, 287, 235–246. [Google Scholar] [CrossRef]
- Nidhi; Rashid, M.; Kaur, V.; Hallan, S.S.; Sharma, S.; Mishra, N. Microparticles as controlled drug delivery carrier for the treatment of ulcerative colitis: A brief review. Saudi Pharm. J. 2016, 24, 458–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Z.; Zhu, J.; Cheng, Y.; Huang, Q. Ovotransferrin fibril-stabilized Pickering emulsions improve protection and bioaccessibility of curcumin. Food Res. Int. 2019, 125, 108602. [Google Scholar] [CrossRef]
- Xia, T.; Gao, Y.; Liu, Y.; Wei, Z.; Xue, C. Lactoferrin particles assembled via transglutaminase-induced crosslinking: Utilization in oleogel-based Pickering emulsions with improved curcumin bioaccessibility. Food Chem. 2022, 374, 131779. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Z.; He, Y.; Xian, J.; Luo, R.; Zheng, C.; Zhang, J. Oral colon-targeting core-shell microparticles loading curcumin for enhanced ulcerative colitis alleviating efficacy. Chin. Med. 2021, 16, 92. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, F.; Xing, Z.; Fan, L.; Li, Y.; Wang, S.; Ling, J.; Ouyang, X.K. Efficient delivery of curcumin by alginate oligosaccharide coated aminated mesoporous silica nanoparticles and in vitro anticancer activity against colon cancer cells. Pharmaceutics 2022, 14, 1166. [Google Scholar] [CrossRef]
- Cui, Z.; Qin, L.; Guo, S.; Cheng, H.; Zhang, X.; Guan, J.; Mao, S. Design of biotin decorated enterocyte targeting muco-inert nanocomplexes for enhanced oral insulin delivery. Carbohydr. Polym. 2021, 261, 117873. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Yu, M.; Wang, A.; Qiu, Y.; Fan, W.; Hovgaard, L.; Yang, M.; Li, Y.; Wang, R.; et al. The upregulated intestinal folate transporters direct the uptake of ligand-modified nanoparticles for enhanced oral insulin delivery. Acta Pharm. Sin. B 2022, 12, 1460–1472. [Google Scholar] [CrossRef]
- Lee, D.Y.; Nurunnabi, M.; Kang, S.H.; Nafiujjaman, M.; Huh, K.M.; Lee, Y.K.; Kim, Y.C. Oral gavage delivery of PR8 antigen with β-glucan-conjugated GRGDS carrier to enhance M-cell targeting ability and induce immunity. Biomacromolecules 2017, 18, 1172–1179. [Google Scholar] [CrossRef] [PubMed]
- Song, J.G.; Lee, S.H.; Han, H.K. Development of an M cell targeted nanocomposite system for effective oral protein delivery: Preparation, in vitro and in vivo characterization. J. Nanobiotechnol. 2021, 19, 15. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.; Lee, J.; Oshi, M.A.; Cao, J.; Hlaing, S.P.; Im, E.; Jung, Y.; Yoo, J.W. Colitis-targeted hybrid nanoparticles-in-microparticles system for the treatment of ulcerative colitis. Acta Biomater. 2020, 116, 368–382. [Google Scholar] [CrossRef] [PubMed]
- David Friedl, J.; Wibel, R.; Burcu Akkus-Dagdeviren, Z.; Bernkop-Schnurch, A. Reactive oxygen species (ROS) in colloidal systems: Are “PEG-free” surfactants the answer? J. Colloid Interface Sci. 2022, 616, 571–583. [Google Scholar] [CrossRef]
- Cox, F.; Khalib, K.; Conlon, N. PEG that reaction: A case series of allergy to polyethylene glycol. J. Clin. Pharmacol. 2021, 61, 832–835. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, M.; Ning, Z.; Yu, S.; Tang, N.; Zhou, F. Development of a sono-assembled, bifunctional soy peptide nanoparticle for cellular delivery of hydrophobic active cargoes. J. Agric. Food Chem. 2018, 66, 4208–4218. [Google Scholar] [CrossRef]
- Pu, X.; Ye, N.; Lin, M.; Chen, Q.; Dong, L.; Xu, H.; Luo, R.; Han, X.; Qi, S.; Nie, W.; et al. β-1,3-d-Glucan based yeast cell wall system loaded emodin with dual-targeting layers for ulcerative colitis treatment. Carbohydr. Polym. 2021, 273, 118612. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Wang, J.; Xu, X.; Qin, L.; Wu, C.; Du, M. Ultrasound treatment improved the physicochemical characteristics of cod protein and enhanced the stability of oil-in-water emulsion. Food Res. Int. 2019, 121, 247–256. [Google Scholar] [CrossRef]
- Li, X.L.; Xie, Q.T.; Liu, W.J.; Xu, B.C.; Zhang, B. Self-assembled pea protein isolate nanoparticles with various sizes: Explore the formation mechanism. J. Agric. Food Chem. 2021, 69, 9905–9914. [Google Scholar] [CrossRef]
- Zu, M.; Xie, D.; Canup, B.S.B.; Chen, N.; Wang, Y.; Sun, R.; Zhang, Z.; Fu, Y.; Dai, F.; Xiao, B. ‘Green’ nanotherapeutics from tea leaves for orally targeted prevention and alleviation of colon diseases. Biomaterials 2021, 279, 121178. [Google Scholar] [CrossRef]
- Duran-Lobato, M.; Niu, Z.; Alonso, M.J. Oral delivery of biologics for precision medicine. Adv. Mater. 2020, 32, 1901935. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gu, H.; Zhang, H.; Xian, J.; Li, J.; Fu, C.; Zhang, C.; Zhang, J. Oral core-shell nanoparticles embedded in hydrogel microspheres for the efficient site-specific delivery of magnolol and enhanced antiulcerative colitis therapy. ACS Appl. Mater. Interfaces 2021, 13, 33948–33961. [Google Scholar] [CrossRef]
- Bao, C.; Liu, B.; Li, B.; Chai, J.; Zhang, L.; Jiao, L.; Li, D.; Yu, Z.; Ren, F.; Shi, X.; et al. Enhanced transport of shape and rigidity-tuned α-lactalbumin nanotubes across intestinal mucus and cellular barriers. Nano Lett. 2020, 20, 1352–1361. [Google Scholar] [CrossRef]
- Griesser, J.; Hetenyi, G.; Kadas, H.; Demarne, F.; Jannin, V.; Bernkop-Schnurch, A. Self-emulsifying peptide drug delivery systems: How to make them highly mucus permeating. Int. J. Pharm. 2018, 538, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cheng, H.; Dong, W.; Zhang, M.; Liu, Q.; Wang, X.; Guan, J.; Wu, H.; Mao, S. Design and intestinal mucus penetration mechanism of core-shell nanocomplex. J. Control. Release 2018, 272, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Hu, G.; Zhao, K. Mannose-anchored quaternized chitosan/thiolated carboxymethyl chitosan composite NPs as mucoadhesive carrier for drug delivery. Carbohydr. Polym. 2022, 283, 119174. [Google Scholar] [CrossRef]
- Verma, A.; Sharma, S.; Gupta, P.K.; Singh, A.; Teja, B.V.; Dwivedi, P.; Gupta, G.K.; Trivedi, R.; Mishra, P.R. Vitamin B12 functionalized layer by layer calcium phosphate nanoparticles: A mucoadhesive and pH responsive carrier for improved oral delivery of insulin. Acta Biomater. 2016, 31, 288–300. [Google Scholar] [CrossRef]
- Hua, S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract - influence of physiological, pathophysiological and pharmaceutical factors. Front. Pharmacol. 2020, 11, 524. [Google Scholar] [CrossRef]
- Xu, Y.; Shrestha, N.; Preat, V.; Beloqui, A. Overcoming the intestinal barrier: A look into targeting approaches for improved oral drug delivery systems. J. Control. Release 2020, 322, 486–508. [Google Scholar] [CrossRef]
- Chuang, E.Y.; Lin, K.J.; Huang, T.Y.; Chen, H.L.; Miao, Y.B.; Lin, P.Y.; Chen, C.T.; Juang, J.H.; Sung, H.W. An intestinal “transformers”-like nanocarrier system for enhancing the oral bioavailability of poorly water-soluble drugs. ACS Nano 2018, 12, 6389–6397. [Google Scholar] [CrossRef]
- Wang, J.; Tan, J.; Luo, J.; Huang, P.; Zhou, W.; Chen, L.; Long, L.; Zhang, L.M.; Zhu, B.; Yang, L.; et al. Enhancement of scutellarin oral delivery efficacy by vitamin B12-modified amphiphilic chitosan derivatives to treat type II diabetes induced-retinopathy. J. Nanobiotechnol. 2017, 15, 18. [Google Scholar] [CrossRef] [Green Version]
- Mandracchia, D.; Rosato, A.; Trapani, A.; Chlapanidas, T.; Montagner, I.M.; Perteghella, S.; Di Franco, C.; Torre, M.L.; Trapani, G.; Tripodo, G. Design, synthesis and evaluation of biotin decorated inulin-based polymeric micelles as long-circulating nanocarriers for targeted drug delivery. Nanomed.-Nanotechnol. Biol. Med. 2017, 13, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Lin, M.; Fu, C.; Zhang, J.; Chen, Q.; Zhang, C.; Shi, J.; Pu, X.; Dong, L.; Xu, H.; et al. Calcium pectinate and hyaluronic acid modified lactoferrin nanoparticles loaded rhein with dual-targeting for ulcerative colitis treatment. Carbohydr. Polym. 2021, 263, 117998. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, M.S.; Islam, M.S.; Podaralla, S.; Kaushik, R.S.; Reineke, J.; Woyengo, T.; Perumal, O. Food protein based core-shell nanocarriers for oral drug delivery: Effect of shell composition on in vitro and in vivo functional performance of zein nanocarriers. Mol. Pharm. 2017, 14, 757–769. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.C.; Huang, Y.C. Soluble eggshell membrane protein-loaded chitosan/fucoidan nanoparticles for treatment of defective intestinal epithelial cells. Int. J. Biol. Macromol. 2019, 131, 949–958. [Google Scholar] [CrossRef]
- Malik, B.; Goyal, A.K.; Markandeywar, T.S.; Rath, G.; Zakir, F.; Vyas, S.P. Microfold-cell targeted surface engineered polymeric nanoparticles for oral immunization. J. Drug Target. 2012, 20, 76–84. [Google Scholar] [CrossRef] [PubMed]
- De Smet, R.; Demoor, T.; Verschuere, S.; Dullaers, M.; Ostroff, G.R.; Leclercq, G.; Allais, L.; Pilette, C.; Dierendonck, M.; De Geest, B.G.; et al. β-Glucan microparticles are good candidates for mucosal antigen delivery in oral vaccination. J. Control. Release 2013, 172, 671–678. [Google Scholar] [CrossRef]
- Gou, S.; Huang, Y.; Wan, Y.; Ma, Y.; Zhou, X.; Tong, X.; Huang, J.; Kang, Y.; Pan, G.; Dai, F.; et al. Multi-bioresponsive silk fibroin-based nanoparticles with on-demand cytoplasmic drug release capacity for CD44-targeted alleviation of ulcerative colitis. Biomaterials 2019, 212, 39–54. [Google Scholar] [CrossRef]
- Feng, X.; Xie, Q.; Xu, H.; Zhang, T.; Li, X.; Tian, Y.; Lan, H.; Kong, L.; Zhang, Z. Yeast microcapsule mediated natural products delivery for treating ulcerative colitis through anti-inflammatory and regulation of macrophage polarization. ACS Appl. Mater. Interfaces 2022, 14, 31085–31098. [Google Scholar] [CrossRef]
- Salamunova, P.; Salon, I.; Ruphuy, G.; Kroupova, J.; Balouch, M.; Hanus, J.; Stepanek, F. Evaluation of β-glucan particles as dual-function carriers for poorly soluble drugs. Eur. J. Pharm. Biopharm. 2021, 168, 15–25. [Google Scholar] [CrossRef]
- Ma, Y.; Duan, L.; Sun, J.; Gou, S.; Chen, F.; Liang, Y.; Dai, F.; Xiao, B. Oral nanotherapeutics based on Antheraea pernyi silk fibroin for synergistic treatment of ulcerative colitis. Biomaterials 2022, 282, 121410. [Google Scholar] [CrossRef] [PubMed]
- Schilrreff, P.; Simioni, Y.R.; Jerez, H.E.; Caimi, A.T.; de Farias, M.A.; Villares Portugal, R.; Romero, E.L.; Morilla, M.J. Superoxide dismutase in nanoarchaeosomes for targeted delivery to inflammatory macrophages. Colloid Surf. B-Biointerfaces 2019, 179, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Rong, Y.; Teng, Y.; Mu, J.; Zhuang, X.; Tseng, M.; Samykutty, A.; Zhang, L.; Yan, J.; Miller, D.; et al. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase. Mol. Ther. 2017, 25, 1641–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etman, S.M.; Abdallah, O.Y.; Elnaggar, Y.S.R. Novel fucoidan based bioactive targeted nanoparticles from Undaria Pinnatifida for treatment of pancreatic cancer. Int. J. Biol. Macromol. 2020, 145, 390–401. [Google Scholar] [CrossRef]
- Sun, X.; Yu, D.; Ying, Z.; Pan, C.; Wang, N.; Huang, F.; Ling, J.; Ouyang, X.K. Fabrication of ion-crosslinking aminochitosan nanoparticles for encapsulation and slow release of curcumin. Pharmaceutics 2019, 11, 584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, L.; Meng, Z.; Zhang, Y.; Hu, K.; Chen, W.; Han, K.; Wu, B.Y.; You, R.; Li, C.H.; Jin, Y.; et al. Bacillus spore-based oral carriers loading curcumin for the therapy of colon cancer. J. Control. Release 2018, 271, 31–44. [Google Scholar] [CrossRef]
- Borah, P.K.; Das, A.S.; Mukhopadhyay, R.; Sarkar, A.; Duary, R.K. Macromolecular design of folic acid functionalized amylopectin–albumin core–shell nanogels for improved physiological stability and colon cancer cell targeted delivery of curcumin. J. Colloid Interface Sci. 2020, 580, 561–572. [Google Scholar] [CrossRef]
- Beumer, J.; Clevers, H. Cell fate specification and differentiation in the adult mammalian intestine. Nat. Rev. Mol. Cell Biol. 2021, 22, 39–53. [Google Scholar] [CrossRef]
- Rizzo, G.; Lagana, A.S.; Rapisarda, A.M.; La Ferrera, G.M.; Buscema, M.; Rossetti, P.; Nigro, A.; Muscia, V.; Valenti, G.; Sapia, F.; et al. Vitamin B12 among vegetarians: Status, assessment and supplementation. Nutrients 2016, 8, 767. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Yi, T.; Chen, M.; Lam, C.W.; Zhou, H. A new mechanism for increasing the oral bioavailability of scutellarin with Cremophor EL: Activation of MRP3 with concurrent inhibition of MRP2 and BCRP. Eur. J. Pharm. Sci. 2016, 93, 456–467. [Google Scholar] [CrossRef]
- Santos-Pereira, C.; Andres, M.T.; Fierro, J.F.; Rodrigues, L.R.; Corte-Real, M. A review on lactoferrin as a proton pump inhibitor. Int. J. Biol. Macromol. 2022, 202, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Slack, R.J.; Macdonald, S.J.F.; Roper, J.A.; Jenkins, R.G.; Hatley, R.J.D. Emerging therapeutic opportunities for integrin inhibitors. Nat. Rev. Drug Discov. 2022, 21, 60–78. [Google Scholar] [CrossRef] [PubMed]
- Nieberler, M.; Reuning, U.; Reichart, F.; Notni, J.; Wester, H.J.; Schwaiger, M.; Weinmuller, M.; Rader, A.; Steiger, K.; Kessler, H. Exploring the role of RGD-recognizing integrins in cancer. Cancers 2017, 9, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Chen, S.; Lu, G.F.; Wu, Y.; Mo, L.; Liu, Z.Q.; Zheng, P.Y.; Liu, Z.; Yang, P.C. Alphavbeta6 is required in maintaining the intestinal epithelial barrier function. Cell Biol. Int. 2014, 38, 777–781. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Zhou, G.; Chen, Y.; Mao, C.; Yang, M. Polydopamine-coated Antheraea pernyi (A. pernyi) silk fibroin films promote cell adhesion and wound healing in skin tissue repair. ACS Appl. Mater. Interfaces 2019, 11, 34736–34743. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, Z.; Xue, C. Physicochemical properties of fucoidan and its applications as building blocks of nutraceutical delivery systems. Crit. Rev. Food Sci. Nutr. 2022, 62, 8935–8953. [Google Scholar] [CrossRef]
- Yunna, C.; Mengru, H.; Lei, W.; Weidong, C. Macrophage M1/M2 polarization. Eur. J. Pharmacol. 2020, 877, 173090. [Google Scholar] [CrossRef]
- Linde, N.; Casanova-Acebes, M.; Sosa, M.S.; Mortha, A.; Rahman, A.; Farias, E.; Harper, K.; Tardio, E.; Reyes Torres, I.; Jones, J.; et al. Macrophages orchestrate breast cancer early dissemination and metastasis. Nat. Commun. 2018, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ma, Y.; Ma, L.; Zu, M.; Song, H.; Xiao, B. Oral administration of chondroitin sulfate-functionalized nanoparticles for colonic macrophage-targeted drug delivery. Carbohydr. Polym. 2019, 223, 115126. [Google Scholar] [CrossRef]
- Tie, S.; Su, W.; Chen, Y.; Wu, S.; Wu, H.; Song, Y.; Fei, S.; Tan, M. Dual targeting procyanidin nanoparticles with glutathione response for colitis treatment. Chem. Eng. J. 2022, 441, 136095. [Google Scholar] [CrossRef]
- Vafaei, S.Y.; Esmaeili, M.; Amini, M.; Atyabi, F.; Ostad, S.N.; Dinarvand, R. Self assembled hyaluronic acid nanoparticles as a potential carrier for targeting the inflamed intestinal mucosa. Carbohydr. Polym. 2016, 144, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Pan-On, S.; Dilokthornsakul, P.; Tiyaboonchai, W. Trends in advanced oral drug delivery system for curcumin: A systematic review. J. Control. Release 2022, 348, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Luo, R.; Han, X.; Zhang, J.; He, Y.; Qi, S.; Pu, X.; Nie, W.; Dong, L.; Xu, H.; et al. Entrapment of macrophage-target nanoparticles by yeast microparticles for rhein delivery in ulcerative colitis treatment. Biomacromolecules 2021, 22, 2754–2767. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Huang, Q. New insight into the structure-dependent two-way immunomodulatory effects of water-soluble yeast β-glucan in macrophages. Carbohydr. Polym. 2022, 291, 119569. [Google Scholar] [CrossRef]
- Tae, H.; Lee, S.; Ki, C.S. β-Glucan hybridized poly(ethylene glycol) microgels for macrophage-targeted protein delivery. J. Ind. Eng. Chem. 2019, 75, 69–76. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, X.; Han, S.; Dou, Y.; Liu, M.; Zhang, L.; Guo, J.; Shi, Q.; Gong, G.; Wang, R.; et al. Yeast microcapsule-mediated targeted delivery of diverse nanoparticles for imaging and therapy via the oral route. Nano Lett. 2017, 17, 1056–1064. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, X.; Chen, Y.; Dou, Y.; Zhou, X.; Li, L.; Li, C.; An, H.; Tao, H.; Hu, H.; et al. Bioinspired yeast microcapsules loaded with self-assembled nanotherapies for targeted treatment of cardiovascular disease. Mater. Today 2017, 20, 301–313. [Google Scholar] [CrossRef]
- Parra, F.L.; Caimi, A.T.; Altube, M.J.; Cargnelutti, D.E.; Vermeulen, M.E.; de Farias, M.A.; Portugal, R.V.; Morilla, M.J.; Romero, E.L. Make it simple: (SR-A1+TLR7) macrophage targeted NANOarchaeosomes. Front. Bioeng. Biotechnol. 2018, 6, 163. [Google Scholar] [CrossRef]
- Altube, M.J.; Cutro, A.; Bakas, L.; Morilla, M.J.; Disalvo, E.A.; Romero, E.L. Nebulizing novel multifunctional nanovesicles: The impact of macrophage-targeted-pH-sensitive archaeosomes on a pulmonary surfactant. J. Mat. Chem. B 2017, 5, 8083–8095. [Google Scholar] [CrossRef]
- Miao, Y.B.; Lin, Y.J.; Chen, K.H.; Luo, P.K.; Chuang, S.H.; Yu, Y.T.; Tai, H.M.; Chen, C.T.; Lin, K.J.; Sung, H.W. Engineering nano- and microparticles as oral delivery vehicles to promote intestinal lymphatic drug transport. Adv. Mater. 2021, 33, 2104139. [Google Scholar] [CrossRef]
- McCright, J.; Ramirez, A.; Amosu, M.; Sinha, A.; Bogseth, A.; Maisel, K. Targeting the gut mucosal immune system using nanomaterials. Pharmaceutics 2021, 13, 1755. [Google Scholar] [CrossRef] [PubMed]
- Mattila, J.P.; Mirandola, L.; Chiriva-Internati, M. Development of a M cell-targeted microparticulate platform, BSK02, for oral immunization against the ovarian cancer antigen, sperm protein 17. J. Biomed. Mater. Res. Part B 2019, 107B, 29–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Wu, J.; Wang, J.; Zhang, W.; Xu, B.; Xu, X.; Zong, L. Targeted delivery of antigen to intestinal dendritic cells induces oral tolerance and prevents autoimmune diabetes in NOD mice. Diabetologia 2018, 61, 1384–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Fang, H.; Hu, Y.; Wu, J.; Zhang, S.; Feng, Y.; Lin, L.; Tian, H.; Chen, X. Combining mannose receptor mediated nanovaccines and gene regulated PD-L1 blockade for boosting cancer immunotherapy. Bioact Mater 2022, 7, 167–180. [Google Scholar] [CrossRef]
- Chen, Q.; Li, Q.; Liang, Y.; Zu, M.; Chen, N.; Canup, B.S.B.; Luo, L.; Wang, C.; Zeng, L.; Xiao, B. Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation. Acta Pharm. Sin. B 2022, 12, 907–923. [Google Scholar] [CrossRef]
- Granja, A.; Neves, A.R.; Sousa, C.T.; Pinheiro, M.; Reis, S. EGCG intestinal absorption and oral bioavailability enhancement using folic acid-functionalized nanostructured lipid carriers. Heliyon 2019, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Granja, A.; Vieira, A.C.; Chaves, L.L.; Nunes, C.; Neves, A.R.; Pinheiro, M.; Reis, S. Folate-targeted nanostructured lipid carriers for enhanced oral delivery of epigallocatechin-3-gallate. Food Chem. 2017, 237, 803–810. [Google Scholar] [CrossRef]
- Shi, W.; Wang, Y.; Zhang, H.; Liu, Z.; Fei, Z. Probing deep into the binding mechanisms of folic acid with alpha-amylase, pepsin and trypsin: An experimental and computational study. Food Chem. 2017, 226, 128–134. [Google Scholar] [CrossRef]
- Borah, P.K.; Sarkar, A.; Duary, R.K. Water-soluble vitamins for controlling starch digestion: Conformational scrambling and inhibition mechanism of human pancreatic alpha-amylase by ascorbic acid and folic acid. Food Chem. 2019, 288, 395–404. [Google Scholar] [CrossRef] [Green Version]
- Cho, M.H.; Li, Y.; Lo, P.C.; Lee, H.; Choi, Y. Fucoidan-based theranostic nanogel for enhancing imaging and photodynamic therapy of cancer. Nano-Micro Lett. 2020, 12, 47. [Google Scholar] [CrossRef]
- Xia, T.; Xue, C.; Wei, Z. Physicochemical characteristics, applications and research trends of edible Pickering emulsions. Trends Food Sci. Technol. 2021, 107, 1–15. [Google Scholar] [CrossRef]
- Dong, Y.; Wei, Z.; Wang, Y.; Tang, Q.; Xue, C.; Huang, Q. Oleogel-based Pickering emulsions stabilized by ovotransferrin–carboxymethyl chitosan nanoparticles for delivery of curcumin. LWT-Food Sci. Technol. 2022, 157, 113121. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, Y.; Wei, Z.; Xue, C. Ovalbumin fibril-stabilized oleogel-based Pickering emulsions improve astaxanthin bioaccessibility. Food Res. Int. 2022, 161, 111790. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.Y.; Chen, K.H.; Miao, Y.B.; Chen, H.L.; Lin, K.J.; Chen, C.T.; Yeh, C.N.; Chang, Y.; Sung, H.W. Phase-changeable nanoemulsions for oral delivery of a therapeutic peptide: Toward targeting the pancreas for antidiabetic treatments using lymphatic transport. Adv. Funct. Mater. 2019, 29, 1809015. [Google Scholar] [CrossRef]
- Qin, X.; Yu, J.; Wang, Q.; Zhang, H.; Chen, H.; Hu, Z.; Lv, Q.; Liu, G. Preparation of camellia oil pickering emulsion stabilized by glycated whey protein isolate and chitooligosaccharide: Effect on interfacial behavior and emulsion stability. LWT-Food Sci. Technol. 2022, 153, 112515. [Google Scholar] [CrossRef]
- Perovic, J.; Tumbas Saponjac, V.; Kojic, J.; Krulj, J.; Moreno, D.A.; Garcia-Viguera, C.; Bodroza-Solarov, M.; Ilic, N. Chicory (Cichorium intybus L.) as a food ingredient - Nutritional composition, bioactivity, safety, and health claims: A review. Food Chem. 2021, 336, 127676. [Google Scholar] [CrossRef]
- Guo, H.H.; Ma, C.; Zheng, W.S.; Luo, Y.; Li, C.; Li, X.L.; Ma, X.L.; Feng, C.L.; Zhang, T.T.; Han, Y.X.; et al. Dual-stimuli-responsive gut microbiota-targeting berberine-CS/PT-NPs improved metabolic status in obese hamsters. Adv. Funct. Mater. 2019, 29, 1808197. [Google Scholar] [CrossRef]
- Ouyang, Q.; Xiao, J.; Chen, J.; Xiao, Y.; Lin, Q.; Ding, Y. Nanoresistant particles based on chemically modified starch as nanocarriers and characterization of structural and release properties. Starch-Starke 2020, 73, 1900317. [Google Scholar] [CrossRef]
- Borah, P.K.; Rappolt, M.; Duary, R.K.; Sarkar, A. Structurally induced modulation of in vitro digestibility of amylopectin corn starch upon esterification with folic acid. Int. J. Biol. Macromol. 2019, 129, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Tan, Z.L.; Miyanaga, K.; Kitamoto, Y.; Yamamoto, N. Levilactobacillus brevis surface layer protein B promotes liposome targeting to antigen-presenting cells in Peyer’s patches. Int. J. Pharm. 2022, 622, 121896. [Google Scholar] [CrossRef]
- Ke, Z.; Guo, H.; Zhu, X.; Jin, Y.; Huang, Y. Efficient peroral delivery of insulin via vitamin b12 modified trimethyl chitosan nanoparticles. J. Pharm. Pharm. Sci. 2015, 18, 155–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Zheng, Y.; Liu, M.; Shan, W.; Zhang, Z.; Huang, Y. Biomimetic viruslike and charge reversible nanoparticles to sequentially overcome mucus and epithelial barriers for oral insulin delivery. ACS Appl. Mater. Interfaces 2018, 10, 9916–9928. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Wang, J.; Yang, Y.; Zhu, C.; Su, Q.; Guo, S.; Sun, J.; Gan, Y.; Shi, X.; Gao, H. Rotation-facilitated rapid transport of nanorods in mucosal tissues. Nano Lett. 2016, 16, 7176–7182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, A.; Qi, J.; Gogoi, R.; Wong, J.; Mitragotri, S. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J. Control. Release 2016, 238, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Feijen, J.; Zhong, Z. Dual-targeted nanomedicines for enhanced tumor treatment. Nano Today 2018, 18, 65–85. [Google Scholar] [CrossRef]
- Gao, D.; Asghar, S.; Ye, J.; Zhang, M.; Hu, R.; Wang, Y.; Huang, L.; Yuan, C.; Chen, Z.; Xiao, Y. Dual-targeted enzyme-sensitive hyaluronic acid nanogels loading paclitaxel for the therapy of breast cancer. Carbohydr. Polym. 2022, 294, 119785. [Google Scholar] [CrossRef]
- Khan, N.; Ruchika; Dhritlahre, R.K.; Saneja, A. Recent advances in dual-ligand targeted nanocarriers for cancer therapy. Drug Discov. Today 2022, 27, 2288–2299. [Google Scholar] [CrossRef]
- Xia, Q.S.; Ding, H.M.; Ma, Y.Q. Can dual-ligand targeting enhance cellular uptake of nanoparticles? Nanoscale 2017, 9, 8982–8989. [Google Scholar] [CrossRef]
- Liu, Y.; Hui, Y.; Ran, R.; Yang, G.Z.; Wibowo, D.; Wang, H.F.; Middelberg, A.P.J.; Zhao, C.X. Synergetic combinations of dual-targeting ligands for enhanced in vitro and in vivo tumor targeting. Adv. Healthc. Mater. 2018, 7, e1800106. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Wang, A.; Nie, D.; Fan, W.; Jiang, X.; Yu, M.; Guo, S.; Zhu, C.; Wei, G.; Gan, Y. Ligand-switchable nanoparticles resembling viral surface for sequential drug delivery and improved oral insulin therapy. Nat. Commun. 2022, 13, 6649. [Google Scholar] [CrossRef]
- Joseph, A.; Wood, T.; Chen, C.-C.; Corry, K.; Snyder, J.M.; Juul, S.E.; Parikh, P.; Nance, E. Curcumin-loaded polymeric nanoparticles for neuroprotection in neonatal rats with hypoxic-ischemic encephalopathy. Nano Res. 2018, 11, 5670–5688. [Google Scholar] [CrossRef]
- Yao, M.; Li, Z.; Julian McClements, D.; Tang, Z.; Xiao, H. Design of nanoemulsion-based delivery systems to enhance intestinal lymphatic transport of lipophilic food bioactives: Influence of oil type. Food Chem. 2020, 317, 126229. [Google Scholar] [CrossRef] [PubMed]
Cell | Ligand | Receptor | Cargo | Delivery System | Cell/ Animal Model | Result | Ref. |
---|---|---|---|---|---|---|---|
Enterocyte | VB12 | Intrinsic factor receptor | Scutellarin | VB12-amphiphilic chitosan nanoparticles | Caco-2/Rat | The transport volume of scutellarin increased 4.39 times. | [31] |
Biotin | SMVT | – | Nanomicelle assembled from inulin–vitamin E conjugate modified by biotin | Caco-2/Mice | The activation of the efflux pump decreased the oral bioavailability. | [32] | |
Lactoferrin | Lactoferrin receptor | Rhein | Lactoferrin nanoparticles modified by calcium pectinate and HA | RAW 264.7 and Caco-2 /Mice | The nanoparticles were targeted to enterocytes and up-regulated the expression of ZO-1 and Claudin-1. | [33] | |
Lactoferrin | Lactoferrin receptor | – | Zein/lactoferrin nanoparticles | Caco-2/Rat | Cell uptake was enhanced through the recognition of lactoferrin receptors and electrostatic interaction of nanoparticles with negatively charged glycocalyx. | [34] | |
Fucoidan | Fucose receptor | Soluble eggshell membrane protein | Chitosan/fucoidan nanoparticles | Caco-2 and RAW 264.7 | Soluble eggshell membrane protein and nanoparticles synergistically increased the anti-oxidant activity. | [35] | |
M cell | UEA-1 | α-L-fucose | Bovine serum albumin | Chitosan nanoparticles coated in alginate-UEA-1 conjugate | -/Mice | The particles induced systemic and mucosal immune responses. | [36] |
β-glucan | – | Ovalbumin | β-glucan microparticles | Caco-2 and HT-29/Mice | The microparticles could be transported by an M cell by the transcellular pathway and triggered an immune response. | [37] | |
Macrophage | CS | CD44 receptor | Curcumin | CS-decorated silk fibroin nanoparticles encapsulated in chitosan/alginate hydrogel | RAW 264.7/Mice | Macrophage targeted delivery and multiple bio-responsive releases of curcumin enhanced its therapeutic effect. | [38] |
CS | CD44 receptor | Magnolol | CS-decorated zein nanoparticles encapsulated in sodium alginate/ xanthan gum microspheres | RAW 264.7 and NCM 460 /Mice | Alginate/xanthan gum microspheres prolonged the colon retention of nanoparticles and the targeted release of magnolol decreased the levels of pro-inflammatory cytokines. | [22] | |
β-glucan | Dectin-1 receptor | Berberine and EGCG | Yeast microcapsule | RAW 264.7 and L929 /Mice | Berberine and EGCG encapsulated in yeast microcapsules were targeted to the macrophage and showed synergistic anti-inflammatory effects. | [39] | |
β-glucan | Dectin-1 receptor | Emodin | Yeast cell wall microparticles | RAW 264.7 and Caco-2/Mice | Gastrointestinal tract stability and the targeted ability of nanoparticles were enhanced by yeast cell wall microparticles resulting in the enhancement of the anti-inflammatory effects of emodin. | [17] | |
β-glucan | – | Curcumin | Yeast glucan particles | J774A.1/- | The encapsulation of curcumin had no influence on the phagocytosis of macrophages. | [40] | |
Galactose | Galactose receptor | Polyphenols and flavones | Tea-leaf-derived nanoparticles | RAW 264.7/Mice | Nanoparticles derived from tea leaf showed targeted ability and inhibited intestinal inflammation. | [20] | |
Mannose | Mannose receptor | Bovine serum albumin | Chitosan derivative nanoparticles | RAW 264.7/- | The nanoparticles showed good mucosal adhesion and were uptaken by macrophages. | [26] | |
RGD | Integrin receptor | Resveratrol | Antheraea pernyi silk fibroin nanoparticles | RAW 264.7 and CT-26/Mice | The nanoparticles polarized macrophages to type M2 and relieved symptoms of ulcerative colitis. | [41] | |
PGP-Me | Scavenger receptor A1 | Superoxide dismutase | Nanoarchaeosomes (nanovesicles) | J774A.1 and Caco-2/- | The cellular uptake capacity for nanoparticles increased by 6.4 times. | [42] | |
Dendritic Cell | – | – | Sulforaphane | Broccoli-derived nanoparticles | -/Mice | Broccoli-derived nanoparticles containing sulforaphane activated AMPK to maintain intestinal immune homeostasis by dendritic cell targeting. | [43] |
Tumor cell | Fucoidan and lactoferrin | P-selectin receptor/lactoferrin receptor | Fucoidan | Fucoidan/lactoferrin nanoparticles | PANC-1/- | IC50 value decreased by 2.3 folds. | [44] |
FA | – | Curcumin | FA-amino chitosan nanoparticles | LS174T/- | The cellular viability rate was less than 40% when the curcumin concentration was 25.0 μg/mL. | [45] | |
FA | FA receptor | Curcumin | FA-Bacillus coagulans spore complex | HT-29/Rat | The assembly of folic-acid-grafted nanomicelles was promoted by the germination of spores realizing the cell-targeted delivery in the colon. | [46] | |
FA | FA receptor | Curcumin | FA-amylopectin– albumin core–shell nanogels | HT-29 and A549/- | The nanogels were resistant to digestion and enhanced the apoptosis rate of cancer cells as a carrier of curcumin. | [47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wei, Z.; Xue, C. Oral Cell-Targeted Delivery Systems Constructed of Edible Materials: Advantages and Challenges. Molecules 2022, 27, 7991. https://doi.org/10.3390/molecules27227991
Li X, Wei Z, Xue C. Oral Cell-Targeted Delivery Systems Constructed of Edible Materials: Advantages and Challenges. Molecules. 2022; 27(22):7991. https://doi.org/10.3390/molecules27227991
Chicago/Turabian StyleLi, Xiaolong, Zihao Wei, and Changhu Xue. 2022. "Oral Cell-Targeted Delivery Systems Constructed of Edible Materials: Advantages and Challenges" Molecules 27, no. 22: 7991. https://doi.org/10.3390/molecules27227991
APA StyleLi, X., Wei, Z., & Xue, C. (2022). Oral Cell-Targeted Delivery Systems Constructed of Edible Materials: Advantages and Challenges. Molecules, 27(22), 7991. https://doi.org/10.3390/molecules27227991