Antibacterial Screening of Isoespintanol, an Aromatic Monoterpene Isolated from Oxandra xylopioides Diels
Abstract
:1. Introduction
2. Results
2.1. Obtaining and Identification of Isoespintanol
2.2. Antibacterial Susceptibility Testing
2.3. Biofilm Reduction
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Microorganisms
4.3. Antibacterial Susceptibility Testing
4.4. Quantitative Assessment of Biofilm Formation
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lemiech-Mirowska, E.; Kiersnowska, Z.; Michalkiewicz, M.; Depta, A.; Marczak, M. Nosocomial infections as one of the most important problems of the healthcare system. Ann. Agric. Environ. Med. 2021, 28, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.Y.D.; Wiseman, T.; Betihavas, V. Risk factors for nosocomial infections and/or sepsis in adult burns patients: An integrative review. Intensive Crit. Care Nurs. 2022, 73, 103292. [Google Scholar] [CrossRef] [PubMed]
- Suksatan, W.; Jasim, S.A.; Widjaja, G.; Jalil, A.T.; Chupradit, S.; Ansari, M.J.; Mustafa, Y.F.; Hammoodi, H.A.; Mohammadi, M.J. Assessment effects and risk of nosocomial infection and needle sticks injuries among patents and health care worker. Toxicol. Rep. 2022, 9, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Aman, S.; Mittal, D.; Shriwastav, S.; Tuli, H.S.; Chauhan, S.; Singh, P.; Sharma, S.; Saini, R.V.; Kaur, N.; Saini, A.K. Prevalence of multidrug-resistant strains in device associated nosocomial infection and their in vitro killing by nanocomposites. Ann. Med. Surg. 2022, 78, 103687. [Google Scholar] [CrossRef]
- Khan, A.; Miller, W.R.; Arias, C.A. Mechanisms of antimicrobial resistance among hospital-associated pathogens. Expert Rev. Anti. Infect. Ther. 2018, 16, 269–287. [Google Scholar] [CrossRef]
- Lupo, A.; Haenni, M.; Madec, J.-Y. Antimicrobial resistance in Acinetobacter spp. and Pseudomonas spp. Microbiol. Spectr. 2018, 6, S390–S400. [Google Scholar] [CrossRef]
- Brooke, J.S. Advances in the microbiology of Stenotrophomonas maltophilia. Clin. Microbiol. Rev. 2021, 34, e0003019. [Google Scholar] [CrossRef]
- Li, W.; Yang, Z.; Hu, J.; Wang, B.; Rong, H.; Li, Z.; Sun, Y.; Wang, Y.; Zhang, X.; Wang, M.; et al. Evaluation of culturable ‘last-resort’ antibiotic resistant pathogens in hospital wastewater and implications on the risks of nosocomial antimicrobial resistance prevalence. J. Hazard. Mater. 2022, 438, 129477. [Google Scholar] [CrossRef]
- Russo, T.; Marr, C. Hypervirulent Klebsiella pneumoniae. Clin. Microbiol. Rev. 2019, 32, e00001-19. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Howden, B.P.; Stinear, T.P. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr. Opin. Microbiol. 2018, 41, 76–82. [Google Scholar] [CrossRef]
- Harding, C.M.; Hennon, S.W.; Feldman, M.F. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat. Rev. Microbiol. 2017, 16, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Argemi, X.; Hansmann, Y.; Prola, K.; Prévost, G. Coagulase-negative staphylococci pathogenomics. Int. J. Mol. Sci. 2019, 20, 1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Candan, E.D.; Aksöz, N. Klebsiella pneumoniae: Characteristics of carbapenem resistance and virulence factors. Acta Biochim. Pol. 2015, 62, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Omaña, R.; Escorcia-Saucedo, A.E.; Velarde-Ruiz, J.A. Prevalencia e impacto de resistencias a antimicrobianos en infecciones gastrointestinales: Una revisión. Rev. Gastroenterol. Mex. 2021, 86, 265–275. [Google Scholar] [CrossRef]
- Resurrección-Delgado, C.; Montenegro-Idrogo, J.; Chiappe-Gonzalez, A.; Vargas-Gonzalez, R.; Cucho-Espinoza, C.; Mamani-Condori, D.; Huaroto-Valdivia, L. Klebsiella pneumoniae Nueva Delhi metalo-betalactamasa en el Hospital Nacional Dos de Mayo. Lima, Perú. Rev. Peru Med. Exp. Salud Publica 2017, 34, 261–267. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, D.; Forde, B.; Kidd, T.; Harris, P.; Schembri, M.; Beatson, S.; Paterson, D.; Walker, M. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef]
- Denissen, J.; Reyneke, B.; Waso-Reyneke, M.; Havenga, B.; Barnard, T.; Khan, S.; Khan, W. Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. Int. J. Hyg. Environ. Health 2022, 244, 114006. [Google Scholar] [CrossRef]
- Liu, J.Y.; Dickter, J.K. Nosocomial infections: A history of hospital-acquired infections. Gastrointest. Endosc. Clin. N. Am. 2020, 30, 637–652. [Google Scholar] [CrossRef]
- Hazard, D.; von Cube, M.; Kaier, K.; Wolkewitz, M. Predicting potential prevention effects on hospital burden of nosocomial infections: A multistate modeling approach. Value Health 2021, 24, 830–838. [Google Scholar] [CrossRef]
- Jeganathan, N. Burden of sepsis in India. Chest 2022, 161, 1438–1439. [Google Scholar] [CrossRef]
- Bhatia, P.; Sharma, A.; George, A.J.; Anvitha, D.; Kumar, P.; Dwivedi, V.P.; Chandra, N.S. Antibacterial activity of medicinal plants against ESKAPE: An update. Heliyon 2021, 7, e06310. [Google Scholar] [CrossRef] [PubMed]
- Ghodhbane, H.; Elaidi, S.; Sabatier, J.-M.; Achour, S.; Benhmida, J.; Regaya, I. Bacteriocins active against multi-resistant Gram negative bacteria implicated in nosocomial infections. Infect. Disord. Drug Targets 2015, 15, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.; Zotchev, S.; Dirsch, V.; International Natural Product Sciences Taskforce; Supuran, C. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Araldi, R.P.; dos Santos, M.O.; Barbon, F.F.; Manjerona, B.A.; Meirelles, B.R.; Neto, P.D.O.; da Silva, P.I.; dos Santos, L.; Camargo, I.C.C.; de Souza, E.B. Analysis of antioxidant, cytotoxic and mutagenic potential of Agave sisalana Perrine extracts using Vero cells, human lymphocytes and mice polychromatic erythrocytes. Biomed. Pharmacother. 2018, 98, 873–885. [Google Scholar] [CrossRef] [PubMed]
- Dutra, R.C.; Campos, M.M.; Santos, A.R.S.; Calixto, J.B. Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacol. Res. 2016, 112, 4–29. [Google Scholar] [CrossRef]
- Aylate, A.; Agize, M.; Ekero, D.; Kiros, A.; Ayledo, G.; Gendiche, K. In-Vitro and In-Vivo antibacterial activities of Croton macrostachyus methanol extract against E. coli and S. aureus. Adv. Anim. Vet. Sci. 2017, 5, 107–114. [Google Scholar] [CrossRef]
- Avato, P. Editorial to the special issue—“Natural Products and Drug Discovery”. Molecules 2020, 25, 1128. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, A.; Przychodna, M.; Sopata, S.; Bodalska, A.; Fecka, I. Thymol and thyme essential oil-new insights into selected therapeutic applications. Molecules 2020, 25, 4125. [Google Scholar] [CrossRef]
- Salehi, B.; Upadhyay, S.; Orhan, I.E.; Jugran, A.K.; Jayaweera, S.L.D.; Dias, D.A.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic potential of α-and β-pinene: A miracle gift of nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef] [Green Version]
- Bergman, M.E.; Davis, B.; Phillips, M.A. Medically useful plant terpenoids: Biosynthesis, occurrence, and mechanism of action. Molecules 2019, 24, 3961. [Google Scholar] [CrossRef]
- Anandakumar, P.; Kamaraj, S.; Vanitha, M.K. D-limonene: A multifunctional compound with potent therapeutic effects. J. Food Biochem. 2021, 45, e13566. [Google Scholar] [CrossRef] [PubMed]
- Badawy, M.E.I.; Marei, G.I.K.; Rabea, E.I.; Taktak, N.E.M. Antimicrobial and antioxidant activities of hydrocarbon and oxygenated monoterpenes against some foodborne pathogens through in vitro and in silico studies. Pestic. Biochem. Physiol. 2019, 158, 185–200. [Google Scholar] [CrossRef] [PubMed]
- Nabila, B.; Piras, A.; Fouzia, B.; Falconieri, D.; Kheira, G.; Fedoul, F.F.; Majda, S.R. Chemical composition and antibacterial activity of the essential oil of Laurus nobilis leaves. Nat. Prod. Res. 2020, 36, 989–993. [Google Scholar] [CrossRef] [PubMed]
- Sokolik, C.G.; Ben-Shabat-Binyamini, R.; Gedanken, A.; Lellouche, J.P. Proteinaceous microspheres as a delivery system for carvacrol and thymol in antibacterial applications. Ultrason. Sonochem. 2017, 41, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Bouchekouk, C.; Kara, F.Z.; Tail, G.; Saidi, F.; Benabdelkader, T. Essential oil composition and antibacterial activity of Pteridium aquilinum (L.) Kuhn. Biol. Futur. 2019, 70, 56–61. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Z.; Mukhamadiev, A.; Feng, J.; Gao, Y.; Zhuansun, X.; Han, R.; Chong, Y.; Jafari, S.M. Formulation optimization and characterization of carvacrol-loaded nanoemulsions: In Vitro antibacterial activity/mechanism and safety evaluation. Ind. Crop. Prod. 2022, 181, 114816. [Google Scholar] [CrossRef]
- Liu, X.; Cai, J.; Chen, H.; Zhong, Q.; Hou, Y.; Chen, W.; Chen, W. Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microb. Pathog. 2020, 141, 103980. [Google Scholar] [CrossRef]
- Iraji, A.; Yazdanpanah, S.; Alizadeh, F.; Mirzamohammadi, S.; Ghasemi, Y.; Pakshir, K.; Yang, Y.; Zomorodian, K. Screening the antifungal activities of monoterpenes and their isomers against Candida species. J. Appl. Microbiol. 2020, 129, 1541–1551. [Google Scholar] [CrossRef]
- Tao, N.; Ouyang, Q.; Jia, L. Citral inhibits mycelial growth of Penicillium italicum by a membrane damage mechanism. Food Control 2014, 41, 116–121. [Google Scholar] [CrossRef]
- De Oliveira, F.; Moura, J.; De Oliveira, E. Investigation on mechanism of antifungal activity of eugenol against Trichophyton rubrum. Med. Mycol. 2013, 51, 507–513. [Google Scholar] [CrossRef]
- De Oliveira, M.; Araújo, A.; Souza, K.; Cardoso, G.; de Oliveira, E.; de Oliveira, F. Investigation of the antifungal potential of linalool against clinical isolates of fluconazole resistant Trichophyton rubrum. J. Mycol. Med. 2017, 27, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Boye, A.; Addo, J.K.; Acheampong, D.O.; Thomford, A.K.; Asante, E.; Amoaning, R.E.; Kuma, D.N. The hydroxyl moiety on carbon one (C1) in the monoterpene nucleus of thymol is indispensable for anti-bacterial effect of thymol. Heliyon 2020, 6, e03492. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Jiang, S.; Pu, T.; Fan, L.; Su, F.; Ye, M. Antifungal activity of phenolic monoterpenes and structure-related compounds against plant pathogenic fungi. Nat. Prod. Res. 2019, 33, 1423–1430. [Google Scholar] [CrossRef] [PubMed]
- Morales, I.; De La Fuente, J.; Sosa, V. Componentes de Eupatorium saltense. Asoc. Quim. Argent. 1991, 79, 141–144. [Google Scholar]
- Hocquemiller, R.; Cortes, D.; Arango, G.J.; Myint, S.H.; Cave, A. Isolement et synthese de l’espintanol, nouveau monoterpene antiparasitaire. J. Nat. Prod. 1991, 54, 445–452. [Google Scholar] [CrossRef]
- Rojano, B.; Saez, J.; Schinella, G.; Quijano, J.; Vélez, E.; Gil, A.; Notario, R. Experimental and theoretical determination of the antioxidant properties of isoespintanol (2-isopropyl-3,6-dimethoxy-5-methylphenol). J. Mol. Struct. 2008, 877, 1–6. [Google Scholar] [CrossRef]
- Rojano, B.; Pérez, E.; Figadère, B.; Martin, M.T.; Recio, M.C.; Giner, R.; Ríos, J.L.; Schinella, G.; Sáez, J. Constituents of Oxandra Cf. xylopioides with anti-inflammatory activity. J. Nat. Prod. 2007, 70, 835–838. [Google Scholar] [CrossRef]
- Gavilánez, T.C.; Colareda, G.A.; Ragone, M.I.; Bonilla, M.; Rojano, B.A.; Schinella, G.R.; Consolini, A.E. Intestinal, urinary and uterine antispasmodic effects of isoespintanol, metabolite from Oxandra xylopioides leaves. Phytomedicine 2018, 51, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, G.J.; Rojano, B.; Schinella, G.; Mosca, S.M. Participation of NO in the vasodilatory action of isoespintanol. Vitae 2019, 26, 78–83. [Google Scholar] [CrossRef]
- Usuga, A.; Tejera, I.; Gómez, J.; Restrepo, O.; Rojano, B.; Restrepo, G. Cryoprotective effects of ergothioneine and isoespintanol on canine semen. Animals 2021, 11, 2757. [Google Scholar] [CrossRef] [PubMed]
- Rojano, B.A.; Montoya, S.; Yépez, F.; Saez, J. Evaluación de isoespintanol aislado de Oxandra Cf. xylopioides (Annonaceae) sobre Spodoptera frugiperda J.E. Smith (Lepidoptera: Noctuidae). Rev. Fac. Nac. Agron. Medellín 2007, 60, 3691–3702. [Google Scholar]
- Arango, N.; Vanegas, N.; Saez, J.; García, C.; Rojano, B. Actividad antifungica del isoespintanol sobre hongos del género Colletotricum. Sci. Tech. 2007, 33, 279–280. [Google Scholar] [CrossRef]
- Contreras, O.; Angulo, A.; Santafé, G. Mechanism of antifungal action of monoterpene isoespintanol against clinical isolates of Candida tropicalis. Molecules 2022, 27, 5808. [Google Scholar] [CrossRef]
- Contreras, O.I.; Angulo, A.; Santafé, G. Antifungal potential of isoespintanol extracted from Oxandra xylopioides diels (Annonaceae) against intrahospital isolations of Candida spp. Heliyon 2022, 8, e11110. [Google Scholar] [CrossRef]
- Kamatou, G.P.; Vermaak, I.; Viljoen, A.M.; Lawrence, B.M. Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry 2013, 96, 15–25. [Google Scholar] [CrossRef]
- Cowan, M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [Green Version]
- Ergüden, B. Phenol group of terpenoids is crucial for antibacterial activity upon ion leakage. Lett. Appl. Microbiol. 2021, 73, 438–445. [Google Scholar] [CrossRef]
- Siroli, L.; Patrignani, F.; Gardini, F.; Lanciotti, R. Effects of sub-lethal concentrations of thyme and oregano essential oils, carvacrol, thymol, citral and trans-2-hexenal on membrane fatty acid composition and volatile molecule profile of Listeria monocytogenes, Escherichia coli and Salmonella enteritidis. Food Chem. 2015, 182, 185–192. [Google Scholar] [CrossRef]
- Alam, K.; Al Farraj, D.A.; Mah-E-Fatima, S.; Yameen, M.A.; Elshikh, M.S.; Alkufeidy, R.M.; Mustafa, A.; Bhasme, P.; Alshammari, M.K.; Alkubaisi, N.A.; et al. Anti-biofilm activity of plant derived extracts against infectious pathogen-Pseudomonas aeruginosa PAO1. J. Infect. Public Health 2020, 13, 1734–1741. [Google Scholar] [CrossRef]
- Yousefpour, Z.; Davarzani, F.; Owlia, P. Evaluating of the effects of sub-MIC concentrations of gentamicin on biofilm formation in clinical isolates of Pseudomonas aeruginosa. Iran. J. Pathol. 2021, 16, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Brindhadevi, K.; LewisOscar, F.; Mylonakis, E.; Shanmugam, S.; Verma, T.N.; Pugazhendhi, A. Biofilm and quorum sensing mediated pathogenicity in Pseudomonas aeruginosa. Process Biochem. 2020, 96, 49–57. [Google Scholar] [CrossRef]
- Jurado-Martín, I.; Sainz-Mejías, M.; McClean, S. Pseudomonas aeruginosa: An audacious pathogen with an adaptable arsenal of virulence factors. Int. J. Mol. Sci. 2021, 22, 3128. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Ma, L. Iron uptake and biofilm formation in Pseudomonas aeruginosa. Chin. J. Biotechnol. 2017, 33, 1489–1512. [Google Scholar] [CrossRef]
- Qaralleh, H. Thymol rich Thymbra capitata essential oil inhibits quorum sensing, virulence and biofilm formation of beta lactamase producing Pseudomonas aeruginosa. Nat. Prod. Sci. 2019, 25, 172–180. [Google Scholar] [CrossRef]
- Espina, L.; Berdejo, D.; Alfonso, P.; García-Gonzalo, D.; Pagán, R. Potential use of carvacrol and citral to inactivate biofilm cells and eliminate biofouling. Food Control 2017, 82, 256–265. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.J.; Li, H.Y.; Deng, S.M.; Jia, A.Q. Quorum sensing inhibition of hordenine analogs on Pseudomonas aeruginosa and Serratia marcescens. Synth. Syst. Biotechnol. 2021, 6, 360–368. [Google Scholar] [CrossRef]
- Kachur, K.; Suntres, Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit. Rev. Food Sci. Nutr. 2020, 60, 3042–3053. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 9th ed.; Clinical and Laboratory Standards Institute: Wayne, AR, USA, 2012; Volume 32. [Google Scholar]
- Quave, C.L.; Plano, L.R.; Pantuso, T.; Bennett, B.C. Effects of extracts from italian medicinal llants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 2008, 118, 418–428. [Google Scholar] [CrossRef] [Green Version]
- Rossi, C.; Serio, A.; Chaves, C.; Anniballi, F.; Auricchio, B.; Goffredo, E.; Cenci-Goga, B.; Lista, F.; Fillo, S.; Paparella, A. Biofilm formation, pigment production and motility in Pseudomonas spp. isolated from the dairy industry. Food Control 2018, 86, 241–248. [Google Scholar] [CrossRef]
- Donadu, M.G.; Peralta, Y.; Usai, D.; Maggio, F.; Molina, J.; Rizzo, D.; Bussu, F.; Rubino, S.; Zanetti, S.; Paparella, A.; et al. Colombian essential oil of Ruta graveolens against nosocomial antifungal resistant Candida strains. J. Fungi 2021, 7, 383. [Google Scholar] [CrossRef] [PubMed]
Isolates | ISO Concentrations (µg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
19.5 | 39.1 | 78.1 | 156.2 | 312.5 | 625 | 1000 | ATBs | |
E. coli | ||||||||
A017 * | 4.5 ± 1.3 | 14.6 ± 0.8 | 24.9 ± 3.0 | 49.5 ± 9.8 | 82.0 ± 8.6 | 90.2 ± 5.9 | 98.1 ± 0.9 | 96.0 ± 3.5 |
A018 * | 1.4 ± 0.9 | 13.8 ± 1.6 | 17.0 ± 7.4 | 47.3 ± 5.1 | 60.1 ± 1.3 | 80.2 ± 5.5 | 98.3 ± 1.8 | 92.0 ± 2.6 |
A019 * | 1.4 ± 2.0 | 13.8 ± 4.0 | 17.0 ± 4.0 | 47.3 ± 6.2 | 60.1 ± 8.4 | 80.2 ± 3.1 | 98.3 ± 0.9 | 92.0 ± 2.3 |
A020 * | 6.4 ± 1.3 | 14.5 ± 1.2 | 25.5 ± 3.2 | 32.8 ± 4.5 | 48.0 ± 3.3 | 80.8 ± 4.2 | 97.5 ± 1.9 | 98.6 ± 3.0 |
A021 * | 2.9 ± 1.6 | 7.2 ± 2.4 | 17.5 ± 2.5 | 36.3 ± 4.1 | 45.6 ± 5.2 | 75.8 ± 7.7 | 96.7 ± 2.3 | 98.7 ± 1.9 |
A022 | 6.4 ± 1.7 | 14.4 ± 7.1 | 21.6 ± 3.2 | 39.2 ± 2.0 | 66.3 ± 9.5 | 79.1 ± 2.3 | 95.5 ± 3.6 | 97.7 ± 1.9 |
A023 | 5.3 ± 2.3 | 19.7 ± 1.8 | 28.7 ± 3.9 | 33.4 ± 8.0 | 60.5 ± 3.5 | 73.7 ± 2.1 | 96.3 ± 3.3 | 95.9 ± 1.1 |
A031 | 6.4 ± 2.4 | 15.8 ± 4.3 | 37.5 ± 3.1 | 48.7 ± 4.1 | 74.8 ± 1.7 | 83.6 ± 3.7 | 95.2 ± 2.0 | 95.5 ± 0.5 |
A035 | 6.3 ± 2.8 | 16.6 ± 5.2 | 32.1 ± 4.5 | 47.7 ± 2.2 | 72.7 ± 3.9 | 87.3 ± 3.8 | 99.6 ± 0.3 | 98.9 ± 1.2 |
A036 | 2.7 ± 1.8 | 17.5 ± 4.8 | 27.7 ± 7.0 | 38.7 ± 6.0 | 56.7 ± 8.2 | 77.2 ± 6.5 | 99.7 ± 0.3 | 99.5 ± 0.6 |
A037 * | 2.8 ± 0.2 | 18.5 ± 3.6 | 39.8 ± 3.1 | 48.9 ± 2.9 | 64.3 ± 1.2 | 79.7 ± 3.6 | 99.1 ± 4.5 | 96.4 ± 2.0 |
A038 | 2.5 ± 0.8 | 16.7 ± 4.1 | 35.2 ± 4.1 | 48.9 ± 3.8 | 67.0 ± 5.1 | 80.1 ± 1.8 | 96.7 ± 3.3 | 97.0 ± 1.1 |
A007 | 1.1 ± 1.3 | 10.7 ± 3.6 | 19.6 ± 6.6 | 32.3 ± 8.9 | 55.0 ± 5.1 | 84.6 ± 3.1 | 98.1 ± 0.5 | 97.8 ± 1.7 |
A006 * | 2.7 ± 1.7 | 10.4 ± 2.1 | 15.9 ± 5.8 | 29.5 ± 3.7 | 44.8 ± 1.6 | 76.0 ± 4.3 | 91.9 ± 6.0 | 96.7 ± 2.0 |
A009 | 6.9 ± 1.2 | 16.3 ± 6.9 | 32.3 ± 8.7 | 46.2 ± 1.3 | 68.9 ± 4.8 | 82.7 ± 3.2 | 97.8 ± 1.5 | 94.8 ± 2.3 |
A016 | 3.5 ± 1.2 | 15.9 ± 2.4 | 35.2 ± 8.6 | 49.8 ± 4.8 | 63.5 ± 3.0 | 79.1 ± 4.6 | 99.1 ± 0.9 | 98.1 ± 1.0 |
A087 | 5.7 ± 3.4 | 15.1 ± 2.3 | 33.5 ± 4.3 | 49.9 ± 4.4 | 69.5 ± 3.4 | 82.9 ± 7.0 | 99.2 ± 0.5 | 98.8 ± 0.7 |
A091 * | 7.0 ± 2.2 | 16.6 ± 6.5 | 30.6 ± 6.5 | 49.6 ± 2.8 | 69.9 ± 6.7 | 80.9 ± 2.9 | 97.5 ± 2.1 | 98.7 ± 1.6 |
A093 | 5.4 ± 2.7 | 16.1 ± 1.5 | 25.4 ± 1.7 | 43.2 ± 5.1 | 79.1 ± 5.7 | 86.9 ± 1.5 | 93.8 ± 3.3 | 94.1 ± 3.8 |
A094 * | 3.8 ± 1.3 | 14.2 ± 0.7 | 24.5 ± 1.9 | 37.3 ± 6.2 | 77.6 ± 4.3 | 88.9 ± 8.3 | 96.2 ± 2.6 | 98.2 ± 2.1 |
A099 | 1.2 ± 0.5 | 22.2 ± 6.0 | 39.9 ± 4.8 | 46.0 ± 1.4 | 77.6 ± 1.0 | 85.2 ± 2.9 | 98.8 ± 1.8 | 98.3 ± 1.3 |
A0101 | 2.2 ± 0.1 | 15.9 ± 3.5 | 28.1 ± 1.7 | 49.9 ± 5.8 | 75.0 ± 3.8 | 89.8 ± 2.1 | 98.0 ± 2.2 | 98.8 ± 1.3 |
A0103 * | 1.0 ± 0.5 | 16.1 ± 0.5 | 39.2 ± 1.9 | 47.4 ± 2.6 | 68.5 ± 1.8 | 85.9 ± 5.7 | 97.3 ± 2.5 | 98.9 ± 2.6 |
A0106 * | 3.3 ± 1.4 | 14.8 ± 2.5 | 37.3 ± 3.4 | 49.0 ± 2.8 | 76.0 ± 2.1 | 86.7 ± 2.3 | 98.9 ± 2.5 | 98.9 ± 1.3 |
A024 | 3.6 ± 1.5 | 19.3 ± 4.5 | 28.9 ± 2.5 | 42.9 ± 3.9 | 63.7 ± 5.3 | 81.4 ± 3.7 | 97.3 ± 2.4 | 99.9 ± 1.7 |
A025 * | 1.6 ± 1.1 | 13.4 ± 7.7 | 20.5 ± 4.2 | 30.3 ± 4.4 | 60.2 ± 4.5 | 88.2 ± 1.8 | 98.1 ± 1.1 | 98.1 ± 1.1 |
A026 | 5.3 ± 1.7 | 16.3 ± 2.5 | 29.6 ± 4.0 | 49.6 ± 5.0 | 68.9 ± 4.5 | 75.3 ± 1.1 | 97.1 ± 1.8 | 97.2 ± 1.5 |
A027 * | 4.8 ± 1.0 | 19.2 ± 0.8 | 34.4 ± 1.9 | 48.8 ± 3.1 | 76.0 ± 3.9 | 83.5 ± 2.5 | 99.2 ± 0.7 | 99.8 ± 0.5 |
A028 | 4.7 ± 0.9 | 16.7 ± 1.7 | 33.7 ± 7.4 | 47.1 ± 3.2 | 68.0 ± 2.1 | 83.2 ± 3.8 | 97.7 ± 1.2 | 99.4 ± 0.4 |
A029 * | 5.8 ± 1.4 | 11.6 ± 3.3 | 33.7 ± 4.5 | 47.7 ± 3.8 | 71.5 ± 2.8 | 84.1 ± 4.4 | 99.3 ± 0.2 | 99.2 ± 0.5 |
A030 | 0.6 ± 0.5 | 17.7 ± 1.5 | 28.5 ± 0.9 | 47.6 ± 1.9 | 69.8 ± 2.5 | 81.1 ± 4.0 | 98.7 ± 1.6 | 98.7 ± 1.0 |
A032 * | 12.0 ± 2.4 | 24.1 ± 3.2 | 37.7 ± 2.6 | 49.5 ± 4.4 | 64.7 ± 4.5 | 84.6 ± 4.5 | 99.0 ± 1.2 | 99.1 ± 2.5 |
A033 * | 4.6 ± 1.1 | 19.9 ± 5.5 | 30.9 ± 1.5 | 49.9 ± 5.5 | 60.0 ± 3.7 | 78.2 ± 2.2 | 96.7 ± 2.6 | 99.6 ± 3.3 |
A034 | 7.3 ± 1.1 | 15.4 ± 2.1 | 21.4 ± 5.7 | 37.3 ± 1.1 | 55.4 ± 3.4 | 80.1 ± 3.1 | 98.5 ± 1.7 | 97.8 ± 2.1 |
A005 | 6.1 ± 0.9 | 16.4 ± 0.8 | 25.5 ± 2.0 | 46.1 ± 0.9 | 59.7 ± 3.9 | 81.1 ± 1.7 | 95.7 ± 1.3 | 98.1 ± 2.1 |
A011 | 8.4 ± 1.5 | 16.2 ± 1.4 | 16.9 ± 2.0 | 28.3 ± 0.5 | 47.9 ± 0.9 | 82.9 ± 4.0 | 97.6 ± 1.1 | 98.5 ± 2.1 |
A013 | 17.2 ± 0.5 | 29.5 ± 2.2 | 38.9 ± 3.6 | 50.0 ± 6.9 | 68.7 ± 5.0 | 82.8 ± 4.7 | 97.9 ± 2.5 | 98.9 ± 1.3 |
A014 | 20.7 ± 4.3 | 30.1 ± 2.0 | 35.0 ± 6.8 | 49.7 ± 1.2 | 65.1 ± 2.7 | 79.6 ± 2.5 | 98.1 ± 3.8 | 98.7 ± 1.1 |
P. aeruginosa | ||||||||
A012 | 7.9 ± 2.5 | 11.5 ± 0.8 | 16.6 ± 4.7 | 27.2 ± 2.2 | 38.9 ± 5.2 | 70.0 ± 8.6 | 93.0 ± 6.3 | 99.4 ± 0.4 |
A015 | 16.9 ± 4.9 | 21.0 ± 6.7 | 37.9 ± 10.7 | 58.8 ± 4.7 | 69.2 ± 4.9 | 88.1 ± 4.2 | 96.3 ± 2.6 | 98.9 ± 0.7 |
A050 | 13.3 ± 4.5 | 26.4 ± 2.3 | 33.5 ± 8.6 | 47.8 ± 1.9 | 54.1 ± 1.6 | 78.1 ± 6.0 | 98.3 ± 2.0 | 97.7 ± 2.7 |
A051 | 27.4 ± 5.2 | 40.8 ± 5.4 | 50.8 ± 3.7 | 67.7 ± 4.9 | 79.8 ± 1.4 | 87.4 ± 1.6 | 98.1 ± 3.0 | 96.8 ± 1.1 |
A052 | 11.9 ± 5.5 | 25.3 ± 2.7 | 33.8 ± 3.3 | 46.3 ± 5.0 | 75.3 ± 7.1 | 83.6 ± 5.6 | 98.2 ± 2.0 | 99.3 ± 1.4 |
A053 | 8.9 ± 2.9 | 23.9 ± 5.7 | 35.7 ± 5.2 | 47.5 ± 5.7 | 74.7 ± 1.3 | 86.2 ± 6.9 | 99.4 ± 1.0 | 98.5 ± 3.2 |
A054 | 18.4 ± 3.3 | 24.2 ± 3.3 | 36.7 ± 0.8 | 50.3 ± 6.0 | 60.4 ± 3.2 | 81.0 ± 2.9 | 99.2 ± 0.3 | 100.2 ± 1.4 |
A055 | 14.3 ± 4.1 | 29.4 ± 1.2 | 37.1 ± 6.0 | 54.4 ± 1.0 | 75.7 ± 2.5 | 85.0 ± 2.6 | 99.3 ± 2.7 | 98.6 ± 3.2 |
A056 | 22.4 ± 1.4 | 33.7 ± 6.7 | 42.0 ± 8.3 | 56.2 ± 8.2 | 76.4 ± 3.5 | 86.9 ± 3.6 | 99.2 ± 5.1 | 99.9 ± 0.6 |
A057 | 9.3 ± 1.6 | 19.5 ± 1.0 | 27.4 ± 3.0 | 42.0 ± 1.3 | 64.6 ± 3.6 | 83.9 ± 4.2 | 99.6 ± 1.2 | 94.3 ± 0.7 |
A058 | 13.5 ± 2.8 | 30.7 ± 3.4 | 42.6 ± 5.9 | 53.1 ± 2.1 | 68.8 ± 2.9 | 85.7 ± 4.6 | 98.2 ± 1.5 | 96.2 ± 2.1 |
A097 | 7.9 ± 4.8 | 17.3 ± 3.1 | 28.8 ± 0.9 | 50.1 ± 0.7 | 69.7 ± 1.6 | 87.5 ± 1.7 | 96.9 ± 4.0 | 95.1 ± 0.9 |
P. mirabilis | ||||||||
A059 | 23.7 ± 4.4 | 32.0 ± 1.1 | 42.8 ± 1.1 | 49.3 ± 7.7 | 75.9 ± 4.1 | 88.0 ± 5.0 | 99.6 ± 2.1 | 98.1 ± 2.7 |
A060 | 21.1 ± 2.5 | 30.1 ± 2.6 | 40.9 ± 5.7 | 50.4 ± 2.0 | 75.1 ± 3.6 | 85.0 ± 2.7 | 99.7 ± 1.3 | 99.3 ± 1.5 |
A061 | 20.0 ± 1.9 | 32.0 ± 3.4 | 38.3 ± 1.7 | 51.7 ± 1.2 | 82.8 ± 5.8 | 95.4 ± 1.6 | 98.7 ± 3.2 | 95.5 ± 3.7 |
A062 | 19.1 ± 4.2 | 29.7 ± 2.6 | 35.7 ± 3.8 | 41.5 ± 3.3 | 73.7 ± 2.5 | 82.9 ± 2.4 | 99.7 ± 0.3 | 94.8 ± 2.2 |
A063 | 18.3 ± 0.9 | 26.7 ± 2.1 | 36.2 ± 1.5 | 49.8 ± 1.7 | 65.1 ± 1.8 | 81.0 ± 4.9 | 99.0 ± 3.9 | 100.0 ± 2.9 |
A064 | 16.2 ± 2.8 | 30.1 ± 2.8 | 38.8 ± 2.6 | 49.3 ± 5.4 | 63.5 ± 4.5 | 79.3 ± 3.7 | 93.6 ± 10.0 | 99.4 ± 1.0 |
A090 | 18.7 ± 1.7 | 33.3 ± 3.9 | 44.6 ± 1.2 | 48.6 ± 2.6 | 61.5 ± 5.6 | 86.9 ± 7.5 | 99.7 ± 1.7 | 100.1 ± 1.7 |
S. epidermidis | ||||||||
A065 | 18.5 ± 0.7 | 33.3 ± 2.5 | 43.1 ± 3.7 | 63.4 ± 3.3 | 85.4 ± 2.0 | 91.4 ± 4.2 | 99.9 ± 0.3 | 99.7 ± 1.4 |
A066 | 18.7 ± 1.2 | 30.4 ± 1.9 | 41.3 ± 1.7 | 46.2 ± 1.8 | 73.6 ± 2.2 | 89.6 ± 3.4 | 97.0 ± 0.5 | 98.4 ± 0.4 |
A067 | 16.0 ± 2.0 | 27.2 ± 5.3 | 38.4 ± 5.8 | 59.9 ± 1.4 | 71.8 ± 2.2 | 84.7 ± 6.7 | 95.0 ± 2.4 | 96.8 ± 1.6 |
A. baumannii | ||||||||
A001 | 5.0 ± 2.0 | 14.0 ± 0.6 | 26.5 ± 1.7 | 38.6 ± 3.0 | 55.0 ± 1.9 | 75.2 ± 0.7 | 91.4 ± 0.6 | 98.5 ± 1.0 |
A070 | 13.2 ± 2.2 | 29.5 ± 3.6 | 35.4 ± 1.2 | 48.4 ± 1.8 | 65.5 ± 5.7 | 89.2 ± 4.2 | 95.7 ± 1.8 | 94.8 ± 1.2 |
A089 | 17.8 ± 1.5 | 27.9 ± 2.5 | 35.9 ± 0.8 | 46.6 ± 2.5 | 63.5 ± 2.1 | 81.1 ± 7.0 | 98.4 ± 2.5 | 96.8 ± 2.8 |
K. pneumoniae | ||||||||
A008 | 25.7 ± 6.0 | 38.7 ± 2.1 | 43.1 ± 1.8 | 51.7 ± 1.2 | 67.3 ± 1.7 | 72.8 ± 3.0 | 96.9 ± 1.0 | 99.0 ± 1.6 |
A039 | 24.3 ± 2.6 | 31.4 ± 4.8 | 43.3 ± 4.5 | 55.3 ± 5.6 | 68.8 ± 2.7 | 79.7 ± 6.3 | 93.9 ± 3.6 | 99.9 ± 0.5 |
A040 | 17.2 ± 3.1 | 26.4 ± 1.9 | 34.1 ± 5.8 | 42.8 ± 7.1 | 73.4 ± 3.9 | 80.0 ± 0.8 | 90.3 ± 4.8 | 100.5 ± 1.5 |
A041 | 16.9 ± 2.4 | 24.1 ± 8.4 | 39.6 ± 5.5 | 48.8 ± 2.3 | 78.2 ± 1.6 | 89.2 ± 4.4 | 99.7 ± 2.5 | 97.8 ± 4.2 |
A042 | 18.7 ± 0.8 | 27.3 ± 5.7 | 33.3 ± 4.6 | 47.6 ± 6.5 | 80.5 ± 2.7 | 87.2 ± 3.4 | 91.0 ± 1.9 | 97.4 ± 3.2 |
A043+ | 10.8 ± 3.7 | 21.4 ± 2.8 | 36.3 ± 4.2 | 49.6 ± 7.9 | 79.8 ± 2.8 | 82.8 ± 4.5 | 98.9 ± 4.3 | 95.8 ± 0.7 |
A044 | 16.9 ± 1.6 | 27.6 ± 8.3 | 41.7 ± 2.7 | 48.9 ± 1.3 | 74.1 ± 2.6 | 85.8 ± 3.0 | 98.2 ± 3.2 | 97.6 ± 4.4 |
A045 | 16.2 ± 1.2 | 20.1 ± 2.6 | 34.0 ± 3.4 | 55.1 ± 7.7 | 69.4 ± 6.7 | 85.3 ± 6.7 | 99.4 ± 1.2 | 97.1 ± 0.6 |
A046 | 13.7 ± 2.3 | 16.7 ± 1.5 | 28.6 ± 5.8 | 45.3 ± 7.1 | 72.7 ± 5.8 | 89.6 ± 3.2 | 97.6 ± 7.5 | 99.9 ± 1.1 |
A047 | 24.1 ± 3.6 | 26.6 ± 4.4 | 38.2 ± 0.7 | 50.5 ± 0.9 | 67.8 ± 8.3 | 74.3 ± 3.9 | 90.7 ± 3.0 | 99.3 ± 2.2 |
A048 | 19.9 ± 4.8 | 30.1 ± 1.6 | 40.0 ± 1.3 | 47.7 ± 5.5 | 66.3 ± 10.8 | 79.7 ± 2.0 | 92.1 ± 1.8 | 99.2 ± 0.7 |
A049 | 17.5 ± 3.5 | 28.1 ± 4.8 | 35.3 ± 3.8 | 46.7 ± 3.3 | 74.5 ± 3.9 | 89.0 ± 5.4 | 91.6 ± 4.9 | 99.1 ± 0.8 |
A0104+ | 12.4 ± 3.1 | 26.5 ± 1.4 | 33.4 ± 6.0 | 49.8 ± 5.1 | 68.1 ± 4.4 | 81.4 ± 2.5 | 98.6 ± 2.9 | 100.3 ± 1.7 |
S. aureus | ||||||||
A004 | 17.6 ± 4.9 | 25.8 ± 1.7 | 40.7 ± 0.8 | 48.8 ± 2.5 | 67.3 ± 6.9 | 77.9 ± 4.5 | 98.9 ± 2.0 | 99.3 ± 2.1 |
A010 | 21.2 ± 0.2 | 29.3 ± 3.1 | 41.4 ± 8.5 | 58.8 ± 3.5 | 69.4 ± 3.2 | 84.2 ± 1.9 | 98.6 ± 1.2 | 94.4 ± 7.0 |
A072 | 22.7 ± 1.2 | 32.7 ± 1.0 | 42.6 ± 3.2 | 49.2 ± 1.9 | 71.7 ± 2.4 | 88.6 ± 6.6 | 99.1 ± 1.4 | 99.5 ± 2.2 |
A073 | 13.8 ± 1.4 | 28.0 ± 0.1 | 35.8 ± 5.1 | 49.8 ± 2.6 | 68.1 ± 5.5 | 75.2 ± 4.5 | 93.2 ± 3.0 | 98.8 ± 1.1 |
A0100 | 20.5 ± 1.2 | 30.8 ± 3.1 | 40.1 ± 2.5 | 48.4 ± 2.7 | 77.7 ± 0.7 | 87.1 ± 2.6 | 99.6 ± 5.1 | 98.5 ± 1.3 |
E. faecium | ||||||||
A0105 | 20.6 ± 6.3 | 32.2 ± 4.0 | 41.7 ± 5.7 | 56.8 ± 2.3 | 75.8 ± 1.1 | 85.9 ± 1.2 | 98.7 ± 2.5 | 99.4 ± 1.1 |
E. faecalis | ||||||||
A069 | 18.5 ± 1.7 | 31.8 ± 3.4 | 42.1 ± 3.5 | 50.2 ± 0.6 | 72.8 ± 2.4 | 84.0 ± 6.5 | 98.6 ± 2.3 | 99.2 ± 1.2 |
C. koseri | ||||||||
A068 | 17.1 ± 1.3 | 29.6 ± 0.7 | 36.9 ± 3.6 | 47.2 ± 1.2 | 73.8 ± 3.0 | 89.8 ± 1.1 | 97.4 ± 1.8 | 99.4 ± 1.0 |
A079 | 17.2 ± 5.9 | 25.1 ± 2.0 | 36.2 ± 3.9 | 46.1 ± 0.8 | 54.9 ± 1.1 | 88.3 ± 4.8 | 99.4 ± 0.2 | 99.9 ± 0.7 |
S. marcescens | ||||||||
A071 | 17.1 ± 0.6 | 27.1 ± 2.7 | 35.8 ± 1.7 | 47.1 ± 3.1 | 58.1 ± 2.3 | 71.5 ± 2.8 | 99.3 ± 0.5 | 95.6 ± 2.8 |
A. hydrophila | ||||||||
A088 | 17.8 ± 0.8 | 31.1 ± 0.6 | 36.6 ± 0.5 | 49.6 ± 6.0 | 74.6 ± 1.7 | 84.9 ± 4.2 | 99.1 ± 1.4 | 98.5 ± 2.4 |
S. maltophilia | ||||||||
A0102 | 17.1 ± 1.3 | 25.9 ± 2.5 | 40.9 ± 3.7 | 46.5 ± 2.3 | 67.0 ± 3.6 | 87.4 ± 4.7 | 98.7 ± 2.7 | 99.8 ± 0.5 |
A095 | 14.4 ± 1.0 | 29.2 ± 1.3 | 35.7 ± 1.5 | 52.5 ± 2.5 | 73.4 ± 1.7 | 86.7 ± 1.6 | 98.4 ± 3.6 | 98.4 ± 2.2 |
P. rettgeri | ||||||||
A096 | 14.5 ± 1.9 | 24.1 ± 1.8 | 36.9 ± 3.4 | 52.1 ± 3.4 | 74.3 ± 2.6 | 84.0 ± 2.6 | 96.6 ± 1.9 | 99.3 ± 1.0 |
Isolates | Isoespintanol µg/mL | Isolates | Isoespintanol µg/mL | ||
---|---|---|---|---|---|
MIC90 | MIC50 | MIC90 | MIC50 | ||
E. coli | P. aeruginosa | 457.3 | |||
A017 * | 731.6 | 296.8 | A012 | 916.5 | |
A018 * | 798.8 | 367.4 | A015 | 765.3 | 247.4 |
A019 * | 783.2 | 358.3 | A050 | 826.2 | 315.4 |
A020 * | 828.7 | 387.9 | A051 | 727.3 | 83.56 |
A021 * | 849.4 | 422 | A052 | 767.9 | 275.2 |
A022 | 816.2 | 362.4 | A053 | 749.7 | 273.4 |
A023 | 846.8 | 372.9 | A054 | 796.7 | 280.6 |
A031 | 782.5 | 297.3 | A055 | 749.4 | 235.1 |
A035 | 747.5 | 298.5 | A056 | 740.7 | 185.8 |
A036 | 811.9 | 365.6 | A057 | 776.8 | 324 |
A037 * | 788.9 | 312.9 | A058 | 766.7 | 237.7 |
A038 | 798.2 | 322.9 | A097 | 766.3 | 304.4 |
A007 | 798.3 | 389.2 | P. mirabilis | ||
A006 * | 884.9 | 442.8 | A059 | 739.4 | 199.6 |
A009 | 781.2 | 316 | A060 | 751.3 | 218.3 |
A016 | 791.5 | 324.4 | A061 | 702.9 | 192.3 |
A087 | 768.6 | 308.6 | A062 | 769.4 | 259.2 |
A091 * | 786.6 | 314.6 | A063 | 791.1 | 269.5 |
A093 | 775.8 | 318.3 | A064 | 843.3 | 275.7 |
A094 * | 760 | 329.6 | A090 | 769.5 | 235.6 |
A099 | 750.6 | 283.4 | S. epidermidis | ||
A0101 | 742.5 | 304 | A065 | 694.3 | 154.2 |
A0103 * | 770.4 | 309.3 | A066 | 756.1 | 230.1 |
A0106 * | 745.7 | 292.3 | A067 | 783.9 | 233.7 |
A024 | 799.4 | 339.4 | A. baumannii | ||
A025 * | 781.1 | 373 | A001 | 878.7 | 394.6 |
A026 | 811.6 | 331.6 | A070 | 778.9 | 269 |
A027 * | 756.6 | 291.7 | A089 | 799.6 | 278.6 |
A028 | 780.3 | 316 | K. pneumoniae | ||
A029 * | 761.1 | 312.1 | A008 | 852.2 | 212.5 |
A030 | 777.6 | 327.5 | A039 | 831.4 | 215.1 |
A032 * | 774.7 | 280.1 | A040 | 849.1 | 289.6 |
A033 * | 818.4 | 335.1 | A041 | 730.3 | 235.9 |
A034 | 812.7 | 372.7 | A042 | 795.2 | 248.5 |
A005 | 815.1 | 350.2 | A043+ | 755.6 | 266.3 |
A011 | 824.3 | 397.2 | A044 | 760.1 | 237.5 |
A013 | 784.6 | 251.3 | A045 | 757.9 | 266.2 |
A014 | 805.9 | 263.2 | A046 | 754.4 | 294.9 |
S. aureus | A047 | 891.1 | 268.8 | ||
A004 | 800.6 | 266.6 | A048 | 852.3 | 263.7 |
A010 | 767 | 213.6 | A049 | 794.5 | 254.8 |
A072 | 748.4 | 209.2 | A0104+ | 784.6 | 281.9 |
A073 | 853.7 | 289.8 | E. faecium | ||
A0100 | 740.7 | 216.8 | A0105 | 748.1 | 196.5 |
C. koseri | E. faecalis | ||||
A068 | 752.3 | 241.8 | A069 | 767.1 | 225.1 |
A079 | 778 | 287.9 | S. maltophilia | ||
S. marcescens | A0102 | 764.7 | 257.8 | ||
A071 | 843.9 | 306.7 | A095 | 754.5 | 244.8 |
A. hydrophila | P. rettgeri | ||||
A088 | 757.9 | 236.8 | A096 | 774.6 | 258 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras Martínez, O.I.; Angulo Ortíz, A.; Santafé Patiño, G. Antibacterial Screening of Isoespintanol, an Aromatic Monoterpene Isolated from Oxandra xylopioides Diels. Molecules 2022, 27, 8004. https://doi.org/10.3390/molecules27228004
Contreras Martínez OI, Angulo Ortíz A, Santafé Patiño G. Antibacterial Screening of Isoespintanol, an Aromatic Monoterpene Isolated from Oxandra xylopioides Diels. Molecules. 2022; 27(22):8004. https://doi.org/10.3390/molecules27228004
Chicago/Turabian StyleContreras Martínez, Orfa Inés, Alberto Angulo Ortíz, and Gilmar Santafé Patiño. 2022. "Antibacterial Screening of Isoespintanol, an Aromatic Monoterpene Isolated from Oxandra xylopioides Diels" Molecules 27, no. 22: 8004. https://doi.org/10.3390/molecules27228004
APA StyleContreras Martínez, O. I., Angulo Ortíz, A., & Santafé Patiño, G. (2022). Antibacterial Screening of Isoespintanol, an Aromatic Monoterpene Isolated from Oxandra xylopioides Diels. Molecules, 27(22), 8004. https://doi.org/10.3390/molecules27228004