Highly Luminescent Crystalline Sponge: Sensing Properties and Direct X-ray Visualization of the Substrates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structures
2.2. Characterization
2.3. Luminescent Properties
3. Materials and Methods
3.1. Materials
3.2. Instruments
3.3. Synthetic Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Appendix A. The Crystallographic Data for 1solv
1DMF | 1DMSO | 1cin | 1phet | |
---|---|---|---|---|
Chemical formula | C49.35H65.15Eu2N8.45O20.45S6 | C37H49.4Eu2O20.7S11 | C53.76H47.62Eu2N3.5O17.64S6 | C60H58Eu2N4O19S6 |
Mr, g/mol | 1600.23 | 1481.94 | 1521.21 | 1635.38 |
Crystal system | Triclinic | Triclinic | Triclinic | Triclinic |
Space group | P¯1 | P¯1 | P¯1 | P¯1 |
Temperature, K | 295 | 150 | 100 | 150 |
a, Å | 12.0153(8) | 11.2811(2) | 12.028(3) | 12.0002(3) |
b, Å | 12.3019(7) | 11.9967(2) | 13.030(2) | 12.0927(3) |
c, Å | 13.0092(8) | 12.9614(2) | 21.497(4) | 13.1234(3) |
α, ° | 102.331(5) | 107.174(1) | 75.552(4) | 103.154(2) |
b, ° | 99.029(5) | 98.782(1) | 80.763(10) | 98.715(2) |
γ, ° | 110.023(5) | 105.921(1) | 86.141(11) | 112.136(2) |
V, Å3 | 1708.66(19) | 1558.65(5) | 3218.9(11) | 1657.25(7) |
Z | 1 | 1 | 2 | 1 |
F(000) | 806 | 739 | 1516 | 820 |
D(calc.), g·cm–3 | 1.555 | 1.579 | 1.569 | 1.639 |
μ, mm–1 | 2.07 | 2.42 | 2.43 | 2.14 |
Crystal size, mm | 0.41 × 0.35 × 0.25 | 0.34 × 0.24 × 0.22 | 0.25 × 0.15 × 0.13 | 0.49 × 0.43 × 0.31 |
θ range for data collection, ° | 1.9 < θ < 25.4 | 2.0 < θ < 25.4 | 2.2 < θ < 26.7 | 1.9 < θ < 25.4 |
No. of reflections: measured/independent/observed [I > 2σ(I)] | 10,132/6196/5374 | 22,903/5707/5342 | 34,103/11,674/10,890 | 24,442/6063/5683 |
Rint | 0.0354 | 0.0294 | 0.0176 | 0.0319 |
Index ranges | –14 ≤ h ≤ 14 –11 ≤ k ≤ 14 –15 ≤ l ≤ 13 | –13 ≤ h ≤ 13 –14 ≤ k ≤ 14 –15 ≤ l ≤ 15 | –14 ≤ h ≤ 14 –15 ≤ k ≤ 15 –25 ≤ l ≤ 25 | –14 ≤ h ≤ 14 –15 ≤ k ≤ 15 –15 ≤ l < 15 |
Final R indices [I > 2σ(I)] | R1 = 0.0334 wR2 = 0.0767 | R1 = 0.0377 wR2 = 0.1031 | R1 = 0.0452 wR2 = 0.1111 | R1 = 0.0275 wR2 = 0.0650 |
Final R indices (all data) | R1 = 0.0417 wR2 = 0.0793 | R1 = 0.0405 wR2 = 0.1047 | R1 = 0.0477 wR2 = 0.1121 | R1 = 0.0303 wR2 = 0.0664 |
Goodness-of-fit on F2 | 1.001 | 1.078 | 1.104 | 1.081 |
Largest diff. peak, hole, e/Å3 | 0.95, –0.77 | 2.22, –1.55 | 1.87, –2.29 | 1.65, –0.80 |
References
- Inokuma, Y.; Arai, T.; Fujita, M. Networked molecular cages as crystalline sponges for fullerenes and other guests. Nat. Chem. 2020, 2, 780–783. [Google Scholar] [CrossRef]
- Zigon, N.; Duplan, V.; Wada, N.; Fujita, M. Crystalline Sponge Method: X-ray Structure Analysis of Small Molecules by Post-Orientation within Porous Crystals—Principle and Proof-of-Concept Studies. Angew. Chem. Int. Ed. 2021, 60, 25204–25222. [Google Scholar] [CrossRef] [PubMed]
- Sanna, E.; Escudero-Adán, E.C.; Bauzá, A.; Ballester, P.; Frontera, A.; Rotger, C.; Costa, A. A crystalline sponge based on dispersive forces suitable for X-ray structure determination of included molecular guests. Chem. Sci. 2015, 6, 5466–5472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neogi, I.; Bajpai, A.; Savitha, G.; Moorthy, J.N. Tetraarylbiphenyl as a New Lattice Inclusion Host by Structure Reductionism: Shape and Size Complementarity Based on Torsional Flexibility. Cryst. Growth Des. 2015, 15, 2129–2136. [Google Scholar] [CrossRef]
- Hoshino, M.; Khutia, A.; Xing, H.; Inokuma, Y.; Fujita, M. The crystalline sponge method updated. IUCrJ 2016, 3, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Liu, Y.; Zhang, C.; Huang, F.; Liu, L.; Sun, J. Crystalline Sponge Method by Three-Dimensional Electron Diffraction. Front. Mol. Biosci. 2022, 8, 821927. [Google Scholar] [CrossRef]
- Zigon, N.; Hoshino, M.; Yoshioka, S.; Inokuma, Y.; Fujita, M. Where is the Oxygen? Structural Analysis of α-Humulene Oxidation Products by the Crystalline Sponge Method. Angew. Chem. Int. Ed. 2015, 54, 9033–9037. [Google Scholar] [CrossRef]
- Du, Q.; Peng, J.; Wu, P.; He, H. Review: Metal-organic framework based crystalline sponge method for structure analysis. Trends Analyt. Chem. 2018, 102, 290–310. [Google Scholar] [CrossRef]
- Lunn, R.D.J.; Tocher, D.A.; Sidebottom, P.J.; Montgomery, M.G.; Keates, A.C.; Carmalt, C.J. Applying the Crystalline Sponge Method to Agrochemicals: Obtaining X-ray Structures of the Fungicide Metalaxyl-M and Herbicide S-Metolachlor. Cryst. Growth Des. 2021, 21, 3024–3036. [Google Scholar] [CrossRef]
- Inokuma, Y.; Yoshioka, S.; Ariyoshi, J.; Arai, T.; Hitora, Y.; Takada, K.; Matsunaga, S.; Rissanen, K.; Fujita, M. X-ray analysis on the nanogram to microgram scale using porous complexes. Nature 2013, 495, 461–466. [Google Scholar] [CrossRef]
- Zigon, N.; Kikuchi, T.; Ariyoshi, J.; Inokuma, Y.; Fujita, M. Structural Elucidation of Trace Amounts of Volatile Compounds Using the Crystalline Sponge Method. Chem. Asian. J. 2017, 12, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
- Kawamichi, T.; Haneda, T.; Kawano, M.; Fujita, M. X-ray observation of a transient hemiaminal trapped in a porous network. Nature 2009, 461, 633–635. [Google Scholar] [CrossRef] [PubMed]
- Ikemoto, K.; Inokuma, Y.; Fujita, M. Diels–Alder via Molecular Recognition in a Crystalline Molecular Flask. J. Am. Chem. Soc. 2011, 133, 16806–16808. [Google Scholar] [CrossRef] [PubMed]
- Vinogradova, E.V.; Müller, P.; Buchwald, S.L. Structural Reevaluation of the Electrophilic Hypervalent Iodine Reagent for Trifluoromethylthiolation Supported by the Crystalline Sponge Method for X-ray Analysis. Angew. Chem. Int. Ed. 2014, 53, 125–3128. [Google Scholar] [CrossRef] [Green Version]
- Ikemoto, K.; Inokuma, Y.; Rissanen, K.; Fujita, M. X-ray Snapshot Observation of Palladium-Mediated Aromatic Bromination in a Porous Complex. J. Am. Chem. Soc. 2014, 136, 6892–6895. [Google Scholar] [CrossRef]
- Duplan, V.; Hoshino, M.; Li, W.; Honda, T.; Fujita, M. In Situ Observation of Thiol Michael Addition to a Reversible Covalent Drug in a Crystalline Sponge. Angew. Chem. Int. Ed. 2016, 55, 4919–4923. [Google Scholar] [CrossRef]
- Yoshioka, S.; Inokuma, Y.; Duplan, V.; Dubey, R.; Fujita, M. X-ray Structure Analysis of Ozonides by the Crystalline Sponge Method. J. Am. Chem. Soc. 2016, 138, 10140–10142. [Google Scholar] [CrossRef]
- Cardenal, A.D.; Ramadhar, T.R. The crystalline sponge method: Quantum chemical in silico derivation and analysis of guest binding energies. CrystEngComm 2021, 23, 7570–7575. [Google Scholar] [CrossRef]
- Kawano, M.; Fujita, M. Direct observation of crystalline-state guest exchange in coordination networks. Coord. Chem. Rev. 2007, 251, 2592–2605. [Google Scholar] [CrossRef]
- Brunet, G.; Safin, D.A.; Robeyns, K.; Facey, G.A.; Korobkov, I.; Filinchuk, Y.; Murugesu, M. Confinement effects of a crystalline sponge on ferrocene and ferrocene carboxaldehyde. Chem. Commun. 2017, 53, 5645–5648. [Google Scholar] [CrossRef]
- Khatua, S.; Biswas, P. Flexible Luminescent MOF: Trapping of Less Stable Conformation of Rotational Isomers, In Situ Guest-Responsive Turn-Off and Turn-On Luminescence and Mechanistic Study. ACS Appl. Mater. Interfaces 2020, 12, 22335–22346. [Google Scholar] [CrossRef] [PubMed]
- Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 2008, 37, 191–214. [Google Scholar] [CrossRef] [PubMed]
- Mellot-Draznieks, C.; Serre, C.; Surblé, S.; Audebrand, N.; Férey, G. Very Large Swelling in Hybrid Frameworks: A Combined Computational and Powder Diffraction Study. J. Am. Chem. Soc. 2005, 127, 16273–16278. [Google Scholar] [CrossRef] [PubMed]
- Lama, P.; Barbour, L.J. Distinctive Three-Step Hysteretic Sorption of Ethane with In Situ Crystallographic Visualization of the Pore Forms in a Soft Porous Crystal. J. Am. Chem. Soc. 2018, 140, 2145–2150. [Google Scholar] [CrossRef] [Green Version]
- Salles, F.; Maurin, G.; Serre, C.; Llewellyn, P.L.; Knöfel, C.; Choi, H.J.; Filinchuk, Y.; Oliviero, L.; Vimont, A.; Long, J.R.; et al. Multistep N2 Breathing in the Metal−Organic Framework Co(1,4-benzenedipyrazolate). J. Am. Chem. Soc. 2010, 132, 13782–13788. [Google Scholar] [CrossRef]
- Liu, P.; Tian, Z.; Chen, L. Rational Design of Smart Metal–Organic Frameworks for Light-Modulated Gas Transport. ACS Appl. Mater. Interfaces 2022, 14, 32009–32017. [Google Scholar] [CrossRef]
- Ehrling, S.; Mendt, M.; Senkovska, I.; Evans, J.D.; Bon, V.; Petkov, P.; Ehrling, C.; Walenszus, F.; Pöppl, A.; Kaskel, S. Tailoring the Adsorption-Induced Flexibility of a Pillared Layer Metal–Organic Framework DUT-8(Ni) by Cobalt Substitution. Chem. Mater. 2020, 32, 5670–5681. [Google Scholar] [CrossRef]
- Heerden, D.P.; Smith, V.J.; Aggarwal, H.; Barbour, L.J. High Pressure In Situ Single-Crystal X-ray Diffraction Reveals Turnstile Linker Rotation upon Room-Temperature Stepped Uptake of Alkanes. Angew. Chem. Int. Ed. 2021, 60, 13430–13435. [Google Scholar] [CrossRef]
- Khatua, S.; Krishnaraj, C.; Chandra Baruah, D.; Van Der Voort, P.; Jena, H.S. Flexible luminescent non-lanthanide metal–organic frameworks as small molecules sensors. Dalton Trans. 2021, 50, 14513–14531. [Google Scholar] [CrossRef]
- Mendt, M.; Maliuta, M.; Ehrling, S.; Schwotzer, F.; Senkovska, I.; Kaskel, S.; Pöppl, A. Mixed-Metal Ni2+–Mn2+ Paddle Wheels in the Metal–Organic Framework DUT-8(Ni1–xMnx) as Electron Paramagnetic Resonance Probes for Monitoring the Structural Phase Transition. J. Phys. Chem. C 2022, 126, 625–633. [Google Scholar] [CrossRef]
- Xiao, Z.; Drake, H.F.; Day, G.S.; Kuszynski, J.E.; Lin, H.; Xie, H.; Cai, P.; Ryder, M.R.; Zhou, H.-C. Photoinduced reversible phase transition in a phenothiazine-based metal-organic framework. Cell Rep. Phys. Sci. 2022, 3, 101074. [Google Scholar] [CrossRef]
- Tu, M.; Reinsch, H.H.; Rodríguez-Hermida, S.; Verbeke, R.; Stassin, T.; Egger, W.; Dickmann, M.; Dieu, B.; Hofkens, J.; Vankelecom, I.F.J.; et al. Reversible Optical Writing and Data Storage in an Anthracene-Loaded Metal–Organic Framework. Angew. Chem. Int. Ed. 2019, 58, 2423–2427. [Google Scholar] [CrossRef] [PubMed]
- Zhestkij, N.; Efimova, A.; Rzhevskiy, S.; Kenzhebayeva, Y.; Bachinin, S.; Gunina, E.; Sergeev, M.; Dyachuk, V.; Milichko, V.A. Reversible and Irreversible Laser Interference Patterning of MOF Thin Films. Crystals 2022, 12, 846. [Google Scholar] [CrossRef]
- Demakov, P.A.; Ryadun, A.A.; Samsonenko, D.G.; Dybtsev, D.N.; Fedin, V.P. Structure and luminescent properties of europium(III) coordination polymers with thiophene ligands. J. Struct. Chem. 2020, 61, 1965–1974. [Google Scholar] [CrossRef]
- Yudina, Y.A.; Demakov, P.A.; Ryadun, A.A.; Fedin, V.P.; Dybtsev, D.N. Structures and Luminescent Properties of Rare-Earth Metal–Organic Framework Series with Thieno[3,2b]thiophene-2,5-dicarboxylate. Crystals 2022, 12, 1374. [Google Scholar] [CrossRef]
- Demakov, P.A.; Sapchenko, S.A.; Samsonenko, D.G.; Dybtsev, D.N.; Fedin, V.P. Gadolinium Break in a Series of Three-Dimensional trans-1,4-Cyclohexane Dicarboxylates of Rare Earth Elements. J. Struct. Chem. 2019, 60, 815–822. [Google Scholar] [CrossRef]
- Barsukova, M.O.; Samsonenko, D.G.; Fedin, V.P. Crystal structure of metal-organic frameworks based on terbium and 1,4-naphthalenedicarboxylic acid. J. Struct. Chem. 2020, 61, 1090–1096. [Google Scholar] [CrossRef]
- Demakov, P.A.; Vasileva, A.A.; Lazarenko, V.A.; Ryadun, A.A.; Fedin, V.P. Crystal Structures, Thermal and Luminescent Properties of Gadolinium(III) Trans-1,4-cyclohexanedicarboxylate Metal-Organic Frameworks. Crystals 2021, 11, 1375. [Google Scholar] [CrossRef]
- Tan, B.; Zhuang, T.-H.; Velasco, E.; Xing, K.; Wu, Z.-F.; Huang, X.-Y. Syntheses, Structures, and Ratiometric Fluorescent Sensing Properties of a Series of Lanthanide Coordination Polymers. Cryst. Growth Des. 2021, 21, 6543–6551. [Google Scholar] [CrossRef]
- Yudina, Y.A.; Samsonova, A.M.; Bolotov, V.A.; Demakov, P.A.; Samsonenko, D.G.; Fedin, V.P.; Dybtsev, D.N. Metal-organic coordination polymers of lanthanides(III) with thienothiophendicarboxylate ligands. J. Struct. Chem. 2021, 62, 1599–1606. [Google Scholar] [CrossRef]
- Demakov, P.A.; Ryadun, A.A.; Fedin, V.P. Aliphatic-Bridged Early Lanthanide Metal–Organic Frameworks: Topological Polymorphism and Excitation-Dependent Luminescence. Inorganics 2022, 10, 163. [Google Scholar] [CrossRef]
- Spek, A.L. Single-crystal structure validation with the program platon. J. Appl. Crystallogr. 2003, 36, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Spek, A.L. Platon squeeze: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. 2015, C71, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Hayes, L.M.; Press, N.J.; Tocher, D.A.; Carmalt, C.J. Intermolecular Interactions between Encapsulated Aromatic Compounds and the Host Framework of a Crystalline Sponge. Cryst. Growth Des. 2017, 17, 858–863. [Google Scholar] [CrossRef]
- Dinger, M.B.; Scott, M.J. Alkali Salts of C3-Symmetric, Linked Aryloxides: Selective Binding of Substrates with Metal Aggregates. Inorg. Chem. 2000, 39, 1238–1254. [Google Scholar] [CrossRef] [PubMed]
- Clegg, W.; Elsegood, M.R.J.; Snaith, R.; Wheatley, A.E.H. (trans-Cinnamaldehyde)tris(2,6-diphenylphenoxy)aluminium. Acta Crystallogr. 2003, E59, m225–m227. [Google Scholar] [CrossRef] [Green Version]
- Demakov, P.A.; Ryadun, A.A.; Dorovatovskii, P.V.; Lazarenko, V.A.; Samsonenko, D.G.; Brylev, K.A.; Fedin, V.P.; Dybtsev, D.N. Intense multi-colored luminescence in a series of rare-earth metal–organic frameworks with aliphatic linkers. Dalton Trans. 2021, 50, 11899–11908. [Google Scholar] [CrossRef]
- Casanovas, B.; Zinna, F.; Di Bari, L.; El Fallah, M.S.; Font-Bardía, M.; Vicente, R. Circularly Polarized Luminescence on dinuclear Tb(III) and Eu(III) complexes with (S-) and (R-) 2-Phenylpropionate. Dalton Trans. 2017, 46, 6349–6357. [Google Scholar] [CrossRef] [PubMed]
- Bryleva, Y.A.; Artem’ev, A.V.; Glinskaya, L.A.; Rakhmanova, M.I.; Samsonenko, D.G.; Komarov, V.Y.; Rogovoy, M.I.; Davydova, M.P. Bright photo- and triboluminescence of centrosymmetric Eu(III) and Tb(III) complexes with phosphine oxides containing azaheterocycles. New J. Chem. 2021, 45, 13869–13876. [Google Scholar] [CrossRef]
- Utochnikova, V.V.; Vatsadze, I.A.; Tsymbarenko, D.M.; Goloveshkin, A.S.; Vatsadze, S.Z. Europium complexes with dinitropyrazole: Unusual luminescence thermal behavior and irreversible temperature sensing. Phys. Chem. Chem. Phys. 2021, 23, 25480–25484. [Google Scholar] [CrossRef]
- Demakov, P.A.; Vasileva, A.A.; Volynkin, S.S.; Ryadun, A.A.; Samsonenko, D.G.; Fedin, V.P.; Dybtsev, D.N. Cinnamal Sensing and Luminescence Color Tuning in a Series of Rare-Earth Metal−Organic Frameworks with Trans-1,4-cyclohexanedicarboxylate. Molecules 2021, 26, 5145. [Google Scholar] [CrossRef]
- Konar, S.; Samanta, D.; Mandal, S.; Das, S.; Kr Mahto, M.; Shaw, M.; Mandald, M.; Pathak, A. Selective and sensitive detection of cinnamaldehyde by nitrogen and sulphur co-doped carbon dots: A detailed systematic study. RSC Adv. 2018, 8, 42361–42373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werts, M.H.; Jukes, R.T.F.; Verhoeven, J.W. The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes. Phys. Chem. Chem. Phys. 2002, 4, 1542–1548. [Google Scholar] [CrossRef]
- Bryleva, Y.A.; Artem’ev, A.V.; Glinskaya, L.A.; Samsonenko, D.G.; Rakhmanova, M.I.; Davydova, M.P.; Yzhikova, K.M. Eu(III) and Tb(III) complexes based on diphenyl(pyrimidin-2-YL)phosphine oxide: Synthesis, structure, and photoluminescent properties. J. Struct. Chem. 2021, 62, 265–276. [Google Scholar] [CrossRef]
- Korshunov, V.M.; Kiskin, M.A.; Taydakov, I.V. The pathways of electronic excitation back energy transfer processes (BET) in novel Eu3+ heterocyclic 1,3-diketonates bearing a perfluorinated moiety. J. Lumin. 2022, 251, 119235. [Google Scholar] [CrossRef]
- Smirnova, K.S.; Ivanova, E.A.; Eltsov, I.V.; Pozdnyakov, I.P.; Russkikh, A.A.; Dotsenko, V.V.; Lider, E.V. Polymeric REE coordination compounds based on novel enaminone derivative. Polyhedron 2022, 227, 116122. [Google Scholar] [CrossRef]
- Smirnova, K.S.; Ivanova, E.A.; Pozdnyakov, I.P.; Russkikh, A.A.; Eltsov, I.V.; Dotsenko, V.V.; Lider, E.V. 2D polymeric lanthanide(III) compounds based on novel bright green emitting enaminone ligand. Inorg. Chim. Acta 2022, 542, 121107. [Google Scholar] [CrossRef]
- Kuznetsov, K.M.; Kozlov, M.I.; Aslandukov, A.N.; Vashchenko, A.A.; Medved’ko, A.V.; Latipov, E.V.; Goloveshkin, A.S.; Tsymbarenko, D.M.; Utochnikova, V.V. Eu(tta)3DPPZ-based organic light-emitting diodes: Spin-coating vs. vacuum-deposition. Dalton Trans. 2021, 50, 9685–9689. [Google Scholar] [CrossRef]
- Samsonova, A.M.; Bolotov, V.A.; Samsonenko, D.G.; Dybtsev, D.N.; Fedin, V.P. Network Coordination Polymers Based on Thieno[3,2-b]Thiophene-2,5-Dicarboxylic Acid. J. Struct. Chem. 2019, 60, 1468–1473. [Google Scholar] [CrossRef]
- CrysAlisPro, version 1.171.38.46; Rigaku Oxford Diffraction: The Woodlands, TX, USA, 2015.
- Svetogorov, R.D.; Dorovatovskii, P.V.; Lazarenko, V.A. Belok/XSA Diffraction Beamline for Studying Crystalline Samples at Kurchatov Synchrotron Radiation Source. Cryst. Res. Technol. 2020, 55, 1900184. [Google Scholar] [CrossRef]
- Lazarenko, V.A.; Dorovatovskii, P.V.; Zubavichus, Y.V.; Burlov, A.S.; Koshchienko, Y.V.; Vlasenko, V.G.; Khrustalev, V.N. High-Throughput Small-Molecule Crystallography at the ‘Belok’ Beamline of the Kurchatov Synchrotron Radiation Source: Transition Metal Complexes with Azomethine Ligands as a Case Study. Crystals 2017, 7, 325. [Google Scholar] [CrossRef] [Green Version]
- Kabsch, W. XDS. Acta Crystallogr. 2010, D66, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Cambridge Crystallographic Data Center (CCDC) Structure Search. Available online: https://www.ccdc.cam.ac.uk/structures/ (accessed on 18 November 2022).
1DMF 140 K [34] | 1DMF 295 K | 1DMSO | 1cin | 1phet | |
---|---|---|---|---|---|
Parallelogram angles, ° | 49, 67, 81 | 49, 67, 81 | 54, 64, 74 | 43, 70, 86 | 49, 65, 81 |
Void volume, % (PLATON, [42]) | 37 | 37 | 32 | 30 | 38 |
V/Z, Å3 | 1662 | 1709 | 1559 | 1564 | 1657 |
Solvent in the Adduct | I(5D0→7F2):I(5D0 → 7F1) Ratio | I(total):I(5D0 → 7F1) Ratio 1 | trad in Solid State, ms[Calculated] | tl in Solid State, ms[Measured] | QYint in Solid State, % [Calculated] | QYobs in Solid State, % [Measured] | Sensitization Efficiency, % | tl in Suspension, ms |
---|---|---|---|---|---|---|---|---|
DMF | 7.32 | 10.4 | 1.95 | 1.089(16) | 55.8 | 20.3(6) | 36.4 | 1.102(6) |
DMSO | 6.39 | 9.99 | 2.03 | 1.154(6) | 56.9 | 27.4(5) | 48.1 | 1.083(8) |
phet | 7.54 | 11.9 | 1.70 | 0.382(4) | 22.5 | 8.6(4) | 38.3 | 1.04(3) |
cin | ~6.95 | ~13.9 | 1.46 | 0.079(2) | 5.4 | –(~0) | – | 1.03(6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demakov, P.A.; Ryadun, A.A.; Dybtsev, D.N. Highly Luminescent Crystalline Sponge: Sensing Properties and Direct X-ray Visualization of the Substrates. Molecules 2022, 27, 8055. https://doi.org/10.3390/molecules27228055
Demakov PA, Ryadun AA, Dybtsev DN. Highly Luminescent Crystalline Sponge: Sensing Properties and Direct X-ray Visualization of the Substrates. Molecules. 2022; 27(22):8055. https://doi.org/10.3390/molecules27228055
Chicago/Turabian StyleDemakov, Pavel A., Alexey A. Ryadun, and Danil N. Dybtsev. 2022. "Highly Luminescent Crystalline Sponge: Sensing Properties and Direct X-ray Visualization of the Substrates" Molecules 27, no. 22: 8055. https://doi.org/10.3390/molecules27228055
APA StyleDemakov, P. A., Ryadun, A. A., & Dybtsev, D. N. (2022). Highly Luminescent Crystalline Sponge: Sensing Properties and Direct X-ray Visualization of the Substrates. Molecules, 27(22), 8055. https://doi.org/10.3390/molecules27228055