Identification of Antidiabetic Compounds from the Aqueous Extract of Sclerocarya birrea Leaves
Abstract
:1. Introduction
2. Results and Discussion
2.1. Collection and Extraction of Plant Material
2.2. Effect of Plant Extracts on Glucose Uptake
2.3. Chemical Characterization of Active Spray-Dried Aqueous Extracts of Sclerocarya birrea (Aqueous Extracts 1 and 4)
Peak No. | RT (min) | Acquired [M-H]− m/z | Formula | Calculated [M-H]− m/z | Possible Structure | Mass Error (ppm) | MS/MS Data (Fragments) | Ref | |
---|---|---|---|---|---|---|---|---|---|
1 | 0.86 | 191.0582 | C7H12O6 | 191.0556 | Quinic acid (Organic acid) | 2.1 | 96.9628 | [M-H]−-2H2O-4H2-CO2-O | [22] |
85.0324 | [M-H]−-CO2-H2O-C2H4O2 | ||||||||
169.0149 | [M-H]−-H2O-2H2 | ||||||||
125.0267 | [M-H]−-H2O-4H2-CO2 | ||||||||
2 | 1.79 | 169.0166 | C7H6O5 | 169.0137 | Gallic acid (Organic acid) | 4.1 | 125.0273 | [M-H]−-CO2 | [22] |
151.0037 | [M-H]−-H2O | ||||||||
79.0213 | [M-H]−-CO2-H2O-CO | ||||||||
3 | 5.18 | 493.0631 | C21H18O14 | 493.0618 | Myricetin 3-O-β-D-glucuronide (Flavonoid glucuronide) | 0.8 | 317.0317 | [M-H]−-C6H8O6 | [23,24] |
151.0060 | [M-H]−-C14H14O10 | ||||||||
137.0261 | [M-H]−-C14H12O11 | ||||||||
179.0005 | [M-H]−-C13H14O9 | ||||||||
107.0153 | [M-H]−-C15H14O12 | ||||||||
4 | 5.80 | 463.0876 | C21H20O12 | 463.0877 | Myricetin-3-O-alpha-L- rhamnopyranoside (Flavonoid glycoside) | 1.9 | 316.0236 | [M-H]−-C6H11O4 | [25] |
151.0056 | [M-H]−-C14H16O8 | ||||||||
179.0000 | [M-H]−-C13H16O7 | ||||||||
271.0252 | [M-H]−-C6H11O5-2H2O | ||||||||
287.0211 | [M-H]−-C6H11O5-H2O | ||||||||
5 | 5.94 | 477.0679 | C21H18O13 | 477.0669 | Quercetin-3-O-beta-D-glucuronide (Flavonoid glucuronide) | 1.7 | 301.0366 | [M-H]−-C6H8O6 | [26,27] |
151.0056 | [M-H]−-C14H14O9 | ||||||||
179.0002 | [M-H]−-C15H18O10 | ||||||||
255.0325 | [M-H]−-C7H10O8 | ||||||||
271.0258 | [M-H]−-C7H10O7 | ||||||||
6 | 6.33 | 433.0780 | C20H18O11 | 433.0771 | Quercetin-3-O-arabinoside (Flavonoid glycoside) | 0.0 | 300.0290 | [M-H]−-C5H9O4 | [27] |
151.0043 | [M-H]−-C13H14O7 | ||||||||
271.0269 | [M-H]−-C6H10O5 | ||||||||
255.0307 | [M-H]−-C6H10O6 | ||||||||
7 | 6.68 | 447.0932 | C21H20O11 | 447.0927 | Quercetin-3-O-alpha-L-rhamnopyranoside (Flavonoid glycoside) | 3.4 | 300.0297 | [M-H]−-C6H11O4 | [28] |
151.0060 | [M-H]−-C14H16O7 | ||||||||
255.0310 | [M-H]−-C7H12O6 | ||||||||
271.0260 | [M-H]−-C7H12O5 | ||||||||
179.0016 | [M-H]−-C15H20O8 | ||||||||
8 | 5.80 | 319.0463 | C15H11O8 | 319.0454 | Myricetin (Flavonoid) | −1.3 | 153.0194 | [M + H]+-C8H6O4 | [23,29] |
165.0195 | [M + H]+-C7H6O4 | ||||||||
273.0418 | [M + H]+-H2O-CO | ||||||||
217.0499 | [M + H]+-H2O-3CO | ||||||||
245.0447 | [M + H]+-H2O-2CO | ||||||||
137.0236 | [M + H]+-C7H6O4-CO | ||||||||
9 | 6.48 | 303.0497 | C15H10O7 | 303.0505 | Quercetin (Flavonoid) | −2.6 | 153.0188 | [M + H]+-C8H6O3 | [30] |
229.0505 | [M + H]+-H2O-2CO | ||||||||
285.0414 | [M + H]+-H2O | ||||||||
257.0463 | [M + H]+-H2O-CO | ||||||||
201.0552 | [M + H]+-H2O-3CO |
2.4. Isolation and Structure Elucidation of Compounds
2.5. Effect of Isolated Compounds on Glucose Uptake
3. Materials and Methods
3.1. Collection and Extraction of Plant Material
3.2. Isolation of Compounds
3.2.1. Spectroscopic Data of Compounds 1–3
Myricetin (1)
Myricetin-3-O-β-D-glucuronide (2)
Quercetin-3-O-β-D-glucuronide (3)
3.3. Instrumentation and Identification of Compounds
3.4. Ultra-Performance Liquid Chromatography QTOF Mass Spectrometry Analysis of Compounds
3.5. Glucose Uptake Assay
3.6. Cytotoxicity Assay
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
AGE | Advanced glycation end products |
AMPK | AMP-activated protein kinase |
MAPK | Mitogen-activated protein kinase |
ARC | Agricultural Research Council |
CSIR | Council for Scientific and Industrial Research |
FBS | Fasting blood glucose |
BSA | Bovine serum albumin |
GLUT-4 | Glucose transporter 4 |
DMEM | Dulbecco’s modified Eagle medium |
P13K/AKT | Phosphatidylinositol-3-kinase/protein kinase B |
C/EBPα | CCAT/enhancer-binding protein α |
PPAR-γ | Peroxisome proliferator-activated receptor gamma |
2DG | 2-deoxy-glucose |
T2DM | Type 2 diabetes mellitus |
BPI | Base peak intensity |
References
- Xu, J.; Yang, L.; Wang, R.; Zeng, K.; Fan, B.; Zhao, Z. The biflavonoids as protein tyrosine phosphatase 1B inhibitors from Selaginella uncinata and their antihyperglycemic action. Fitoterapia 2019, 137, 104255. [Google Scholar] [CrossRef]
- Ormazabal, V.; Nair, S.; Elfeky, O.; Aguayo, C.; Salomon, C.; Zuñiga, F.A. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol. 2018, 17, 122. [Google Scholar] [CrossRef] [Green Version]
- Tripathy, J.P. Burden and risk factors of diabetes and hyperglycemia in India: Findings from the Global Burden of Disease Study 2016. Diabetes Metab. Syndr. Obes. 2018, 11, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Chae, B.S. Protective effect of baicalin on the TNF-α-Mediated development of insulin resistance in differentiated 3T3-L1 Cells. Nat. Prod. Sci. 2013, 19, 316–323. [Google Scholar]
- Basu, S.; Yudkin, J.S.; Kehlenbrink, S.; Davies, J.I.; Wild, S.H.; Lipska, K.J.; Sussman, J.B.; Beran, D. Estimation of global insulin use for type 2 diabetes, 2018–2030: A microsimulation analysis. Lancet Diabetes Endocrinol. 2019, 7, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Etsassala, N.G.E.R.; Ndjoubi, K.O.; Mbira, T.J.; Pearce, B.; Pearce, K.; Iwuoha, E.I.; Hussein, A.A.; Benjeddou, M. Glucose-Uptake Activity and Cytotoxicity of Diterpenes and Triterpenes Isolated from Lamiaceae Plant Species. Molecules 2020, 25, 4129. [Google Scholar] [CrossRef] [PubMed]
- Klip, A.; McGraw, T.; James, D. 30 sweet years of GLUT4. J. Biol. Chem. 2019, 294, 11369–11381. [Google Scholar] [CrossRef] [Green Version]
- Aladejana, A.; Bradley, G.; Afolayan, A. In vitro evaluation of the anti-diabetic potential of Helichrysum petiolare Hilliard & B.L. Burtt using HepG2 (C3A) and L6 cell lines [version 2; peer review: 2 approved]. F1000Research 2021, 9, 1240. [Google Scholar]
- Meng, Q.; Qi, X.; Fu, Y.; Chen, Q.; Cheng, P.; Yu, X.; Sun, X.; Wu, J.; Li, W.; Zhang, Q.; et al. Flavonoids extracted from mulberry (Morus alba L.) leaf improve skeletal muscle mitochondrial function by activating AMPK in type 2 diabetes. J. Ethnopharmacol. 2020, 248, 112326. [Google Scholar] [CrossRef]
- Etsassala, N.; Cupido, C.N.; Iwuoha, E.I.; Hussein, A.A. Abietane Diterpenes as Potential Candidates for the Management of Type 2 Diabetes. Curr. Pharm. Des. 2020, 26, 2885–2891. [Google Scholar] [CrossRef]
- He, J.-H.; Chen, L.-X.; Li, H. Progress in the discovery of naturally occurring anti-diabetic drugs and in the identification of their molecular targets. Fitoterapia 2019, 134, 270–289. [Google Scholar] [CrossRef]
- Vancura, A.; Bu, P.; Bhagwat, M.; Zeng, J.; Vancurova, I. Metformin as an Anticancer Agent. Trends Pharm. Sci. 2018, 39, 867–878. [Google Scholar] [CrossRef]
- Yuan, H.; Ma, Q.; Cui, H.; Liu, G.; Zhao, X.; Li, W.; Piao, G. How Can Synergism of Traditional Medicines Benefit from Network Pharmacology? Molecules 2017, 22, 1135. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Yoon, G.; Kim, M.C.; Kwon, H.C.; Bae, G.U.; Kim, Y.K.; Kim, S.N. 5,7-Dihydroxy-6-geranylflavanone improves insulin sensitivity through PPARα/γ dual activation. Int. J. Mol. Med. 2016, 37, 1397–1404. [Google Scholar] [CrossRef] [Green Version]
- Ojewole, J.; Mawoza, T.; Chiwororo, W.; Owira, P. Sclerocarya birrea (A. Rich) Hochst. [‘Marula’] (Anacardiaceae): A Review of its Phytochemistry, Pharmacology and Toxicology and its Ethnomedicinal Uses. Phytother. Res. 2009, 24, 633–639. [Google Scholar] [CrossRef]
- Matsabisa, M.G.; Chukwuma, C.I.; Chaudhary, S.K. South African traditional herbal formulation inhibits α-glucosidase, DPP-IV and glycation activities, and modulates glucose utilisation in Chang liver cells and 3T3-L1 adipocytes. S. Afr. J. Bot. 2019, 121, 121–127. [Google Scholar] [CrossRef]
- Mousinho, N.M.; van Tonder, J.J.; Steenkamp, V. In vitro anti-diabetic activity of Sclerocarya birrea and Ziziphus mucronata. Nat. Prod. Commun. 2013, 8, 1279–1284. [Google Scholar]
- Ojewole, J.A. Evaluation of the analgesic, anti-inflammatory and anti-diabetic properties of Sclerocarya birrea (A. Rich.) Hochst. stem-bark aqueous extract in mice and rats. Phytother. Res. 2004, 18, 601–608. [Google Scholar] [CrossRef]
- Eloff, J.N. Antibacterial activity of Marula (Sclerocarya birrea (A. rich.) Hochst. subsp. caffra (Sond.) Kokwaro) (Anacardiaceae) bark and leaves. J. Ethnopharmacol. 2001, 76, 305–308. [Google Scholar] [CrossRef]
- Mabasa, L.; Kotze, A.; Shabalala, S.; Kimani, C.; Gabuza, K.; Johnson, R.; Sangweni, N.F.; Maharaj, V.; Muller, C.J.F. Sclerocarya birrea (Marula) Extract Inhibits Hepatic Steatosis in db/db Mice. Int. J. Environ. Res. Public Health 2022, 19, 3782. [Google Scholar] [CrossRef]
- Kgopa, A.H. Effects of Sclerocarya birrea Stem-Bark Extracts on Glucose Uptake, Insulin Synthesis and Expression of Selected Genes Involved in the Synthesis and Secretion of Insulin in Rat Insulinoma Pancreatic Beta Cells. Asian J. Chem. 2020, 32, 2195–2202. [Google Scholar] [CrossRef]
- Fathoni, A.; Saepudin, E.; Herry, C.; Rahayu, D.U.C.; Haib, J. Identification of Nonvolatile Compounds in Clove (Syzygium aromaticum) from Manado. AIP Conf. Proc. 2017, 1862, 030079. [Google Scholar]
- Lin, Y.; Wu, B.; Li, Z.; Hong, T.; Chen, M.; Tan, Y.; Jiang, J.; Huang, C. Metabolite Identification of Myricetin in Rats Using HPLC Coupled with ESI-MS. Chromatographia 2012, 75, 655–660. [Google Scholar] [CrossRef]
- Hassan, W.H.B.; Abdelaziz, S.; Al Yousef, H.M. Chemical Composition and Biological Activities of the Aqueous Fraction of Parkinsonea aculeata L. Growing in Saudi Arabia. Arab. J. Chem. 2019, 12, 377–387. [Google Scholar] [CrossRef]
- Braca, A.; Politi, M.; Sanogo, R.; Sanou, H.; Morelli, I.; Pizza, C.; De Tommasi, N. Chemical Composition and Antioxidant Activity of Phenolic Compounds from Wild and Cultivated Sclerocarya birrea (Anacardiaceae) Leaves. J. Agric. Food Chem. 2003, 51, 6689–6695. [Google Scholar] [CrossRef]
- Dueñas, M.; Mingo-Chornet, H.; Pérez-Alonso, J.; Di Paola, R.; Gonzalez-paramas, A.M.; Santos Buelga, C. Preparation of quercetin glucuronides and characterization by HPLC–DAD–ESI/MS. Eur. Food Res. Technol. 2008, 227, 1069–1076. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, A.; Kumar, B. Identification and characterization of phenolics and terpenoids from ethanolic extracts of Phyllanthus species by HPLC-ESI-QTOF-MS/MS. J. Pharm. Anal. 2017, 7, 214–222. [Google Scholar] [CrossRef]
- Saldanha, L.L.; Vilegas, W.; Dokkedal, A.L. Characterization of flavonoids and phenolic acids in Myrcia bella Cambess. using FIA-ESI-IT-MS(n) and HPLC-PAD-ESI-IT-MS combined with NMR. Molecules 2013, 18, 8402–8416. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.; Chen, M.; Zhou, F.; Cai, D.; Bai, H.; Wang, P.; Lei, H.; Ma, Q. Separation and analysis of flavonoid chemical constituents in flowers of Juglans regia L. by ultra-high-performance liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry. J. Pharm. Biomed. Anal. 2019, 164, 734–741. [Google Scholar] [CrossRef]
- Scigelova, M.; Hornshaw, M.; Giannakopulos, A.; Makarov, A. Fourier Transform Mass Spectrometry. Mol. Cell. Proteom. MCP 2011, 10, M111.009431. [Google Scholar] [CrossRef] [Green Version]
- Russo, D.; Kenny, O.; Smyth, T.J.; Milella, L.; Hossain, M.B.; Diop, M.S.; Rai, D.K.; Brunton, N.P. Profiling of Phytochemicals in Tissues from Sclerocarya birrea by HPLC-MS and Their Link with Antioxidant Activity. ISRN Chromatogr. 2013, 2013, 283462. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Capanoglu, E.; Jassbi, A.R.; Miron, A. Advance on the Flavonoid C-glycosides and Health Benefits. Crit. Rev. Food Sci. Nutr. 2016, 56 (Suppl. S1), S29–S45. [Google Scholar] [CrossRef]
- Blahova, J.; Martiniakova, M.; Babikova, M.; Kovacova, V.; Mondockova, V.; Omelka, R. Pharmaceutical Drugs and Natural Therapeutic Products for the Treatment of Type 2 Diabetes Mellitus. Pharmaceuticals 2021, 14, 806. [Google Scholar] [CrossRef]
- Variya, B.C.; Bakrania, A.K.; Patel, S.S. Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. Phytomedicine 2020, 73, 152906. [Google Scholar] [CrossRef]
- He, D.; Gu, D.; Huang, Y.; Ayupbek, A.; Yang, Y.; Aisa, H.A.; Ito, Y. Separation and Purification of Phenolic Acids and Myricetin from Black Currant by High-Speed Countercurrent Chromatography. J. Liq. Chromatogr. Relat. Technol. 2009, 32, 3077–3088. [Google Scholar] [CrossRef]
- Granica, S.; Czerwińska, M.E.; Żyżyńska-Granica, B.; Kiss, A.K. Antioxidant and anti-inflammatory flavonol glucuronides from Polygonum aviculare L. Fitoterapia 2013, 91, 180–188. [Google Scholar] [CrossRef]
- Moon, J.H.; Tsushida, T.; Nakahara, K.; Terao, J. Identification of quercetin 3-O-beta-D-glucuronide as an antioxidative metabolite in rat plasma after oral administration of quercetin. Free Radic. Biol. Med. 2001, 30, 1274–1285. [Google Scholar] [CrossRef]
- Polori, K.L.; Mashele, S.S.; Aremu, A.O. In vitro anti-diabetic effect and cytotoxicity of South African Ipomoea oblongata. S. Afr. J. Bot. 2021, 142, 96–99. [Google Scholar] [CrossRef]
- Hussain, T.; Tan, B.; Murtaza, G.; Liu, G.; Rahu, N.; Saleem Kalhoro, M.; Hussain Kalhoro, D.; Adebowale, T.O.; Usman Mazhar, M.; Rehman, Z.U.; et al. Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacol. Res. 2020, 152, 104629. [Google Scholar] [CrossRef]
- Ding, Y.; Dai, X.-Q.; Zhang, Z.-F.; Li, Y. Myricetin attenuates hyperinsulinemia-induced insulin resistance in skeletal muscle cells. Eur. Food Res. Technol. 2012, 234, 873–881. [Google Scholar] [CrossRef]
- Chen, H.W.; Yang, M.Y.; Hung, T.W.; Chang, Y.C.; Wang, C.J. Nelumbo nucifera leaves extract attenuate the pathological progression of diabetic nephropathy in high-fat diet-fed and streptozotocin-induced diabetic rats. J. Food Drug Anal. 2019, 27, 736–748. [Google Scholar] [CrossRef]
- Eid, H.M.; Martineau, L.C.; Saleem, A.; Muhammad, A.; Vallerand, D.; Benhaddou-Andaloussi, A.; Nistor, L.; Afshar, A.; Arnason, J.T.; Haddad, P.S. Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant Vaccinium vitis-idaea. Mol. Nutr. Food Res. 2010, 54, 991–1003. [Google Scholar] [CrossRef]
- Borges, P.H.O.; Pedreiro, S.; Baptista, S.J.; Geraldes, C.F.G.C.; Batista, M.T.; Silva, M.M.C.; Figueirinha, A. Inhibition of α-glucosidase by flavonoids of Cymbopogon citratus (DC) Stapf. J. Ethnopharmacol. 2021, 280, 114470. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Ngueguim, F.T.; Esse, E.C.; Dzeufiet, P.D.D.; Gounoue, R.K.; Bilanda, D.C.; Kamtchouing, P.; Dimo, T. Oxidised palm oil and sucrose induced hyperglycemia in normal rats: Effects of Sclerocarya birrea stem barks aqueous extract. BMC Complement. Altern. Med. 2016, 16, 47. [Google Scholar] [CrossRef] [Green Version]
- Makom Ndifossap, I.G.; Frigerio, F.; Casimir, M.; Ngueguim Tsofack, F.; Dongo, E.; Kamtchouing, P.; Dimo, T.; Maechler, P. Sclerocarya birrea (Anacardiaceae) stem-bark extract corrects glycaemia in diabetic rats and acts on beta-cells by enhancing glucose-stimulated insulin secretion. J. Endocrinol. 2010, 205, 79–86. [Google Scholar] [CrossRef]
Extract | Harvesting Date by Year | Extraction/Spray-Drying Date by Year | Harvest Location (Province) | Mass of Leaves Extracted | Mass of Spray-Dried Extract | % Extraction Yield |
---|---|---|---|---|---|---|
Aqueous extract 1 | End of 2013 | Beginning 2014 | Limpopo | 9.4 kg | 1.070 kg | 11% |
Aqueous extract 2 | 2014 | 2017 | Mpumalanga | 4.0 kg | 0.521 kg | 13% |
Aqueous extract 3 | End of 2014 | Beginning 2015 | Mpumalanga | 4.0 kg | 0.348 kg | 9% |
Aqueous extract 4 | 2017 | 2017 | Mpumalanga | 4.0 kg | 0.783 kg | 20% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maharaj, V.; Ezeofor, C.C.; Naidoo Maharaj, D.; Muller, C.J.F.; Obonye, N.J. Identification of Antidiabetic Compounds from the Aqueous Extract of Sclerocarya birrea Leaves. Molecules 2022, 27, 8095. https://doi.org/10.3390/molecules27228095
Maharaj V, Ezeofor CC, Naidoo Maharaj D, Muller CJF, Obonye NJ. Identification of Antidiabetic Compounds from the Aqueous Extract of Sclerocarya birrea Leaves. Molecules. 2022; 27(22):8095. https://doi.org/10.3390/molecules27228095
Chicago/Turabian StyleMaharaj, Vinesh, Chidinma Christiana Ezeofor, Dashnie Naidoo Maharaj, Christo J. F. Muller, and Nnini Jennifer Obonye. 2022. "Identification of Antidiabetic Compounds from the Aqueous Extract of Sclerocarya birrea Leaves" Molecules 27, no. 22: 8095. https://doi.org/10.3390/molecules27228095
APA StyleMaharaj, V., Ezeofor, C. C., Naidoo Maharaj, D., Muller, C. J. F., & Obonye, N. J. (2022). Identification of Antidiabetic Compounds from the Aqueous Extract of Sclerocarya birrea Leaves. Molecules, 27(22), 8095. https://doi.org/10.3390/molecules27228095