Phytochemical Analysis and Habitat Suitability Mapping of Cardiocrinum cordatum (Thunb.) Makino Collected at Chiburijima, Oki Islands, Japan
Abstract
:1. Introduction
2. Results and Discussion
2.1. Soil Analysis
2.2. ACE Inhibition, DPPH Activity, and Total Phenolic and Flavonoid Content
2.3. Habitat Suitability Map (HSM)
2.4. Importance of Effective Factors
2.5. Validation of MaxEnt Model
3. Materials and Methods
3.1. Study Area
3.2. Plant Materials and Data Collection
3.3. Soil Analysis
3.4. Preparation of Plant Extract
3.5. Chemicals
3.6. Instrumentation
3.7. ACE Inhibition
3.8. Radical Scavenging Activity by DPPH Method
3.9. Total Phenolic Content
3.10. Total Flavonoid Content
3.11. Dataset Preparation for Habitat Suitability Mapping
3.12. Maximum Entropy (MaxENT) Model and Validation
3.13. Statistical Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sakai, S.; Sakai, A.; Ishii, H.S. Patterns of wing size variation in seeds of the lily Cardiocrinum cordatum (Liliaceae). Am. J. Bot. 1997, 84, 1275–1278. [Google Scholar] [CrossRef] [PubMed]
- Araki, K.; Shimatani, K.; Nishizawa, M.; Yoshizane, T.; Ohara, M. Growth and survival patterns of cardiocrinum cordatum var. glehnii (Liliaceae) based on a 13-year monitoring study: Life history characteristics of a monocarpic perennial herb. Botany 2010, 88, 745–752. [Google Scholar] [CrossRef]
- Ohara, M.; Narumi, T.; Yoshizane, T.; Okayasu, T.; Masuda, J.; Kawano, S. 7: Cardiocrinum cordatum (Thunb.) Makino (Liliaceae). Plant Species Biol. 2006, 21, 201–207. [Google Scholar] [CrossRef]
- Lu, R.-S.; Li, P.; Qiu, Y.-X. The Complete Chloroplast Genomes of Three Cardiocrinum (Liliaceae) Species: Comparative Genomic and Phylogenetic Analyses. Front. Plant Sci. 2017, 7, 2054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, T.; Inagaki, N.; Murai, R. A Guidebook of Useful Plants in Kochi Prefecture, 1st ed.; Kofbai Publishing Project: Bangkok, Thailand, 2015; ISBN 978-4-9906572-1-5. [Google Scholar]
- Shiozaki, M.; Ishii, S. Composition of Cardiocrinum cordatum var. glehnii and Traditional Derived Dried Foods of the Ainu. Jpn. J. Nutr. Diet. 2004, 62, 303–306. [Google Scholar] [CrossRef]
- Tsutaya, T.; Sawada, J.; Dodo, Y.; Mukai, H.; Yoneda, M. Isotopic evidence of dietary variability in subadults at the Usu-moshiri site of the Epi-Jomon culture, Japan. J. Archaeol. Sci. 2013, 40, 3914–3925. [Google Scholar] [CrossRef]
- Faculty of Pharmaceutical Sciences, Herbarium. Cardiocrinum cordatum (Thunb.) Makino. Available online: https://www.pharm.kumamoto-u.ac.jp/yakusodb/detail/003464.php (accessed on 12 December 2021).
- Li, R.; Yang, J.; Yang, J.; Dao, Z. Isolation and characterization of 21 microsatellite loci in Cardiocrinum giganteum var. yunnanense (Liliaceae), an important economic plant in China. Int. J. Mol. Sci. 2012, 13, 1437–1443. [Google Scholar] [CrossRef] [Green Version]
- Yuka, O.; Masanobu, S.; Yoshino, O.; Hayato, S.; Hirohisa, K.; Akio, K.; Takashi, W.; Takehiro, K.; Kim Chul-sa, W.H. Elucidation of the Blood Pressure Suppressant Effect to Have of the Cardiocrinum coedatum; Kochi Prefectural Industrial Technology Center: Kochi, Japan, 2016.
- Abdul-Hafez, A.; Mohamed, T.; Uhal, B.D. Angiotensin Converting Enzyme-2 (ACE-2) role in disease and future in research. J. Lung Pulm. Respir. Res. 2021, 8, 54–60. [Google Scholar] [CrossRef]
- Kai, H.; Kai, M. Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors—Lessons from available evidence and insights into COVID-19. Hypertens. Res. 2020, 43, 648–654. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, Y.; Yan, L.; Guo, Y.; Niu, L. Phenolic Compounds and Antioxidant Activity of Bulb Extracts of Six Lilium Species Native to China. Molecules 2012, 17, 9361–9378. [Google Scholar] [CrossRef]
- Lavers, C.; Field, R. A resource-based conceptual model of plant diversity that reassesses causality in the productivity-diversity relationship. Glob. Ecol. Biogeogr. 2006, 15, 213–224. [Google Scholar] [CrossRef]
- Alsaadi, D.H.M.; Raju, A.; Kusakari, K.; Karahan, F.; Sekeroglu, N.; Watanabe, T. Phytochemical Analysis and Habitat Suitability Mapping of Glycyrrhiza glabra L. Collected in the Hatay Region of Turkey. Molecules 2020, 25, 5529. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Pausas, J.G.; Austin, M.P. Patterns of plant species richness in relation to different environments: An appraisal. J. Veg. Sci. 2001, 12, 153–166. [Google Scholar] [CrossRef]
- Etherington, J.R.; Larcher, W. Physiological Plant Ecology. J. Ecol. 1996, 84, 630. [Google Scholar] [CrossRef]
- Martin, M.H.; Marschner, H. The Mineral Nutrition of Higher Plants. J. Ecol. 1988, 76, 1250. [Google Scholar] [CrossRef] [Green Version]
- Larcher, W. Physiological Plant Ecology, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1980; ISBN 978-3-642-96283-7. [Google Scholar]
- Dietrich, S.T.; MacKenzie, M.D. Comparing Spatial Heterogeneity of Bioavailable Nutrients and Soil Respiration in Boreal Sites Recovering from Natural and Anthropogenic Disturbance. Front. Environ. Sci. 2018, 6, 126. [Google Scholar] [CrossRef] [Green Version]
- Hicks, D.J.; Smith, T.M.; Shugart, H.H.; Woodward, F.I. Plant Functional Types: Their Relevance to Ecosystem Properties and Global Change. Syst. Bot. 1998, 23, 102. [Google Scholar] [CrossRef]
- Cody, M.L. Growth-form diversity and community structure in desert plants. J. Arid Environ. 1989, 17, 199–209. [Google Scholar] [CrossRef]
- Padalia, H.; Srivastava, V.; Kushwaha, S.P.S. Modeling potential invasion range of alien invasive species, Hyptis suaveolens (L.) Poit. in India: Comparison of MaxEnt and GARP. Ecol. Inform. 2014, 22, 36–43. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef] [PubMed]
- Robertson, M.P.; Villet, M.H.; Palmer, A.R. A fuzzy classification technique for predicting species’ distributions: Applications using invasive alien plants and indigenous insects. Divers. Distrib. 2004, 10, 461–474. [Google Scholar] [CrossRef] [Green Version]
- Newbold, T. Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Prog. Phys. Geogr. Earth Environ. 2010, 34, 3–22. [Google Scholar] [CrossRef]
- Peterson, A.T.; Soberón, J.; Pearson, R.G.; Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araújo, M.B. Ecological Niches and Geographic Distributions (MPB-49); Princeton University Press: Princeton, NJ, USA, 2011; ISBN 9780691136868. [Google Scholar]
- Ghanbarian, G.; Raoufat, M.R.; Pourghasemi, H.R.; Safaeian, R. Habitat Suitability Mapping of Artemisia aucheri Boiss Based on the GLM Model in R. In Spatial Modeling in GIS and R for Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019; pp. 213–227. [Google Scholar]
- Stockwell, D. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 1999, 13, 143–158. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Yost, A.C.; Petersen, S.L.; Gregg, M.; Miller, R. Predictive modeling and mapping sage grouse (Centrocercus urophasianus) nesting habitat using Maximum Entropy and a long-term dataset from Southern Oregon. Ecol. Inform. 2008, 3, 375–386. [Google Scholar] [CrossRef]
- Edalat, M.; Jahangiri, E.; Dastras, E.; Pourghasemi, H.R. Prioritization of Effective Factors on Zataria multiflora Habitat Suitability and its Spatial Modeling. In Spatial Modeling in GIS and R for Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019; pp. 411–427. [Google Scholar]
- Rahimian Boogar, A.; Salehi, H.; Pourghasemi, H.R.; Blaschke, T. Predicting Habitat Suitability and Conserving Juniperus spp. Habitat Using SVM and Maximum Entropy Machine Learning Techniques. Water 2019, 11, 2049. [Google Scholar] [CrossRef] [Green Version]
- Actis-Goretta, L.; Ottaviani, J.I.; Fraga, C.G. Inhibition of Angiotensin Converting Enzyme Activity by Flavanol-Rich Foods. J. Agric. Food Chem. 2006, 54, 229–234. [Google Scholar] [CrossRef]
- Dong, J.; Xu, X.; Liang, Y.; Head, R.; Bennett, L. Inhibition of angiotensin converting enzyme (ACE) activity by polyphenols from tea (Camellia sinensis) and links to processing method. Food Funct. 2011, 2, 310. [Google Scholar] [CrossRef]
- Shafaei, A.; Sultan Khan, M.; Aisha, A.F.A.; Abdul Majid, A.; Hamdan, M.; Mordi, M.; Ismail, Z. Flavonoids-Rich Orthosiphon stamineus Extract as New Candidate for Angiotensin I-Converting Enzyme Inhibition: A Molecular Docking Study. Molecules 2016, 21, 1500. [Google Scholar] [CrossRef]
- Hong, K.; Gao, A.-H.; Xie, Q.-Y.; Gao, H.G.; Zhuang, L.; Lin, H.-P.; Yu, H.-P.; Li, J.; Yao, X.-S.; Goodfellow, M.; et al. Actinomycetes for Marine Drug Discovery Isolated from Mangrove Soils and Plants in China. Mar. Drugs 2009, 7, 24–44. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Li, J.; Chankvetadze, B.; Cheng, Y.; Xu, J.; Liu, X.; Li, Y.; Chen, X.; Bertucci, C.; Tedesco, D.; et al. Chiral Triazole Fungicide Difenoconazole: Absolute Stereochemistry, Stereoselective Bioactivity, Aquatic Toxicity, and Environmental Behavior in Vegetables and Soil. Environ. Sci. Technol. 2013, 47, 3386–3394. [Google Scholar] [CrossRef] [PubMed]
- Izawa, H.; Aoyagi, Y. Nicotianamine Contents among Vegetables and their Inhibitory Activity of Angiotensin-I Converting Enzyme. Nippon. Shokuhin Kagaku Kogaku Kaishi 2012, 59, 348–353. [Google Scholar] [CrossRef] [Green Version]
- Japan Meteorological Agency. General Information on Climate of Japan. Available online: https://www.jma.go.jp/jma/indexe.html (accessed on 10 April 2021).
- Cushman, D.W.; Cheung, H.S. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 1971, 20, 1637–1648. [Google Scholar] [CrossRef]
- Oki, T.; Masuda, M.; Furuta, S.; Nishiba, Y.; Suda, I. Radical Scavenging Activity of Fried Chips made from Purple-Fleshed Sweet Potato. Nippon. Shokuhin Kagaku Kogaku Kaishi 2001, 48, 926–932. [Google Scholar] [CrossRef] [Green Version]
- Maeda, G.; Takara, K.; Wada, K.; Oki, T.; Masuda, M.; Ichiba, T.; Chuda, Y.; Ono, H.; Suda, I. Evaluation of Antioxidant Activity of Vegetables from Okinawa Prefecture and Determination of Some Antioxidative Compounds. Food Sci. Technol. Res. 2006, 12, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Julkunen-Tiitto, R. Phenolic Constituents in the Leaves of Northern Willows: Methods for the Analysis of Certain Phenolics. J. Agric. Food. Chem. 1985, 33, 213–217. [Google Scholar] [CrossRef]
- Pękal, A.; Pyrzynska, K. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food. Anal. Methods 2014, 7, 1776–1782. [Google Scholar] [CrossRef] [Green Version]
- DAAC, ASF. ALOS PALSAR_Radiometric_Terrain_Corrected_low_res; Includes Material © JAXA/METI 2007. Accessed through ASF DAAC. Available online: https://doi.org/10.5067/JBYK3J6HFSVF (accessed on 15 December 2020).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Chen, W.; Pourghasemi, H.R.; Kornejady, A.; Zhang, N. Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma 2017, 305, 314–327. [Google Scholar] [CrossRef]
- Yi, Y.; Cheng, X.; Yang, Z.-F.; Zhang, S.-H. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol. Eng. 2016, 92, 260–269. [Google Scholar] [CrossRef]
- Abdelaal, M.; Fois, M.; Fenu, G.; Bacchetta, G. Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. in Egypt. Ecol. Inform. 2019, 50, 68–75. [Google Scholar] [CrossRef]
- Bosso, L.; Rebelo, H.; Garonna, A.P.; Russo, D. Modelling geographic distribution and detecting conservation gaps in Italy for the threatened beetle Rosalia alpina. J. Nat. Conserv. 2013, 21, 72–80. [Google Scholar] [CrossRef]
- Aguilar, G.D.; Blanchon, D.J.; Foote, H.; Pollonais, C.W.; Mosee, A.N. A performance based consensus approach for predicting spatial extent of the Chinese windmill palm (Trachycarpus fortunei) in New Zealand under climate change. Ecol. Inform. 2017, 39, 130–139. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Zhou, C.; Meng, J.; Sun, J.; Zhou, T.; Tao, J. Impact of climate factors on future distributions of Paeonia ostii across China estimated by MaxEnt. Ecol. Inform. 2019, 50, 62–67. [Google Scholar] [CrossRef]
- Blahut, J.; van Westen, C.J.; Sterlacchini, S. Analysis of landslide inventories for accurate prediction of debris-flow source areas. Geomorphology 2010, 119, 36–51. [Google Scholar] [CrossRef]
- Khanum, R.; Mumtaz, A.S.; Kumar, S. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecol. 2013, 49, 23–31. [Google Scholar] [CrossRef]
ID a | Ammonium-Nitrogen (mg 100 g−1) b | Nitrate-Nitrogen (mg 100 g−1) b | Available Phosphorus (mg 100 g−1) b | Exchangeable Potassium (mg 100 g−1) b | Exchangeable Calcium (mg 100 g−1) b | Exchangeable Magnesium (mg 100 g−1) b |
---|---|---|---|---|---|---|
Ch-1 | 2.4 | 0.54 | 68 | 135 | 398 | 161 |
Ch-2 | 2.4 | 0.54 | 68 | 135 | 398 | 161 |
Ch-3 | 2 | 3.1 | 26 | 47 | 908 | 136 |
Ch-4 | 2 | 3.1 | 26 | 47 | 908 | 136 |
Ch-5 | 2 | 3.1 | 26 | 47 | 908 | 136 |
Ch-6 | 1.9 | 2.6 | 37 | 50 | 720 | 170 |
Ch-7 | 1.9 | 2.6 | 37 | 50 | 720 | 170 |
Ch-8 | 2.6 | 0.46 | 7.8 | 39 | 273 | 157 |
Ch-9 | 2.6 | 0.46 | 7.8 | 39 | 273 | 157 |
Ch-10 | 1.6 | 1.8 | 76 | 5 | 523 | 105 |
Ch-11 | 2.5 | 2.6 | 12 | 46 | 362 | 133 |
Ch-12 | 2.5 | 2.6 | 12 | 46 | 362 | 133 |
Ch-13 | 2.6 | 1.4 | 67 | 33 | 779 | 202 |
Ch-14 | 2.1 | 6.1 | 47.8 | 97.6 | 138.1 | 97.6 |
Ch-15 | 2.1 | 6.1 | 47.8 | 97.6 | 138.1 | 97.6 |
Ch-16 | 5.1 | 6.4 | 38.6 | 65 | 155.1 | 42.2 |
Ch-17 | 5.1 | 6.4 | 38.6 | 65 | 155.1 | 42.2 |
Ch-18 | 5.1 | 6.4 | 38.6 | 65 | 155.1 | 42.2 |
Ch-19 | 2 | 6.5 | 57.2 | 92.4 | 169.8 | 135.5 |
Ch-20 | 2 | 6.5 | 57.2 | 92.4 | 169.8 | 135.5 |
Ch-21 | 2.2 | 1.7 | 37 | 41 | 552 | 103 |
Ch-22 | 0.8 | 4.2 | 11.5 | 64.7 | 91.9 | 63.1 |
Ch-23 | 0.8 | 4.2 | 11.5 | 64.7 | 91.9 | 63.1 |
Ch-24 | 2.4 | 5.1 | 41.2 | 61.7 | 113.8 | 79.5 |
Ch-25 | 2.4 | 5.1 | 41.2 | 61.7 | 113.8 | 79.5 |
Ch-26 | 2.4 | 5.1 | 41.2 | 61.7 | 113.8 | 79.5 |
Ch-27 | 1.7 | 2.5 | 25.9 | 70.8 | 99.8 | 119.6 |
Ch-28 | 1.7 | 2.5 | 25.9 | 70.8 | 99.8 | 119.6 |
Ch-29 | 3.5 | 2.3 | 41.7 | 41.1 | 209.7 | 105.9 |
Ch-30 | 1.9 | 2.9 | 34.5 | 43.7 | 91 | 86.3 |
Ch-31 | 1.9 | 2.9 | 34.5 | 43.7 | 91 | 86.3 |
Ch-32 | 1.9 | 2.9 | 34.5 | 43.7 | 91 | 86.3 |
Ch-33 | 1.8 | 1.6 | 13 | 49.9 | 96.4 | 56.3 |
Ch-34 | 1.8 | 1.6 | 13 | 49.9 | 96.4 | 56.3 |
Ch-35 | 2.4 | 4.7 | 23 | 40.8 | 117.8 | 138.4 |
Ch-36 | 2.4 | 4.7 | 23 | 40.8 | 117.8 | 138.4 |
Ch-37 | 0.9 | 3.8 | 18.3 | 40.4 | 91.5 | 42 |
ID a | ACE Inhibition Activity b | DPPH Radical Scavenging Activity c | Total Phenolic Content d | Total Flavonoid Content e |
---|---|---|---|---|
Ch-1 | 0.27 ± 0.09 | 294 ± 8.86 | 8.41 ± 0.25 | 0.48 ± 0.02 |
Ch-2 | 0.16 ± 0.02 | 438 ± 19.0 | 8.33 ± 0.15 | 0.17 ± 0.04 |
Ch-3 | 0.21 ± 0.01 | 314 ± 14.6 | 9.11 ± 0.20 | 0.39 ± 0.05 |
Ch-4 | 3.85 ± 0.67 | 960 ± 11.0 | 9.35 ± 0.11 | 0.13 ± 0.03 |
Ch-5 | 4.25 ± 0.04 | 878 ± 14.6 | 5.88 ± 0.17 | 0.14 ± 0.09 |
Ch-6 | 3.62 ± 0.44 | 823 ± 37.9 | 5.80 ± 0.10 | 0.38 ± 0.004 |
Ch-7 | 5.61 ± 0.03 | 593 ± 20.0 | 9.05 ± 0.25 | 0.15 ± 0.06 |
Ch-8 | 2.44 ± 0.53 | 725 ± 50.3 | 8.00 ± 0.05 | 0.13 ± 0.02 |
Ch-9 | 3.21 ± 0.28 | 297 ± 44.2 | 9.03 ± 0.12 | 0.55 ± 0.05 |
Ch-10 | 2.41 ± 0.33 | 620 ± 29.8 | 10.9 ± 0.12 | N.D. |
Ch-11 | 0.23 ± 0.00 | 650 ± 32.0 | 9.54 ± 0.22 | 0.15 ± 0.04 |
Ch-12 | 0.34 ± 0.17 | 630 ± 22.7 | 15.7 ± 0.16 | 0.38 ± 0.02 |
Ch-13 | 2.66 ± 0.40 | 889 ± 36.6 | 3.39 ± 0.12 | 0.10 ± 0.02 |
Ch-14 | 3.10 ± 0.73 | 369 ± 8.59 | 3.64 ± 0.02 | 0.44 ± 0.03 |
Ch-15 | 2.64 ± 0.06 | 404 ± 13.3 | 11.3 ± 0.21 | 1.09 ± 0.08 |
Ch-16 | 9.13 ± 0.87 | 517 ± 5.35 | 14.5 ± 0.23 | 0.63 ± 0.02 |
Ch-17 | 0.28 ± 0.15 | 466 ± 57.0 | 6.21 ± 0.29 | 0.17 ± 0.04 |
Ch-18 | 2.83 ± 0.63 | 760 ± 8.21 | 10.2 ± 0.15 | 0.92 ± 0.04 |
Ch-19 | 0.23 ± 0.07 | 338 ± 25.3 | 13.0 ± 0.20 | 1.08 ± 0.03 |
Ch-20 | 0.30 ± 0.03 | 1221 ± 56.6 | 21.7 ± 0.09 | 0.74 ± 0.09 |
Ch-21 | 8.74 ± 0.88 | 155 ± 16.5 | 4.35 ± 0.04 | 0.41 ± 0.01 |
Ch-22 | 2.16 ± 0.17 | 661 ± 31.8 | 9.57 ± 0.06 | 0.23 ± 0.09 |
Ch-23 | 2.79 ± 0.10 | 512 ± 23.6 | 22.6 ± 0.38 | 0.91 ± 0.06 |
Ch-24 | 8.80 ± 0.85 | 310 ± 41.4 | 27.1 ± 0.82 | 1.52 ± 0.06 |
Ch-25 | 4.50 ± 0.50 | 211 ± 13.2 | 9.87 ± 0.13 | 1.73 ± 0.01 |
Ch-26 | 1.88 ± 0.45 | 317 ± 9.70 | 16.6 ± 0.17 | 0.64 ± 0.03 |
Ch-27 | 9.60 ± 0.40 | 559 ± 17.7 | 14.9 ± 0.55 | 0.41 ± 0.08 |
Ch-28 | 6.18 ± 0.40 | 286 ± 11.1 | 11.7 ± 0.04 | 0.48 ± 0.04 |
Ch-29 | 0.64 ± 0.23 | 501 ± 32.4 | 27.6 ± 0.06 | 0.48 ± 0.10 |
Ch-30 | 0.41 ± 0.18 | 415 ± 20.5 | 6.83 ± 0.03 | 0.22 ± 0.01 |
Ch-31 | 3.46 ± 0.98 | 385 ± 9.31 | 25.5 ± 0.29 | 0.92 ± 0.08 |
Ch-32 | 0.41 ± 0.27 | 947 ± 55.8 | 14.1 ± 0.03 | 0.30 ± 0.07 |
Ch-33 | 0.53 ± 0.35 | 548 ± 1.84 | 0.91 ± 0.10 | 0.05 ± 0.01 |
Ch-34 | 1.29 ± 0.01 | 668 ± 27.0 | 15.6 ± 0.12 | 0.12 ± 0.01 |
Ch-35 | 0.77 ± 0.67 | 366 ± 20.8 | 1.38 ± 0.01 | 0.05 ± 0.04 |
Ch-36 | 0.22 ± 0.04 | 583 ± 18.4 | 3.32 ± 0.003 | 0.09 ± 0.01 |
Ch-37 | 1.10 ± 0.89 | 659 ± 19.4 | 4.75 ± 0.05 | 0.16 ± 0.06 |
Variables | ACE Inhibition Activity (mg mL −1) | DPPH Radical Scavenging Activity (µg mL −1) | ||
---|---|---|---|---|
F Value | R2 | F Value | R2 | |
BIO05 (°C) | 2.929 | 0.321 * | 1.399 | 0.184 |
Organic Carbon Content (g/Kg) | 0.583 | 0.783 | 10.986 | 0.986 ** |
Silt (%) | 3.443 | 0.912 * | 1.750 | 0.840 |
Nitrate-nitrogen (mg 100 g −1) | 2.455 | 0.637 * | 1.177 | 0.457 |
ID a | Latitude | Longitude | Altitude (m) | pH | Soil Bearing Capacity b | SM150T Output c |
---|---|---|---|---|---|---|
Ch-1 | 35.4332 | 133.0411 | 43.25 | 5.9 ± 0.79 | 6.7 ± 2.05 | 0.37 ± 0.13 |
Ch-2 | 36.0119 | 133.0277 | 30.24 | 6.8 ± 0.08 | 6.3 ± 1.25 | 0.28 ± 0.07 |
Ch-3 | 36.0121 | 133.0274 | 30.51 | 5.4 ± 0.36 | 8.0 ± 1.63 | 0.29 ± 0.01 |
Ch-4 | 36.0125 | 133.0268 | 32.7 | 5.5 ± 0.18 | 13.3 ± 1.56 | 0.47 ± 0.07 |
Ch-5 | 36.0131 | 133.0270 | 34.99 | 5.3 ± 0.19 | 8.9 ± 1.97 | 0.43 ± 0.05 |
Ch-6 | 36.0142 | 133.0275 | 50.16 | 5.6 ± 0.27 | 16.5 ± 1.18 | 0.84 ± 0.05 |
Ch-7 | 36.0136 | 133.0274 | 52.39 | 5.4 ± 0.14 | 12.7 ± 2.9 | 0.89 ± 0.05 |
Ch-8 | 36.0123 | 133.0285 | 55.53 | 5.4 ± 0.21 | 14.5 ± 0.71 | 0.84 ± 0.01 |
Ch-9 | 36.0119 | 133.0289 | 58.03 | 5.6 ± 0.5 | 10.8 ± 0.49 | 0.64 ± 0.2 |
Ch-10 | 36.0112 | 133.0294 | 60.5 | 6.1 ± 0.6 | 10.3 ± 0.8 | 0.68 ± 0.01 |
Ch-11 | 36.0096 | 133.0322 | 65.52 | 6.2 ± 0.57 | 7.3 ± 1.25 | 0.67 ± 0.02 |
Ch-12 | 36.0092 | 133.0325 | 67.66 | 6.3 ± 0.97 | 6.0 ± 0.82 | 0.61 ± 0.11 |
Ch-13 | 36.0171 | 133.0290 | 56.84 | 7.3 ± 0.33 | 10.3 ± 4.19 | 0.48 ± 0.01 |
Ch-14 | 36.0295 | 133.0287 | 50.72 | 6.9 ± 0.05 | 6.3 ± 4.03 | 0.56 ± 0.09 |
Ch-15 | 36.0298 | 133.0281 | 50.29 | 7.3 ± 0.19 | 10.3 ± 5.79 | 0.49 ± 0.09 |
Ch-16 | 36.0295 | 133.0220 | 41.35 | 7.0 ± 0.05 | 8.0 ± 2.94 | 0.67 ± 0.02 |
Ch-17 | 36.0297 | 133.0210 | 51.87 | 5.6 ± 1.02 | 4.7 ± 1.7 | 0.52 ± 0.27 |
Ch-18 | 36.0295 | 133.0201 | 51.2 | 7.9 ± 0.08 | 7.7 ± 1.7 | 0.37 ± 0.17 |
Ch-19 | 36.0297 | 133.0176 | 65.31 | 4.4 ± 0.09 | 8.0 ± 2.94 | 0.37 ± 0.07 |
Ch-20 | 36.0297 | 133.0167 | 76.78 | 5.6 ± 0.11 | 14.4 ± 0.6 | 0.37 ± 0.01 |
Ch-21 | 36.0051 | 133.0476 | 54.04 | 5.6 ± 0.00 | 9.0 ± 2.16 | 0.57 ± 0.01 |
Ch-22 | 36.0041 | 133.0529 | 39.08 | 4.8 ± 0.00 | 4.0 ± 0.00 | 0.5 ± 0.07 |
Ch-23 | 36.0046 | 133.0539 | 28.1 | 5.2 ± 0.28 | 12.7 ± 3.4 | 0.45 ± 0.03 |
Ch-24 | 36.0056 | 133.0593 | 18.78 | 4.8 ± 0.25 | 6.3 ± 2.05 | 0.37 ± 0.05 |
Ch-25 | 36.0061 | 133.0610 | 26.27 | 5.5 ± 0.31 | 9.7 ± 0.47 | 0.34 ± 0.02 |
Ch-26 | 36.0059 | 133.0616 | 32.04 | 5.6 ± 0.39 | 11.1 ± 1.6 | 0.28 ± 0.02 |
Ch-27 | 35.9993 | 133.0577 | 66.58 | 5.7 ± 0.39 | 7.7 ± 2.36 | 0.38 ± 0.16 |
Ch-28 | 35.9972 | 133.0584 | 69.96 | 6.6 ± 0.31 | 3.3 ± 0.94 | 0.56 ± 0.01 |
Ch-29 | 36.0114 | 133.0519 | 98.52 | 5.1 ± 0.5 | 4.3 ± 1.25 | 0.34 ± 0.19 |
Ch-30 | 36.0065 | 133.0524 | 63.79 | 5.0 ± 0.63 | 12.0 ± 2.16 | 0.24 ± 0.01 |
Ch-31 | 36.0055 | 133.0510 | 53.78 | 5.2 ± 0.39 | 6.3 ± 0.94 | 0.21 ± 0.03 |
Ch-32 | 36.0065 | 133.0512 | 33.32 | 5.0 ± 0.12 | 5.3 ± 0.94 | 0.24 ± 0.08 |
Ch-33 | 36.0151 | 133.0218 | 152.9 | 5.0 ± 0.14 | 4.7 ± 1.25 | 0.37 ± 0.08 |
Ch-34 | 36.0145 | 133.0212 | 175.46 | 6.1 ± 0.82 | 3.0 ± 0.00 | 0.37 ± 0.02 |
Ch-35 | 36.0271 | 133.0118 | 104.93 | 5.0 ± 0.21 | 5.7 ± 1.25 | 0.38 ± 0.01 |
Ch-36 | 36.0284 | 133.0150 | 79.36 | 4.9 ± 0.5 | 8.7 ± 1.7 | 0.27 ± 0.01 |
Ch-37 | 36.0188 | 133.0418 | 79.1 | 6.3 ± 0.19 | 6.7 ± 2.49 | 0.32 ± 0.08 |
Category | Conditioning Factors | Code | Units | Data Scale |
---|---|---|---|---|
Topographic factors | Slope | Slope | ° | Continuous |
Digital Elevation Model | DEM | m | Continuous | |
Aspect | Aspect | ° | Categorical (5 classes) | |
Curvature | Curvature | m−1 | Continuous | |
Plan Curvature | Plan curvature | m−1 | Continuous | |
Profile Curvature | Profile curvature | m−1 | Continuous | |
Elevation | Elevation | m | Continuous | |
Hillshade | Hillshade | m | Continuous | |
Topographic Wetness Index | TWI | ---- | Continuous | |
Soil factors | pH | pH | ---- | Continuous |
pH in H2O | pH (H2O) | ---- | Continuous | |
Electrical Conductivity | EC | µS/cm | Continuous | |
Soil Bearing Capacity | SBC | t sf−1 | Continuous | |
Soil Moisture Sensor Output (V) | SM150T output | volts | Continuous | |
Soil Bulk Density | SBD | kg/m3 | Continuous | |
Cation Exchange Capacity | CEC | cmolc/kg | Continuous | |
Clay Content | Clay | % | Continuous | |
Sand Content | Sand | % | Continuous | |
Silt Content | Silt | % | Continuous | |
Organic Carbon Density | OCD | kg/m 3 | Continuous | |
Organic Carbon Content | OCC | g/kg | Continuous | |
Environmental factors | Distance to Stream | ---- | m | Continuous |
Distance to Urban | ---- | m | Continuous | |
Distance to Road | ---- | m | Continuous | |
Climatic factors | Precipitation | ---- | mm | Continuous |
Temperature | ---- | °C | Continuous | |
Annual Mean Temperature | BIO01 | °C | Continuous | |
Max. Temperature of Warmest Month | BIO05 | °C | Continuous | |
Mini. Temperature of Coldest Month | BIO06 | °C | Continuous | |
Annual Precipitation | BIO12 | mm/year | Continuous | |
Precipitation of Wettest Month | BIO13 | mm/month | Continuous | |
Precipitation of Driest Month | BIO14 | mm/month | Continuous |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Momotomi, F.; Raju, A.; Wang, D.; Alsaadi, D.H.M.; Watanabe, T. Phytochemical Analysis and Habitat Suitability Mapping of Cardiocrinum cordatum (Thunb.) Makino Collected at Chiburijima, Oki Islands, Japan. Molecules 2022, 27, 8126. https://doi.org/10.3390/molecules27238126
Momotomi F, Raju A, Wang D, Alsaadi DHM, Watanabe T. Phytochemical Analysis and Habitat Suitability Mapping of Cardiocrinum cordatum (Thunb.) Makino Collected at Chiburijima, Oki Islands, Japan. Molecules. 2022; 27(23):8126. https://doi.org/10.3390/molecules27238126
Chicago/Turabian StyleMomotomi, Fuzuki, Aedla Raju, Dongxing Wang, Doaa H. M. Alsaadi, and Takashi Watanabe. 2022. "Phytochemical Analysis and Habitat Suitability Mapping of Cardiocrinum cordatum (Thunb.) Makino Collected at Chiburijima, Oki Islands, Japan" Molecules 27, no. 23: 8126. https://doi.org/10.3390/molecules27238126
APA StyleMomotomi, F., Raju, A., Wang, D., Alsaadi, D. H. M., & Watanabe, T. (2022). Phytochemical Analysis and Habitat Suitability Mapping of Cardiocrinum cordatum (Thunb.) Makino Collected at Chiburijima, Oki Islands, Japan. Molecules, 27(23), 8126. https://doi.org/10.3390/molecules27238126