Discovery of 5-Methylthiazole-Thiazolidinone Conjugates as Potential Anti-Inflammatory Agents: Molecular Target Identification and In Silico Studies
Abstract
:1. Introduction
2. Results
2.1. Prediction of Spectra of Biological Activity
2.2. Docking Studies
2.3. Chemistry
2.4. Anti-Inflammatory Activity Assessment
Effect on Carrageenan-Induced Mouse Paw Oedema
2.5. Molecular Target Identification
2.6. Docking Studies
3. Materials and Methods
3.1. Prediction of Biological Activity Spectra by PASS
3.2. Effect on Carrageenan-Induced Mouse Paw Oedema
3.3. Inhibition of COX-1 and COX-2 Activity
3.4. Inhibition of LOX Activity
3.5. Docking
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Wolfe, M.M.; Lichtenstein, D.R.; Singh, G. Gastrointestinal toxicity of nonsteroidal antiinflammatory drugs. N. Engl. J. Med. 1999, 340, 1888–1899. [Google Scholar] [CrossRef]
- Silverstein, F.E.; Faich, G.; Goldstein, J.L.; Simon, L.S.; Pincus, T.; Whelton, A.; Makuch, R.; Eisen, G.; Agrawal, N.M.; Stenson, W.F.; et al. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: The CLASS study: A randomized controlled trial. Celecoxib Long-term Arthritis Safety Study. JAMA 2000, 284, 1247–1455. [Google Scholar] [CrossRef] [Green Version]
- Scheen, A.J. Withdrawal of rofecoxib (Vioxx): What about cardiovascular safety of COX-2 selective non-steroidal anti-inflammatory drugs? Rev. Med. Liege 2004, 59, 565–569. [Google Scholar]
- Dogne, J.M.; Supuran, C.T.; Pratico, D. Adverse cardiovascular effects of the coxibs. J. Med. Chem. 2005, 48, 2251–2257. [Google Scholar] [CrossRef]
- Tanaka, A.; Araki, H.; Komoike, Y.; Hase, S.; Takeuchi, K. Inhibition of both COX-1 and COX-2 is required for development of gastric damage in response to nonsteroidal anti-inflammatory drugs. J. Physiol. Paris 2001, 95, 21–27. [Google Scholar] [CrossRef]
- Tanaka, A.; Araki, H.; Hase, S.; Komoike, Y.; Takeuchi, K. Up-regulation of COX-2 by inhibition of COX-1 in the rat: A key to NSAID-induced gastric injury. Aliment. Pharm. Ther. 2002, 2, 90–101. [Google Scholar] [CrossRef]
- Perrone, M.G.; Scilimati, A.; Simone, L.; Vitale, P. Selective COX-1 inhibition: A Therapeutic Target to Be Reconsidered. Curr. Med. Chem. 2010, 17, 3769–3805. [Google Scholar] [CrossRef]
- Pannunzio, A.; Coluccia, M. Cyclooxygenase-1 (COX-1) and COX-1 Inhibitors in Cancer: A Review of Oncology and Medicinal Chemistry Literature. Pharmaceuticals 2018, 11, 101. [Google Scholar] [CrossRef] [Green Version]
- Calvello, R.; Lofrumento, D.D.; Perrone, M.G.; Cianciulli, A.; Salvatore, R.; Vitale, P.; De Nuccio, F.; Giannotti, L.; Nicolardi, G.; Panaro, M.A.; et al. Highly Selective Cyclooxygenase-1 Inhibitors P6 and Mofezolac Counteract Inflammatory State both in vitro and in vivo Models of Neuro-inflammation. Front. Neurol. 2017, 8, 00251. [Google Scholar] [CrossRef] [Green Version]
- Calvello, R.; Panaro, M.A.; Carbone, M.L.; Cianciulli, A.; Perrone, M.G.; Vitale, P.; Malerba, P.; Scilimati, A. Novel Selective COX-1 Inhibitors Suppress Neuro-inflammatory Mediators in LPS stimulated N13 Microglial Cells. Pharmacol. Res. 2012, 65, 137–148. [Google Scholar] [CrossRef]
- Armstrong, P.C.; Kirkby, N.S.; Zain, N.Z.; Emerson, M.; Mitchell, J.A.; Warner, T.D. Thrombosis Is Reduced by Inhibition of COX-1, but Unaffected by Inhibition of COX-2, in an Acute Model of Platelet Activation in the Mouse. PLoS ONE 2011, 6, e20062. [Google Scholar] [CrossRef]
- Li, S.; Miner, K.; Fannin, R.; Carl Barrett, J.; Davis, B.J. Cyclooxygenase-1 and 2 in normal and malignant human ovarian epithelium. Gynecol. Oncol. 2004, 92, 622–627. [Google Scholar] [CrossRef]
- Malerba, P.; Crews, B.C.; Ghebreselasie, K.; Daniel, C.D.; Jashim, E.; Aleem, A.M.; Salam, R.A.; Marnett, L.J.; Uddin, M.D. Targeted Detection of Cyclooxygenase-1 in Ovarian Cancer. ACS Med. Chem. Lett. 2020, 11, 1837–1842. [Google Scholar] [CrossRef]
- Wu, W.K.K.; Sung, J.J.Y.; Wu, Y.C.; Li, H.T.; Yu, L.; Li, Z.J.; Cho, C.H. Inhibition of cyclooxygenase-1 lowers proliferation and induces macroautophagy in colon cancer cells. Biochem. Biophys. Res. Commun. 2009, 382, 79–84. [Google Scholar] [CrossRef]
- Niho, N.; Kitamura, T.; Takahashi, M.; Mutoh, M.; Sato, H.; Matsuura, M.; Sugimura, T.; Wakabayashi, K. Blackwell Publishing Asia Suppression of azoxymethane-induced colon cancer development in rats by a cyclooxygenase-1 selective inhibitor, mofezolac. Cancer Sci. 2006, 10, 1011–1014. [Google Scholar] [CrossRef]
- Zhu, L.; Xu, C.; Huo, X.; Hao, H.; Wan, Q.; Chen, H.; Zhang, X.; Breyer, R.M.; Huang, Y.; Cao, X.; et al. The cyclooxygenase-1/mPGES-1/endothelial prostaglandin EP4 receptor pathway constrains myocardial ischemia-reperfusion injury. Nat. Commun. 2019, 23, 1888. [Google Scholar] [CrossRef] [Green Version]
- Tratrat, C.; Haroun, M.; Tsolaki, E.; Petrou, A.; Gavalas, A.; Geronikaki, A. Thiazole-based Chalcone Derivatives as Potential Anti-inflammatory Agents: Biological Evaluation and Molecular Modelling. Curr. Top. Med. Chem. 2021, 21, 257–268. [Google Scholar] [CrossRef]
- Kamble, R.D.; Meshram, R.J.; Hese, S.V.; More, R.A.; Kamble, S.S.; Gacche, R.N.; Dawane, B.S. Synthesis and in silico investigation of thiazoles bearing pyrazoles derivatives as anti-inflammatory agents. Comput. Biol. Chem. 2016, 61, 86–96. [Google Scholar] [CrossRef]
- Mohareb, R.M.; Al-Omran, F.; Abdelaziz, M.A.; Ibrahim, R.A. Anti-inflammatory and Anti-ulcer Activities of New Fused Thiazole Derivatives Derived from 2-(2-Oxo-2H-chromen-3-yl)thiazol-4(5H)-one. Acta Chim. Slov. 2017, 64, 349–364. [Google Scholar] [CrossRef] [Green Version]
- Kamat, V.; Santosh, R.; Poojary, B.; Nayak, S.P.; Kumar, B.K.; Sankaranarayanan, M.; Faheem Khanapure, S.; Barretto, D.A.; Vootla, S.K. Pyridine- and Thiazole-Based Hydrazides with Promising Anti-inflammatory and Antimicrobial Activities along with Their In Silico Studies. ACS Omega 2020, 5, 25228–25239. [Google Scholar] [CrossRef]
- Hacioglu, M.; Birteksor Tan, A.S.; Doser, S.; Inan, N.; Otuk, G. In vitro activities of antifungals alone and in combination with tigecycline against Candida albicans biofilm. Peer J. 2018, 6, e5263–e5280. [Google Scholar] [CrossRef]
- Jain, S.; Pattnaik, S.; Pathak, K.; Kumar, S.; Pathak, D.; Jain, S.; Vaidya, A. Anticancer Potential of Thiazole Derivatives: A Retrospective Review. Mini Rev. Med. Chem. 2018, 18, 640–655. [Google Scholar] [CrossRef]
- Raveesha, R.; Anusuya, A.; Raghu, A.; Yogesh Kumar, K.; Dileep Kumar, M.; Prasad, S.; Prashanth, M. Synthesis and characterization of novel thiazole derivatives as potential anticancer agents: Molecular docking and DFT studies. Comput. Toxicol. 2022, 21, 100202. [Google Scholar] [CrossRef]
- Pawar, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Synthetic and Medicinal Perspective of Fused-Thiazoles as Anticancer Agents. Anticancer Agents Med. Chem. 2021, 21, 1379–1402. [Google Scholar] [CrossRef]
- Meleddu, R.; Distinto, S.; Corona, A.; Tramontano, E.; Bianco, G.; Melis, C.; Cottiglia, F.; Maccioni, E. Isatin thiazoline hybrids as dual inhibitors of HIV-1 reverse transcriptase. J. Enzyme Inhib. Med. Chem. 2017, 32, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Kasralikar, H.M.; Jadhavar, S.C.; Goswami, S.V.; Kaminwar, N.S.; Bhusare, S.R. Design, synthesis and molecular docking of pyrazolo [3,4d] thiazole hybrids as potential anti-HIV-1 NNRT inhibitors. Bioorg. Chem. 2019, 86, 437–444. [Google Scholar] [CrossRef]
- Grozav, A.; Porumb, I.D.; Găină, L.I.; Filip, L.; Hanganu, D. Cytotoxicity and Antioxidant Potential of Novel2-(2-((1H-indol-5yl)methylene)-hydrazinyl)-thiazoleDerivatives. Molecules 2017, 22, 260. [Google Scholar] [CrossRef] [Green Version]
- Lemilemu, F.; Bitew, M.; Demissie, T.B.; Eswaramoorthy, R.; Endale, M. Synthesis, antibacterial and antioxidant activities of Thiazole-based Schiff base derivatives: A combined experimental and computational study. BMC Chem. 2021, 15, 67. [Google Scholar] [CrossRef]
- Solangi, M.; Khan, K.M.; Chigurupat, S.; Saleem, F.; Qureshi, U.; Ul-Haq, Z.; Jabeen, A.; Felemban, S.G.; Zafar, F.; Perveen, S.; et al. Isatin thiazoles as antidiabetic: Synthesis, in vitro enzyme inhibitory activities, kinetics, and in silico studies. Arch. Pharm. 2022, 355, e2100481. [Google Scholar] [CrossRef]
- Khatik, G.L.; Datusalia, A.K.; Ahsan, W.; Kaur, P.; Vyas, M.; Amit Mittal, A.; Nayak, S.K.N. A Retrospect Study on Thiazole Derivatives as the Potential Antidiabetic Agents in Drug Discovery and Developments. Curr. Drug Discov. Technol. 2018, 15, 163–177. [Google Scholar] [CrossRef]
- Geronikaki, A.; Vicini, P.; Theophilidis, G.; Lagunin, A.; Poroikov, V.; Dabarakis, N.; Modarresi, H.; Dearden, J.C. Evaluation the local anaesthetic activity of derivatives of 3-amino-1,2- [d]benzoisothiazoles on sciatic nerve of rat. Eur. J. Med Chem. 2009, 44, 473–481. [Google Scholar] [CrossRef]
- Saravanan, G.; Alagarsamy, V.; Prakash, C.R.; Kumar, P.D.; Selvam, T.P. Synthesis of Novel Thiazole Derivatives as Analgesic Agents. Asian J. Res. Pharm. Sci. 2011, 1, 134–138. [Google Scholar]
- Kenchappa, R.; Bodke, Y.D.; Telkar, S.; Aruna Sindhe, M. Antifungal and anthelmintic activity of novel benzofuran derivatives containing thiazolo benzimidazole nucleus: An in vitro evaluation. J. Chem. Biol. 2016, 10, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Popsavin, V. Synthesis and antiproliferative activity of two new tiazofurin analogues with 2′-amido functionalities. Bioorg. Med. Chem. Lett. 2006, 16, 2773–2776. [Google Scholar] [CrossRef]
- Wei, L.; Cheng, J.; Meng, Y.; Ren, Y.; Deng, H.; Guo, Y. A novel formulation of thiamine dilaurylsulphate and its preservative effect on apple juice and sterilised milk. Food Chem. 2014, 1, 415–422. [Google Scholar] [CrossRef]
- Sevrioukova, L.F.; Poulos, T.L. Dissecting cytochrome P450 3A4-ligand interactions using ritonavir analogues. Biochemistry 2013, 52, 4474–4481. [Google Scholar] [CrossRef]
- Karateev, A.E. Meloxicam: The golden mean of nonsteroidal anti-inflammatory drugs. Ter. Arkh. 2014, 86, 99–105, Russian. [Google Scholar] [PubMed]
- Cascioferro, S.; Parrino, B.; Carbone, D.; Schillaci, D.; Giovannetti, E.; Cirrincione, G.; Diana, P. Thiazoles, Their Benzofused Systems, and Thiazolidinone Derivatives: Versatile and Promising Tools to Combat Antibiotic Resistance. J. Med. Chem. 2020, 63, 7923–7956. [Google Scholar] [CrossRef]
- Jilla, L.; Kolluri, P.K.; Bujji, S.; Naika, S. Synthesis and antimicrobial agents of thiazolidinone derivatives from benzocyclohepetenone. J. Heterocyc. Chem. 2020, 57, 4078–4087. [Google Scholar] [CrossRef]
- Deep, A.; Narasimhan, B.; Lim, S.M.; Ramasamy, K.; Kumar, K.M. 4-Thiazolidinone derivatives: Synthesis, antimicrobial, anticancer evaluation and QSAR studies. RCS Adv. 2016, 6, 109485–109494. [Google Scholar] [CrossRef]
- Skóra, B.; Lewińska, A.; Kryshchyshyn-Dylevych, A.; Kaminskyy, D.; Lesyk, R.; Szychowski, A. Evaluation of Anticancer and Antibacterial Activity of Four 4-Thiazolidinone-Based Derivatives. Molecules 2022, 27, 894. [Google Scholar] [CrossRef]
- Ali, Y.; Alam, M.S.; Hamid, N.; Husain, A.; Dhulap, A.; Bano, S.; Kharbanda, C. Design, synthesis and biological screening of Novel 2,4-dichlorophenoxy acetic acid substituted thiazolidin-4-ones as anti-inflammatory agents. Bioorg. Med. Chem. Lett. 2017, 27, 1017–1025. [Google Scholar] [CrossRef]
- Vasincu, I.M.; Apotrosoaei, M.; Constantin, S.; Butnaru, M.; Vereștiuc, L.; Lupușoru, C.E.; Buron, F.; Routier, S.; Lupașcu, D.; Taușer, R.G.; et al. New ibuprofen derivatives with thiazolidine-4-one scaffold with improved pharmaco-toxicological profile. BMC Pharmacol. Toxicol. 2021, 22, 10. [Google Scholar] [CrossRef]
- Bari, S.B.; Firake, S.D. Exploring Anti-inflammatory Potential of Thiazolidinone Derivatives of Benzenesulfonamide via Synthesis, Molecular Docking and Biological Evaluation. Antiinflamm. Antiallergy Agents Med. Chem. 2016, 15, 44–53. [Google Scholar] [CrossRef]
- Liaras, L.; Fesatidou, M.; Geronikaki, A. Thiazoles and Thiazolidinones as COX/LOX Inhibitors. Molecules 2018, 23, 685. [Google Scholar] [CrossRef] [Green Version]
- Yasmin, S.; Capone, F.; Laghezza, A.; Piaz, F.D.; Loiodice, F.; Vijayan, V.; Devadasan, V.; Mondal, S.K.; Atlı, Ö.; Baysal, M.; et al. Novel Benzylidene Thiazolidinedione Derivatives as Partial PPARγ Agonists and their Antidiabetic Effects on Type 2 Diabetes. Sci. Rep. 2017, 7, 14453. [Google Scholar] [CrossRef] [Green Version]
- Maccari, R.; Del Corso, A.; Paoli, P.; Adornato, I.; Lori, G.; Balestri, F.; Cappiello, M.; Naß, A.; Wolber, G.; Ottanà, R. An investigation on 4-thiazolidinone derivatives as dual inhibitors of aldose reductase and protein tyrosine phosphatase 1B, in the search for potential agents for the treatment of type 2 diabetes mellitus and its complications. Bioorg. Med. Chem. Lett. 2018, 28, 3712–3720. [Google Scholar] [CrossRef]
- Sameeh, M.Y.; Khowdiary, M.M.; Nassar, H.S.; Abdelall, M.M.; Alderhami, S.A.; Elhenawy, A.A. Discovery Potent of Thiazolidinedione Derivatives as Antioxidant, α-Amylase Inhibitor, and Antidiabetic Agent. Biomedicines 2022, 10, 24. [Google Scholar] [CrossRef]
- Türe, A.; Ergül, M.; Ergül, M.; Altun, A.; Küçükgüzel, İ. Design, synthesis, and anticancer activity of novel 4-thiazolidinone-phenylaminopyrimidine hybrids. Mol. Divers. 2021, 25, 1025–1050. [Google Scholar] [CrossRef]
- Petrou, A.; Eleftheriou, P.; Geronikaki, A.; Akrivou, M.; Vizirianakis, S.I. Novel Thiazolidin-4-ones as Potential Non-Nucleoside Inhibitors of HIV-1 Reverse Transcriptase. Molecules 2019, 24, 3821. [Google Scholar] [CrossRef] [Green Version]
- Suryawanshi, R.; Jadhav, S.; Makwana, N.; Desai, D.; Chaturbhuj, D.; Sonawani, A.; Idicula-Thomas, S.; Murugesan, V.; Katti, S.B.; Tripathy, S.; et al. Evaluation of 4-thiazolidinone derivatives as potential reverse transcriptase inhibitors against HIV-1 drug resistant strains. Bioorg Chem. 2017, 71, 211–218. [Google Scholar] [CrossRef]
- Djukic, M.; Fesatidou, M.; Xenikakis, I.; Geronikaki, A.; Stoyanova, V.; Savic, V.; Pasic, M.; Krilovic, B.; Djukic, D.; Gobeljic, B.; et al. In vitro antioxidant activity of thiazolidinone derivatives of 1,3-thiazole and 1,3,4-thiadiazole. Chem. Biol. Interact. 2018, 286, 119–131. [Google Scholar] [CrossRef]
- Hang, Z.P.; Yin, Z.F.; Li, J.Y.; Wang, Z.P.; Wu, Q.J.; Wang, J.; Liu, Y.; Cheng, M.S. Synthesis, Molecular Docking Analysis, and Carbonic Anhydrase Inhibitory Evaluations of Benzenesulfonamide Derivatives Containing Thiazolidinone. Molecules 2019, 24, 2418. [Google Scholar]
- Ansari, M.F.; Idrees, D.; Hassan, M.I.; Ahmad, K.; Avecilla, F.; Azam, A. Design, synthesis and biological evaluation of novel pyridine-thiazolidinone derivatives as anticancer agents: Targeting human carbonic anhydrase IX. Eur. J. Med. Chem. 2018, 144, 544–556. [Google Scholar] [CrossRef]
- Viegas-Junior, C.; Danuello, A.; da Silva, B.V.; Barreiro, E.J.; Fraga, C.A. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr Med Chem. 2007, 14, 1829–1852. [Google Scholar] [CrossRef]
- Ivasiv, V.; Albertini, C.; Gonçalves, A.E.; Rossi, M.; Bolognesi, M.L. Molecular Hybridization as a Tool for Designing Multitarget Drug Candidates for Complex Diseases. Curr. Top. Med. Chem. 2019, 19, 1694–1711. [Google Scholar] [CrossRef]
- Vicini, P.; Geronikaki, A.; Anastasia, K.; Incerti, M.; Zani, F. Synthesis and antimicrobial activity of novel 2-thiazolylimino-5-arylidene-4-thiazolidinones. Bioorg. Med. Chem. 2006, 14, 3859–3864. [Google Scholar] [CrossRef]
- Fesatidou, M.; Zagaliotis, P.; Camoutsis, C.; Petrou, A.; Eleftheriou, P.; Tratrat, C.; Haroun, M.; Geronikaki, A.; Soković, M. 5-Adamantan thiadiazole-based thiazolidinonesas antimicrobial agents. Design, synthesis, molecular docking and evaluation. Bioorg. Med. Chem. 2018, 26, 4664–4676. [Google Scholar] [CrossRef]
- Haroun, M.; Tratrat, C.; Kolokotroni, A.; Petrou, A.; Geronikaki, A.; Ivanov, M.; Kostic, M.; Marina Sokovic, M.; Carazo, A.; Mladěnka, P.; et al. 5-Benzyliden-2-(5-methylthiazol-2-ylimino)thiazolidin-4-ones as antimicrobial agents. Design, synthesis, biological evaluation and molecular docking studies. Antibiotics 2021, 10, 309. [Google Scholar] [CrossRef]
- Poroikov, V.V.; Filimonov, D.A.; Gloriozova, T.A.; Lagunin, A.A.; Druzhilovskiy, D.S.; Rudik, A.V.; Stolbov, L.A.; Dmitriev, A.V.; Tarasova, O.A.; Ivanov, S.M. Computer-aided prediction of biological activity spectra for organic compounds: The possibilities and limitations. Russ. Chem. Bull. 2019, 68, 2143–2154. [Google Scholar] [CrossRef]
- Geronikaki, A.A.; Lagunin, A.A.; Hadjipavlou-Litina, D.I.; Eleftheriou, P.T.; Filimonov, D.A.; Poroikov, V.V.; Alam, I.; Saxena, A.K. Computer-aided discovery of anti-inflammatory thiazolidinones with dual cyclooxygenase/lipoxygenase inhibition. J. Med. Chem. 2008, 51, 1601–1609. [Google Scholar] [CrossRef]
- Haroun, M.; Petrou, A.; Tratrata, C.; Kositsi, K.; Gavalas, A.; Geronikaki, A.; Venugopala, K.N.; Sreeharsha, N. Discovery of benzothiazole-based thiazolidinones aspotential anti-inflammatory agents: Anti-inflammatory activity, soybean lipoxygenase inhibition effect and molecular docking studies. SAR QSAR Environ. Res. 2022, 33, 485–497. [Google Scholar] [CrossRef]
- Vinegar, R.; Schreiber, W.; Hugo, R. Biphasic development of carrageenin edema in rats. J. Pharmacol. Exp. Ther. 1969, 166, 96–103. [Google Scholar]
- Gilbert, N.C.; Gerstmeier, J.; Schexnaydre, E.E.; Börner, F.; Garscha, U.; Neau, D.B.; Werz, O.; Newcomer, M.E. Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products. Nat. Chem. Biol. 2020, 16, 783–790. [Google Scholar] [CrossRef]
- Lagunin, A.; Stepanchikova, A.; Filimonov, D.; Poroikov, V. PASS: Prediction of activity spectra for biologically active substances. Bioinformatics 2000, 16, 747–748. [Google Scholar] [CrossRef] [Green Version]
- PASS Online. Available online: http://www.way2drug.com/passonline (accessed on 20 March 2022).
- Murtazalieva, K.A.; Druzhilovskiy, D.S.; Goel, R.; Sastry, G.; Poroikov, V. How good are publicly available web services that predict bioactivity profiles for drug repurposing? SAR QSAR Environ. Res. 2017, 28, 843–862. [Google Scholar] [CrossRef]
- Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem. Heterocycl. Compd. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Theodosis-Nobelos, P.; Papagiouvannis, G.; Pantelidou, M.; Kourounakis, P.N.; Athanasekou, C.; Rekka, E.A. Design, synthesis and study of nitrogen monoxide donors as potent hypolipidaemic and anti-inflammatory agents. Molecules 2020, 25, 19. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Au-todock4 and AutoDockTools4: Automated docking with selective receptor flexiblity. J. Comput. Chem. 2009, 16, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Selinsky, B.S.; Gupta, K.; Sharkey, C.T.; Loll, P.J. Structural analysis of NSAID binding byprostaglandin H2 synthase: Time-dependent and time independent inhibitors elicit identical enzyme conformations. Biochemistry 2001, 40, 5172–5180. [Google Scholar] [CrossRef]
- Kurumbail, R.G.; Stevens, A.M.; Gierse, J.K.; McDonald, J.J.; Stegeman, R.A.; Pak, J.Y.; Gildehaus, D.; Miyashiro, J.M.; Penning, T.D.; Seibert, K.; et al. Structural basis for selective in-hibition ofcyclooxygenase-2 by anti-inflammatory agents. Nature 1996, 384, 644–648. [Google Scholar] [CrossRef]
- Tziona, P.; Theodosis-Nobelos, P.; Papagiouvannis, G.; Petrou, A.; Drouza, C.; Rekka, E.A. Enhancement of the Anti-Inflammatory Activity of NSAIDs by Their Conjugation with 3,4,5-Trimethoxybenzyl Alcohol. Molecules 2022, 27, 2104. [Google Scholar] [CrossRef]
No | R1 | R2 | Binding Free Energy (kcal/mol) | Pa | No | R1 | R2 | Binding Free Energy (kcal/mol) | Pa | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COX-1 (PDB: 1EQG) | COX-2 (PDB: 1CX2) | LOX (PDB: 6N2W) | COX-1 (PDB: 1EQG) | COX-2 (PDB: 1CX2) | LOX (PDB:) 6N2W | ||||||||
1 | 5-CH3 | H | −7.15 | −4.11 | 0.233 | 28 | H | 4-NO2 | −2.87 | −3.67 | −3.44 | 0.167 | |
2 | 5-CH3 | 2-OH | −5.89 | −2.40 | −4.28 | 0.373 | 29 | H | 3-NO2 | −3.66 | −2.59 | −2.54 | 0.250 |
3 | 5-CH3 | 4-OH | −6.10 | −2.84 | −6.19 | 0.375 | 30 | H | 4-N (CH3)2 | −5.37 | −3.64 | −3.62 | 0.208 |
4 | 5-CH3 | 4-OCH3 | −7.23 | −6.58 | −5.17 | 0.448 | 31 | 4-CH3 | 4-Cl | −7.54 | −6.28 | −4.25 | 0.301 |
5 | 5-CH3 | 2, 5-OCH3 | −7.58 | −7.56 | −2.47 | 0.579 | 32 | 5-CH3 | 4-NO2 | −5.31 | −6.70 | −2.43 | 0.276 |
6 | 5-CH3 | 2-NO2 | −5.12 | −4.28 | −6.57 | 0.465 | 33 | 5-CH3 | 2-Cl | −7.46 | −6.54 | −1.28 | 0.178 |
7 | 5-CH3 | 3-NO2 | −5.27 | −4.32 | −6.45 | 0.479 | 34 | Ph | H | −3.61 | −2.55 | −1.85 | 0.223 |
8 | 5-CH3 | 4-NO2 | −10.16 | −5.27 | −6.88 | 0.482 | 35 | Ph | 3-Cl | −4.37 | −6.19 | −4.69 | 0.175 |
9 | 5-CH3 | 3-F | −7.46 | −5.94 | −4.51 | 0.365 | 36 | Ph | 2-Cl | −4.12 | −6.03 | −5.02 | 0.156 |
10 | 5-CH3 | 4-F | −7.55 | −6.34 | −6.35 | 0.371 | 37 | Ph | 4-Cl | −5.80 | −6.45 | −4.25 | 0.114 |
11 | 5-CH3 | 2-Cl | −5.30 | −5.66 | −7.04 | 0.395 | 38 | 4-ad | 4-Br | −5.66 | −4.83 | −5.13 | 0.155 |
12 | 5-CH3 | 4-Cl | −6.75 | −6.52 | −5.16 | 0.360 | 39 | 4-ad | 4-N (CH3)2 | −6.29 | −5.17 | −5.74 | 0.128 |
13 | 5-CH3 | 2, 3-Cl | −11.82 | −6.50 | −4.28 | 0.455 | 40 | isothiazole | 4-NO2 | −5.20 | −6.37 | −4.82 | 0.202 |
14 | 5-CH3 | 2, 4-Cl | −7.89 | −5.28 | −1.60 | 0.463 | 41 | isothiazole | 4-OCH3 | −6.01 | 6.00 | −4.51 | 0.151 |
15 | 5-CH3 | 2, 6-Cl | −8.03 | −6.24 | −3.87 | 0.422 | 42 | isothiazole | H | −5.91 | −4.32 | −6.71 | 0.077 |
16 | 5-CH3 | 3-Br | −9.54 | −12.41 | −5.64 | 0.581 | 43 | isothiazole | Vanillin | −6.24 | −6.86 | −2.69 | 0.073 |
17 | 5-CH3 | 4-Br | −7.64 | −8.45 | −2.20 | 0.443 | 44 | benzothiazole | 4-NO2 | −6.47 | −5.19 | −5.11 | 0.122 |
18 | H | H | - | −5.28 | −1.59 | 0.217 | 45 | benzothiazole | 2-Cl | −5.16 | −5.40 | −2.73 | 0.285 |
19 | H | 4-OH | −2.14 | −4.16 | −3.49 | 0.289 | 46 | benzothiazole | 3-Cl | −5.52 | −5.63 | −5.92 | 0.190 |
20 | H | 2-OCH3 | −5.17 | −4.50 | −5.52 | 0.265 | 47 | benzothiazole | 4-Cl | −7.53 | −5.60 | −5.11 | 0.107 |
21 | H | 4-OCH3 | −6.19 | −5.20 | −5.70 | 0.347 | 48 | benzothiazole | 4-OCH3 | −6.10 | −4.37 | −2.73 | 0.204 |
22 | H | 3-OCH3, 4-OH | −6.48 | −4.27 | −6.57 | 0.366 | 49 | benzothiazole | 4-OH | −5.19 | −5.53 | −5.92 | 0.138 |
23 | H | 2, 5-OCH3 | −5.33 | −6.22 | −6.03 | 0.362 | 50 | benzoisothiazole | 2-Cl | −6.16 | −6.38 | −4.60 | 0.147 |
24 | H | 2-Cl | −4.10 | −3.57 | −2.47 | 0.279 | 51 | benzoisothiazole | 3-Cl | −6.54 | −6.20 | −2.88 | 0.261 |
25 | H | 3-Cl | −5.32 | −4.76 | −2.01 | 0.285 | 52 | benzoisothiazole | 4-Cl | −6.53 | −6.18 | −2.36 | 0.163 |
26 | H | 4-Cl | −4.25 | −4.83 | −3.69 | 0.199 | 53 | benzoisothiazole | 4-NO2 | −4.37 | −3.15 | −2.51 | 0.094 |
27 | H | 4-Br | - | - | −1.39 | 0.292 | 54 | benzoisothiazole | 4-OH | −7.93 | −6.42 | −5.63 | 0.122 |
Naproxen | −9.53 | −8.11 |
A/A | R′ | Oedema Inhibition α, (%) | A/A | R′ | Oedema Inhibition α, (%) |
---|---|---|---|---|---|
1 | H | 51.6 ± 1.5 ** | 10 | 4-F | 47.8 ±1.6 * |
2 | 2-OH | 43.1 ± 1.9 * | 11 | 2-Cl | 43.0 ± 1.7 * |
3 | 4-OH | 31.4 ± 2.3 ** | 12 | 4-Cl | 55.6 ± 1.5 ** |
4 | 4-OCH3 | 48.3 ± 1.8 * | 13 | 2, 3-Cl | 57.8 ± 1.3 *** |
5 | 2, 5-OCH3 | 44.9 ± 1.7 * | 14 | 2, 4-Cl | 35.2 ± 2.1 * |
6 | 2-NO2 | 48.7 ± 1.8 * | 15 | 2, 6-Cl | 39.4 ± 2.3 ** |
7 | 3-NO2 | 54.5 ± 1.4 * | 16 | 3-Br | 57.6 ± 1.4 ** |
8 | 4-NO2 | 55.4 ± 1.5 ** | 17 | 4-Br | 41.4 ± 1.9 * |
9 | 3-F | 34.8 ± 2.1 * | Indomethacin | 47.0 ± 1.6 ** |
No | Inhibition COX-1 | Inhibition, COX-2 | LOX | |
---|---|---|---|---|
Inhibition (%) 200 μM | IC50 (μM) | Inhibition (%) 200 μM | Inhibition (%) 100 μM | |
8 | 100 | 14.38 ± 0.7 ** | 0 | 7.88 ± 2.1 ** |
13 | 100 | 1.10 ± 0.3 * | 0 | 37.2 ± 1.8 *** |
16 | 100 | 1.08 ± 0.3 * | 0 | 46.7 ± 1.5 ** |
Ibuprofen | 68.0 ± 1.2 ** | 12.7 ± 0.5 * | 46.0 ± 1.4 * | |
Naproxen | 40.10 ± 1.6 ** | 17.0 ± 2.3 ** | ||
NDGA | 94.0 ± 1.1 * |
Compound | Ovine COX-1 (PDB:1EQG) | |
---|---|---|
Binding Free Energy (kcal/mol) | Hydrogen Bonds | |
8 | −10.16 | Arg120, Tyr355 |
13 | −11.82 | Arg120, Tyr355 |
16 | −11.73 | Arg120 |
Naproxen | −9.53 | Arg120, Tyr355 |
Ibuprofen | −9.22 | Arg120, Tyr355 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haroun, M.; Petrou, A.; Tratrat, C.; Kolokotroni, A.; Fesatidou, M.; Zagaliotis, P.; Gavalas, A.; Venugopala, K.N.; Sreeharsha, N.; Nair, A.B.; et al. Discovery of 5-Methylthiazole-Thiazolidinone Conjugates as Potential Anti-Inflammatory Agents: Molecular Target Identification and In Silico Studies. Molecules 2022, 27, 8137. https://doi.org/10.3390/molecules27238137
Haroun M, Petrou A, Tratrat C, Kolokotroni A, Fesatidou M, Zagaliotis P, Gavalas A, Venugopala KN, Sreeharsha N, Nair AB, et al. Discovery of 5-Methylthiazole-Thiazolidinone Conjugates as Potential Anti-Inflammatory Agents: Molecular Target Identification and In Silico Studies. Molecules. 2022; 27(23):8137. https://doi.org/10.3390/molecules27238137
Chicago/Turabian StyleHaroun, Michelyne, Anthi Petrou, Christophe Tratrat, Aggeliki Kolokotroni, Maria Fesatidou, Panagiotis Zagaliotis, Antonis Gavalas, Katharigatta N. Venugopala, Nagaraja Sreeharsha, Anroop B. Nair, and et al. 2022. "Discovery of 5-Methylthiazole-Thiazolidinone Conjugates as Potential Anti-Inflammatory Agents: Molecular Target Identification and In Silico Studies" Molecules 27, no. 23: 8137. https://doi.org/10.3390/molecules27238137
APA StyleHaroun, M., Petrou, A., Tratrat, C., Kolokotroni, A., Fesatidou, M., Zagaliotis, P., Gavalas, A., Venugopala, K. N., Sreeharsha, N., Nair, A. B., Elsewedy, H. S., & Geronikaki, A. (2022). Discovery of 5-Methylthiazole-Thiazolidinone Conjugates as Potential Anti-Inflammatory Agents: Molecular Target Identification and In Silico Studies. Molecules, 27(23), 8137. https://doi.org/10.3390/molecules27238137