How Water Interacts with the NOH Group: The Rotational Spectrum of the 1:1 N,N-diethylhydroxylamine·Water Complex
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Conformational Analysis
3.2. Rotational Spectrum
3.3. Molecular Structure
3.4. Intermolecular Interaction Energy
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
[MHz] | |||||||||
---|---|---|---|---|---|---|---|---|---|
2 | 2 | 0 | 1 | 1 | 1 | 1 | 0 | 9551.229 | 0.0070 |
2 | 2 | 0 | 3 | 1 | 1 | 1 | 2 | 9553.209 | −0.0005 |
2 | 2 | 0 | 2 | 1 | 1 | 1 | 2 | 9553.617 | −0.0008 |
2 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 9554.159 | 0.0018 |
2 | 2 | 0 | 2 | 1 | 1 | 1 | 1 | 9554.795 | 0.0032 |
2 | 2 | 1 | 2 | 1 | 1 | 0 | 1 | 8768.853 | −0.0043 |
2 | 2 | 1 | 1 | 1 | 1 | 0 | 1 | 8769.188 | −0.0016 |
2 | 2 | 1 | 2 | 1 | 1 | 0 | 2 | 8769.826 | −0.0061 |
2 | 2 | 1 | 3 | 1 | 1 | 0 | 2 | 8770.047 | 0.0016 |
2 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 8771.618 | −0.0086 |
3 | 0 | 3 | 2 | 2 | 1 | 2 | 1 | 8195.298 | 0.0058 |
3 | 0 | 3 | 4 | 2 | 1 | 2 | 3 | 8195.534 | 0.0005 |
3 | 0 | 3 | 3 | 2 | 1 | 2 | 2 | 8195.604 | −0.0047 |
3 | 1 | 3 | 3 | 2 | 0 | 2 | 3 | 8675.577 | 0.0006 |
3 | 1 | 3 | 3 | 2 | 0 | 2 | 2 | 8675.983 | −0.0017 |
3 | 1 | 3 | 4 | 2 | 0 | 2 | 3 | 8676.770 | 0.0017 |
3 | 1 | 3 | 2 | 2 | 0 | 2 | 1 | 8676.960 | 0.0009 |
3 | 2 | 2 | 3 | 2 | 1 | 1 | 2 | 11,307.726 | 0.0001 |
3 | 2 | 2 | 4 | 2 | 1 | 1 | 3 | 11,308.977 | −0.0068 |
3 | 2 | 2 | 3 | 2 | 1 | 1 | 3 | 11,308.990 | 0.0062 |
3 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 11,309.683 | 0.0003 |
4 | 0 | 4 | 4 | 3 | 1 | 3 | 4 | 10,900.183 | −0.0018 |
4 | 0 | 4 | 4 | 3 | 1 | 3 | 3 | 10,901.375 | −0.0017 |
4 | 0 | 4 | 3 | 3 | 1 | 3 | 2 | 10,901.413 | 0.0018 |
4 | 0 | 4 | 5 | 3 | 1 | 3 | 4 | 10,901.492 | −0.0002 |
4 | 1 | 4 | 4 | 3 | 0 | 3 | 3 | 11,074.083 | −0.0011 |
4 | 1 | 4 | 5 | 3 | 0 | 3 | 4 | 11,074.484 | 0.0002 |
4 | 1 | 4 | 3 | 3 | 0 | 3 | 2 | 11,074.498 | 0.0013 |
4 | 2 | 3 | 4 | 3 | 1 | 2 | 3 | 13,571.615 | 0.0008 |
4 | 2 | 3 | 5 | 3 | 1 | 2 | 4 | 13,572.743 | 0.0025 |
4 | 2 | 3 | 3 | 3 | 1 | 2 | 2 | 13,573.131 | 0.0033 |
5 | 0 | 5 | 5 | 4 | 1 | 4 | 4 | 13,499.450 | 0.0001 |
5 | 0 | 5 | 4 | 4 | 1 | 4 | 3 | 13,499.542 | −0.0004 |
5 | 0 | 5 | 6 | 4 | 1 | 4 | 5 | 13,499.587 | −0.0006 |
[MHz] | |||||||||
---|---|---|---|---|---|---|---|---|---|
2 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 7972.751 | 0.0000 |
2 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 7973.247 | −0.0016 |
2 | 1 | 1 | 3 | 1 | 0 | 1 | 2 | 7973.649 | 0.0004 |
2 | 1 | 1 | 2 | 1 | 0 | 1 | 1 | 7974.706 | −0.0015 |
2 | 1 | 1 | 2 | 1 | 0 | 1 | 2 | 7974.906 | −0.0005 |
2 | 2 | 0 | 1 | 1 | 1 | 0 | 1 | 8997.372 | −0.0024 |
2 | 2 | 0 | 2 | 1 | 1 | 0 | 1 | 8998.007 | −0.0020 |
2 | 2 | 0 | 3 | 1 | 1 | 0 | 2 | 8998.576 | 0.0006 |
2 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 8998.985 | 0.0013 |
2 | 2 | 0 | 1 | 1 | 1 | 0 | 0 | 8999.803 | −0.0083 |
2 | 2 | 1 | 1 | 1 | 1 | 1 | 0 | 9323.045 | 0.0078 |
2 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 9324.465 | −0.0012 |
2 | 2 | 1 | 3 | 1 | 1 | 1 | 2 | 9324.681 | 0.0015 |
2 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 9325.645 | 0.0049 |
2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 9325.978 | 0.0056 |
3 | 1 | 2 | 2 | 2 | 0 | 2 | 1 | 11,940.401 | −0.0023 |
3 | 1 | 2 | 4 | 2 | 0 | 2 | 3 | 11,940.997 | −0.0003 |
3 | 1 | 2 | 3 | 2 | 0 | 2 | 3 | 11,942.045 | −0.0021 |
3 | 1 | 2 | 3 | 2 | 0 | 2 | 2 | 11,942.456 | 0.0006 |
3 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 12,273.830 | −0.0010 |
3 | 2 | 1 | 3 | 2 | 1 | 1 | 2 | 12,275.439 | 0.0009 |
3 | 2 | 1 | 4 | 2 | 1 | 1 | 3 | 12,275.507 | 0.0017 |
3 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 12,275.787 | −0.0005 |
3 | 2 | 1 | 3 | 2 | 1 | 1 | 3 | 12,276.697 | 0.0011 |
3 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 12,972.865 | −0.0022 |
3 | 2 | 2 | 3 | 2 | 1 | 2 | 3 | 12,973.444 | −0.0037 |
3 | 2 | 2 | 4 | 2 | 1 | 2 | 3 | 12,973.454 | 0.0064 |
3 | 2 | 2 | 3 | 2 | 1 | 2 | 2 | 12,974.491 | −0.0011 |
3 | 3 | 0 | 3 | 2 | 2 | 0 | 2 | 14,006.106 | −0.0008 |
3 | 3 | 0 | 4 | 2 | 2 | 0 | 3 | 14,006.481 | −0.0006 |
3 | 3 | 0 | 2 | 2 | 2 | 0 | 1 | 14,006.700 | 0.0035 |
4 | 1 | 3 | 3 | 3 | 0 | 3 | 2 | 16,219.589 | −0.0071 |
4 | 1 | 3 | 5 | 3 | 0 | 3 | 4 | 16,220.081 | −0.0004 |
4 | 1 | 3 | 4 | 3 | 0 | 3 | 3 | 16,221.627 | 0.0087 |
4 | 2 | 2 | 5 | 3 | 1 | 2 | 4 | 15,867.514 | 0.0019 |
4 | 2 | 2 | 4 | 3 | 1 | 2 | 3 | 15,867.893 | 0.0020 |
4 | 2 | 3 | 3 | 3 | 1 | 3 | 2 | 16,836.567 | −0.0050 |
4 | 2 | 3 | 5 | 3 | 1 | 3 | 4 | 16,836.967 | −0.0025 |
4 | 2 | 3 | 4 | 3 | 1 | 3 | 3 | 16,838.087 | 0.0021 |
4 | 3 | 1 | 4 | 3 | 2 | 1 | 3 | 17,024.305 | 0.0003 |
4 | 3 | 1 | 5 | 3 | 2 | 1 | 4 | 17,024.725 | −0.0038 |
4 | 3 | 1 | 3 | 3 | 2 | 1 | 2 | 17,024.946 | −0.0024 |
4 | 3 | 2 | 3 | 3 | 2 | 2 | 2 | 17,587.531 | 0.0033 |
4 | 3 | 2 | 5 | 3 | 2 | 2 | 4 | 17,587.593 | −0.0020 |
4 | 3 | 2 | 4 | 3 | 2 | 2 | 3 | 17,587.857 | 0.0009 |
[MHz] C | [MHz] C | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 7853.634 | 0.0001 | ||
2 | 1 | 1 | 3 | 1 | 0 | 1 | 2 | 7854.033 | −0.0001 | 7926.619 | 0.0045 |
2 | 1 | 1 | 2 | 1 | 0 | 1 | 1 | 7855.088 | −0.0025 | 7927.677 | −0.0048 |
2 | 2 | 0 | 1 | 1 | 1 | 0 | 1 | 8953.000 | −0.0072 | 8939.850 | −0.0015 |
2 | 2 | 0 | 2 | 1 | 1 | 0 | 1 | 8953.583 | −0.0057 | 8940.502 | 0.0021 |
2 | 2 | 0 | 3 | 1 | 1 | 0 | 2 | 8954.186 | −0.0019 | 8941.058 | −0.0075 |
2 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 8954.565 | 0.0029 | ||
2 | 2 | 0 | 1 | 1 | 1 | 0 | 0 | 8955.433 | −0.0078 | 8942.313 | 0.0045 |
2 | 2 | 1 | 1 | 1 | 1 | 1 | 0 | 9279.518 | 0.0092 | ||
2 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 9280.935 | −0.0006 | ||
2 | 2 | 1 | 3 | 1 | 1 | 1 | 2 | 9281.151 | 0.0019 | 9265.305 | 0.0038 |
2 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 9282.113 | 0.0046 | 9266.269 | −0.0011 |
2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 9282.448 | 0.0070 | ||
3 | 2 | 1 | 3 | 2 | 1 | 1 | 2 | 12,137.770 | 0.0033 | 12,200.517 | −0.0018 |
3 | 2 | 1 | 4 | 2 | 1 | 1 | 3 | 12,137.874 | 0.0032 | 12,200.586 | 0.0035 |
3 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 12,138.173 | 0.0074 | ||
3 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 12,850.514 | −0.0069 | ||
3 | 2 | 2 | 4 | 2 | 1 | 2 | 3 | 12,851.097 | −0.0035 | 12,893.647 | −0.0017 |
3 | 2 | 2 | 3 | 2 | 1 | 2 | 2 | 12,852.140 | −0.0035 |
[MHz] | |||||||||
---|---|---|---|---|---|---|---|---|---|
2 | 2 | 0 | 1 | 1 | 1 | 1 | 0 | 9183.705 | 0.0032 |
2 | 2 | 0 | 3 | 1 | 1 | 1 | 2 | 9185.807 | 0.0048 |
2 | 2 | 0 | 2 | 1 | 1 | 1 | 2 | 9186.339 | 0.0028 |
2 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 9186.714 | 0.0053 |
2 | 2 | 0 | 2 | 1 | 1 | 1 | 1 | 9187.540 | 0.0011 |
2 | 2 | 1 | 2 | 1 | 1 | 0 | 1 | 8301.619 | −0.0045 |
2 | 2 | 1 | 2 | 1 | 1 | 0 | 2 | 8302.618 | −0.0069 |
2 | 2 | 1 | 3 | 1 | 1 | 0 | 2 | 8302.842 | 0.0016 |
2 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 8304.456 | −0.0068 |
3 | 0 | 3 | 2 | 2 | 1 | 2 | 1 | 8054.940 | −0.0003 |
3 | 0 | 3 | 3 | 2 | 1 | 2 | 2 | 8055.124 | 0.0046 |
3 | 0 | 3 | 4 | 2 | 1 | 2 | 3 | 8055.148 | −0.0023 |
3 | 2 | 2 | 3 | 2 | 1 | 1 | 2 | 10765.028 | 0.0020 |
3 | 2 | 2 | 4 | 2 | 1 | 1 | 3 | 10766.324 | 0.0094 |
3 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 10767.030 | −0.0006 |
4 | 0 | 4 | 4 | 3 | 1 | 3 | 3 | 10630.422 | −0.0002 |
4 | 0 | 4 | 3 | 3 | 1 | 3 | 2 | 10630.509 | −0.0009 |
4 | 0 | 4 | 5 | 3 | 1 | 3 | 4 | 10630.584 | −0.0004 |
2 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 7827.541 | 0.0013 |
2 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 7828.040 | −0.0025 |
2 | 1 | 1 | 3 | 1 | 0 | 1 | 2 | 7828.453 | −0.0035 |
2 | 1 | 1 | 2 | 1 | 0 | 1 | 1 | 7829.543 | −0.0010 |
2 | 1 | 1 | 2 | 1 | 0 | 1 | 2 | 7829.742 | −0.0031 |
2 | 2 | 0 | 1 | 1 | 1 | 0 | 1 | 8592.826 | −0.0059 |
2 | 2 | 0 | 2 | 1 | 1 | 0 | 1 | 8593.660 | −0.0020 |
2 | 2 | 0 | 3 | 1 | 1 | 0 | 2 | 8594.129 | −0.0003 |
2 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 8594.664 | 0.0006 |
2 | 2 | 0 | 1 | 1 | 1 | 0 | 0 | 8595.327 | −0.0083 |
2 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 8894.298 | 0.0003 |
2 | 2 | 1 | 3 | 1 | 1 | 1 | 2 | 8894.510 | −0.0033 |
2 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 8895.506 | 0.0056 |
2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 8895.839 | 0.0028 |
3 | 1 | 2 | 2 | 2 | 0 | 2 | 1 | 11805.991 | −0.0036 |
3 | 1 | 2 | 4 | 2 | 0 | 2 | 3 | 11806.632 | −0.0001 |
3 | 1 | 2 | 3 | 2 | 0 | 2 | 2 | 11808.143 | 0.0021 |
3 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 11935.818 | 0.0006 |
3 | 2 | 1 | 4 | 2 | 1 | 1 | 3 | 11937.570 | −0.0004 |
3 | 2 | 1 | 3 | 2 | 1 | 1 | 2 | 11937.609 | −0.0003 |
3 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 11937.820 | −0.0017 |
3 | 2 | 1 | 3 | 2 | 1 | 1 | 3 | 11938.902 | 0.0041 |
3 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 12541.315 | 0.0015 |
3 | 2 | 2 | 3 | 2 | 1 | 2 | 3 | 12541.912 | 0.0023 |
3 | 2 | 2 | 4 | 2 | 1 | 2 | 3 | 12541.912 | 0.0023 |
3 | 3 | 0 | 3 | 2 | 2 | 0 | 2 | 13277.417 | 0.0034 |
3 | 3 | 0 | 4 | 2 | 2 | 0 | 3 | 13277.810 | 0.0004 |
3 | 3 | 0 | 2 | 2 | 2 | 0 | 1 | 13278.058 | 0.0004 |
4 | 2 | 2 | 3 | 3 | 1 | 2 | 2 | 15612.985 | −0.0060 |
4 | 2 | 2 | 5 | 3 | 1 | 2 | 4 | 15613.035 | 0.0072 |
4 | 2 | 2 | 4 | 3 | 1 | 2 | 3 | 15613.524 | 0.0012 |
4 | 2 | 3 | 5 | 3 | 1 | 3 | 4 | 16398.148 | −0.0009 |
4 | 2 | 3 | 4 | 3 | 1 | 3 | 3 | 16399.282 | −0.0011 |
4 | 3 | 1 | 4 | 3 | 2 | 1 | 3 | 16340.913 | −0.0001 |
4 | 3 | 1 | 5 | 3 | 2 | 1 | 4 | 16341.243 | −0.0008 |
4 | 3 | 2 | 3 | 3 | 2 | 2 | 2 | 16911.326 | −0.0013 |
4 | 3 | 2 | 5 | 3 | 2 | 2 | 4 | 16911.402 | −0.0045 |
4 | 3 | 2 | 4 | 3 | 2 | 2 | 3 | 16911.715 | 0.0011 |
References
- Moore, T.S.; Winmill, T.F. CLXXVII.—The state of amines in aqueous solution. J. Chem. Soc. Trans. 1912, 101, 1635–1676. [Google Scholar] [CrossRef]
- Arunan, E.; Desiraju, G.R.; Klein, R.A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D.C.; Crabtree, R.H.; Dannenberg, J.J.; Hobza, P.; et al. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83, 1637–1641. [Google Scholar] [CrossRef]
- Stockman, P.A.; Blake, G.A.; Lovas, F.J.; Suenram, R.D. Microwave rotation-tunneling spectroscopy of the water–methanol dimer: Direct structural proof for the strongest bound conformation. J. Chem. Phys. 1997, 107, 3782–3790. [Google Scholar] [CrossRef]
- Finneran, I.A.; Carroll, P.B.; Allodi, M.A.; Blake, G.A. Hydrogen bonding in the ethanol–water dimer. Phys. Chem. Chem. Phys. 2015, 17, 24210–24214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evangelisti, L.; Gou, Q.; Feng, G.; Caminati, W.; Mead, G.J.; Finneran, I.A.; Carroll, P.B.; Blake, G.A. Conformational equilibrium and internal dynamics in the iso-propanol–water dimer. Phys. Chem. Chem. Phys. 2017, 19, 568–573. [Google Scholar] [CrossRef] [Green Version]
- Evangelisti, L.; Caminati, W. Internal dynamics in complexes of water with organic molecules. Details of the internal motions in tert-butylalcohol–water. Phys. Chem. Chem. Phys. 2010, 12, 14433–14441. [Google Scholar] [CrossRef]
- Blanco, S.; López, J.C.; Maris, A. Terpenoids: Shape and non-covalent interactions. The rotational spectrum of cis-verbenol and its 1:1 water complex. Phys. Chem. Chem. Phys. 2020, 22, 5729–5734. [Google Scholar] [CrossRef]
- Neeman, E.M.; Osseiran, N.; Huet, T.R. The conformational landscape of myrtenol: The structure of the hydroxymethyl group and its robustness upon hydration. J. Chem. Phys. 2022, 156, 124301. [Google Scholar] [CrossRef]
- Melandri, S.; Maris, A.; Favero, P.G.; Caminati, W. Free jet absorption millimetre-wave spectrum and model calculations of phenol–water. Chem. Phys. 2002, 283, 185–192. [Google Scholar] [CrossRef]
- Shahi, A.; Arunan, E. Microwave spectroscopic and theoretical investigations of the strongly hydrogen bonded hexafluoroisopropanol...water complex. Phys. Chem. Chem. Phys. 2015, 17, 24774–24782. [Google Scholar] [CrossRef]
- Fiacco, D.L.; Hunt, S.W.; Leopold, K.R. Microwave Investigation of Sulfuric Acid Monohydrate. J. Am. Chem. Soc. 2002, 124, 4504–4511. [Google Scholar] [CrossRef] [PubMed]
- Canagaratna, M.; Phillips, J.A.; Ott, M.E.; Leopold, K.R. The Nitric Acid-Water Complex: Microwave Spectrum, Structure, and Tunneling. J. Phys. Chem. A 1998, 102, 1489–1497. [Google Scholar] [CrossRef]
- Priem, D.; Ha, T.K.; Bauder, A. Rotational spectra and structures of three hydrogen-bonded complexes between formic acid and water. J. Chem. Phys. 2000, 113, 169–175. [Google Scholar] [CrossRef]
- Schnitzler, E.G.; Jäger, W. The benzoic acid–water complex: A potential atmospheric nucleation precursor studied using microwave spectroscopy and ab initio calculations. Phys. Chem. Chem. Phys. 2014, 16, 2305–2314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinacho, P.; Krin, A.; Pérez, C.; Zinn, S.; López, J.C.; Blanco, S.; Schnell, M. Microsolvated complexes of ibuprofen as revealed by high-resolution rotational spectroscopy. Phys. Chem. Chem. Phys. 2018, 20, 15635–15640. [Google Scholar] [CrossRef] [Green Version]
- Mata, S.; Cortijo, V.; Caminati, W.; Alonso, J.L.; Sanz, M.E.; López, J.C.; Blanco, S. Tautomerism and Microsolvation in 2-Hydroxypyridine/2-Pyridone. J. Phys. Chem. A 2010, 114, 11393–11398. [Google Scholar] [CrossRef]
- Tubergen, M.J.; Torok, C.R.; Lavrich, R.J. Effect of solvent on molecular conformation: Microwave spectra and structures of 2-aminoethanol van der Waals complexes. J. Chem. Phys. 2003, 119, 8397–8403. [Google Scholar] [CrossRef]
- Conrad, A.R.; Teumelsan, N.H.; Wang, P.E.; Tubergen, M.J. A Spectroscopic and Computational Investigation of the Conformational Structural Changes Induced by Hydrogen Bonding Networks in the Glycidol-Water Complex. J. Phys. Chem. A 2010, 114, 336–342. [Google Scholar] [CrossRef]
- Huang, W.; Thomas, J.; Jäger, W.; Xu, Y. Tunnelling and barrier-less motions in the 2-fluoroethanol–water complex: A rotational spectroscopic and ab initio study. Phys. Chem. Chem. Phys. 2017, 19, 12221–12228. [Google Scholar] [CrossRef] [PubMed]
- Javix, T.; Xu, Y. Structure and tunneling dynamics in a model system of peptide co-solvents: Rotational spectroscopy of the 2,2,2-trifluoroethanol...water complex. J. Chem. Phys. 2014, 140, 234307. [Google Scholar] [CrossRef]
- Wu, B.; Hazrah, A.S.; Seifert, N.A.; Oswald, S.; Jäger, W.; Xu, Y. Higher-Energy Hexafluoroisopropanol…Water Isomer and Its Large Amplitude Motions: Rotational Spectra and DFT Calculations. J. Phys. Chem. A 2021, 125, 10401–10409. [Google Scholar] [CrossRef] [PubMed]
- Gnanasekar, S.P.; Arunan, E. Structure and Internal Motions of a Multifunctional Alcohol–Water Complex: Rotational Spectroscopy of the Propargyl Alcohol···H2O Dimer. J. Phys. Chem. A 2021, 125, 7138–7150. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Thomas, J.; Huang, W.; Xu, Y.; Jäger, W. Rotational Spectra of Two Hydrogen-Bonded Methyl Salicylate Monohydrates: Relative Stability and Tunneling Motions. J. Phys. Chem. Lett. 2015, 6, 3126–3131. [Google Scholar] [CrossRef]
- Suma, K.; Sumiyoshi, Y.; Endo, Y. The Rotational Spectrum of the Water-Hydroperoxy Radical (H2O-HO2>) Complex. Science 2006, 311, 1278–1281. [Google Scholar] [CrossRef] [PubMed]
- Olszyna, K.; Heicklen, J. Inhibition of photochemical smog. VI. Reaction of O3 with diethylhydroxylamine. Sci. Total Environ. 1976, 5, 223–230. [Google Scholar] [CrossRef]
- Lebeuf, R.; Zhu, Y.; Nardello-Rataj, V.; Lallier, J.P.; Aubry, J.M. Natural polyphenols as safe alternatives to hydroquinone for the organocatalyzed reduction of dioxygen dissolved in water by diethylhydroxylamine (DEHA). Green Chem. 2012, 14, 825–831. [Google Scholar] [CrossRef]
- Salvitti, G.; Pizzano, E.; Baroncelli, F.; Melandri, S.; Evangelisti, L.; Negri, F.; Coreno, M.; Prince, K.C.; Ciavardini, A.; Sa’adeh, H.; et al. Spectroscopic and quantum mechanical study of a scavenger molecule: N,N-diethylhydroxylamine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 281, 121555. [Google Scholar] [CrossRef]
- Grabow, J.U.; Stahl, W.; Dreizler, H. A multioctave coaxially oriented beam-resonator arrangement Fourier-transform microwave spectrometer. Rev. Sci. Instrum. 1996, 67, 4072–4084. [Google Scholar] [CrossRef]
- Balle, T.J.; Flygare, W.H. Fabry-Perot cavity pulsed Fourier transform microwave spectrometer with a pulsed nozzle particle source. Rev. Sci. Instrum. 1981, 52, 33–45. [Google Scholar] [CrossRef]
- Caminati, W.; Evangelisti, L.; Feng, G.; Giuliano, B.M.; Gou, Q.; Melandri, S.; Grabow, J.U. On the Cl⋯C halogen bond: A rotational study of CF3Cl-CO. Phys. Chem. Chem. Phys. 2016, 18, 17851–17855. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Møller, C.; Plesset, M.S. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934, 46, 618–622. [Google Scholar] [CrossRef] [Green Version]
- Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Jeziorski, B.; Moszynski, R.; Szalewicz, K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes. Chem. Rev. 1994, 94, 1887–1930. [Google Scholar] [CrossRef]
- Parrish, R.M.; Burns, L.A.; Smith, D.G.A.; Simmonett, A.C.; DePrince, A.E.; Hohenstein, E.G.; Bozkaya, U.; Sokolov, A.Y.; Di Remigio, R.; Richard, R.M.; et al. Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. J. Chem. Theory Comput. 2017, 13, 3185–3197. [Google Scholar] [CrossRef]
- Pickett, H.M. The fitting and prediction of vibration-rotation spectra with spin interactions. J. Mol. Spectrosc. 1991, 148, 371–377. [Google Scholar] [CrossRef]
- Ray, B.S. Über die Eigenwerte des asymmetrischen Kreisels. Z. Phys. 1932, 78, 74–91. [Google Scholar] [CrossRef]
- Kraitchman, J. Determination of Molecular Structure from Microwave Spectroscopic Data. Am. J. Phys. 1953, 21, 17–25. [Google Scholar] [CrossRef]
- Costain, C.C. Determination of Molecular Structures from Ground State Rotational Constants. J. Chem. Phys. 1958, 29, 864–874. [Google Scholar] [CrossRef]
- Kisiel, Z. Least-squares mass-dependence molecular structures for selected weakly bound intermolecular clusters. J. Mol. Spectrosc. 2003, 218, 58–67. [Google Scholar] [CrossRef]
- Odutola, J.A.; Dyke, T.R. Partially deuterated water dimers: Microwave spectra and structure. J. Chem. Phys. 1980, 72, 5062–5070. [Google Scholar] [CrossRef]
- Consalvo, D.; Stahl, W. Rotational Spectrum and Structure of the Quinuclidine–Water Complex. J. Mol. Spectrosc. 1995, 174, 520–535. [Google Scholar] [CrossRef]
- Emamian, S.; Lu, T.; Kruse, H.; Emamian, H. Exploring Nature and Predicting Strength of Hydrogen Bonds: A Correlation Analysis Between Atoms-in-Molecules Descriptors, Binding Energies, and Energy Components of Symmetry-Adapted Perturbation Theory. J. Comput. Chem. 2019, 40, 2868–2881. [Google Scholar] [CrossRef] [PubMed]
- Salvitti, G.; Blanco, S.; Lòpez, J.C.; Melandri, S.; Evangelisti, L.; Maris, A. Probing intra- and inter-molecular interactions through rotational spectroscopy: The case of the odorant 2′-aminoacetophenone and its 1:1 water and neon complexes. J. Chem. Phys. 2022, 157, 144303. [Google Scholar] [CrossRef] [PubMed]
- Chemler, S.R.; Schaumann, E.; Geffken, D.; Sherman, E.S.; Kçllner, M.A.; Studer, A.; Maison, W.; Vogler, T.; O’Neil, I.; Wille, U.; et al. Science of Synthesis, 40b: Category 5, Compounds with One Saturated Carbon Heteroatom Bond; Georg Thieme Verlag: Stuttgart, Germany, 2009; Volume 1. [Google Scholar]
DFT a | MP2 b | |||||
---|---|---|---|---|---|---|
#1 | #2a | #2b | #3a | #3b | #1 | |
[Ha] | −365.589953 | −365.588184 | −365.587936 | −365.587679 | −365.587484 | −364.762353 |
[Ha] | −365.412107 | −365.410396 | −365.410170 | −365.409708 | −365.409570 | −364.582764 |
[kJ·mol] | −44.21 | −44.20 | −43.54 | −44.54 | −44.03 | −40.83 |
[kJ·mol] | −33.41 | −33.52 | −32.92 | −33.65 | −33.29 | −30.64 |
A [MHz] | 2583.040 | 2248.239 | 2323.442 | 2631.291 | 2690.333 | 2603.301 |
B [MHz] | 1819.991 | 1813.067 | 1767.119 | 1728.857 | 1706.002 | 1832.838 |
C [MHz] | 1290.482 | 1361.421 | 1360.637 | 1255.979 | 1258.110 | 1297.150 |
−0.18 | 0.02 | −0.16 | −0.31 | −0.38 | −0.18 | |
[uÅ] | 236.825 | 212.584 | 219.953 | 251.317 | 255.041 | 235.606 |
[uÅ] | 154.795 | 158.630 | 151.475 | 151.062 | 146.656 | 154.001 |
[uÅ] | 40.857 | 66.159 | 66.038 | 41.003 | 41.194 | 40.129 |
[D] | 1.369 | −0.480 | −2.295 | −0.195 | −1.531 | 1.316 |
[D] | −1.071 | −1.669 | 0.262 | −1.911 | 0.353 | −0.907 |
[D] | 1.612 | 1.698 | 1.099 | 1.389 | 1.905 | 1.585 |
[D] | 2.371 | 2.429 | 2.558 | 2.370 | 2.470 | 2.251 |
[MHz] | 0.759 | 1.239 | 1.103 | −3.999 | −3.877 | 0.513 |
[MHz] | −4.076 | −1.920 | −2.004 | 0.162 | −0.008 | −3.684 |
[MHz] | 3.317 | 0.681 | 0.901 | 3.837 | 3.885 | 3.171 |
Parent | C6 | C4 | O18 | |
---|---|---|---|---|
A [MHz] | 2500.1146(5) a | 2498.7482(5) | 2483.7333(7) | 2356.9534(5) |
B [MHz] | 1824.6348(5) | 1785.2392(9) | 1814.4391(11) | 1823.9622(5) |
C [MHz] | 1269.6279(5) | 1250.2201(35) | 1261.0218(55) | 1231.9071(6) |
[kHz] | 5.56(1) | 5.83(3) | 5.87(5) | 5.84(1) |
[kHz] | −10.14(4) | [0] b | [0] | −10.87(5) |
[kHz] | 4.72(5) | [0] | [0] | 5.24(5) |
[kHz] | 0.43(1) | [0] | [0] | 0.40(2) |
[kHz] | 2.209(7) | [0] | [0] | 2.376(9) |
1.5 [MHz] | 4.873(3) | 4.868(5) | 4.915(7) | 5.007(4) |
(−)/4 [MHz] | 1.144(1) | −1.144(2) | −1.146(6) | −1.170(1) |
[kHz] c | 3.3 | 5.3 | 3.8 | 3.5 |
Nd | 79 | 18 | 11 | 56 |
-type e | b, c | c | c | b, c |
[uÅ] f | 236.443 | 242.533 | 237.913 | 236.449 |
[uÅ] | 161.610 | 161.699 | 162.857 | 173.792 |
[uÅ] | 40.532 | 40.554 | 40.619 | 40.628 |
−0.098 | −0.143 | −0.095 | 0.052 | |
[MHz] | 0.664(2) | 0.665(3) | 0.654(5) | 0.671(3) |
[MHz] | −3.912(3) | −3.911(6) | −3.930(15) | −4.009(4) |
[MHz] | 3.249(3) | 3.245(6) | 3.277(15) | 3.338(4) |
[Å] | [Å] a | [Å] b | [Å] c | ||
---|---|---|---|---|---|
O18 | a | 0.05(3) | 0 | −0.127 | −0.435 |
b | 2.4806(6) | −2.4868(5) | −2.430 | −2.396 | |
c | 0.231(7) | 0.268(2) | 0.313 | 0.306 | |
C4/C5 | a | 1.206(1) | ±1.209(4) | 1.243/−1.186 | 1.338/−1.062 |
b | 1.131(1) | −1.1355(1) | −1.100/−1.142 | −1.001/−1.229 | |
c | 0.298(5) | 0.299(1) | 0.284/0.302 | 0.286/0.293 | |
C6/C7 | a | 2.4737(6) | ±2.479(2) | 2.486/−2.461 | 2.510/−2.395 |
b | 0.311(5) | −0.297(3) | −0.232/−0.324 | −0.044/−0.517 | |
c | 0.15(1) | 0.1810(5) | 0.198/0.192 | 0.198/0.172 |
MP2/aug-cc-pVTZ | ||||||||
---|---|---|---|---|---|---|---|---|
[Å] | [Å] | |||||||
O2 | H1 | 0.97000 | ||||||
N3 | O2 | H1 | 1.44541 | 102.932 | ||||
C | N3 | O2 | H1 | 1.46504 | 105.535 | ∓121.393 | 1.470(4) | |
C | C | N3 | O2 | 1.51543 | 111.701 | ±69.156 | 1.526(6) | |
H | C | N3 | O2 | 1.09140 | 106.159 | ±120.524 | ||
H | C | N3 | O2 | 1.09697 | 109.299 | ∓122.999 | ||
H | C | C | N3 | 1.08948 | 110.017 | ±178.686 | ||
H | C | C | N3 | 1.08906 | 110.071 | ±58.705 | ||
H | C | C | N3 | 1.08730 | 110.534 | ∓61.602 | ||
O18 | H1 | O2 | N3 | 2.09161 | 133.847 | 0.000 | 2.097(3) | 136.36(2) |
H19 | O18 | H1 | O2 | 0.98035 | 68.546 | 0.000 | ||
H20 | O18 | H9 | H1 | 0.96009 | 106.390 | 180.000 |
QTAIM a | N·H | H·O | Global | ||
---|---|---|---|---|---|
[e/a] | 0.03445 | 0.01924 | |||
[kJ·mol] | −29.05 | −14.85 | −43.90 | ||
MP2/aug-cc-pVTZ | Global | ||||
[kJ·mol] | −42.51 | ||||
SAPT b | Electrostatic | Exchange −repulsion | Induction | Dispersion | Global |
[kJ·mol] | −74.99 | 95.46 | −27.28 | −30.61 | −37.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvitti, G.; Baroncelli, F.; Nicotri, C.; Evangelisti, L.; Melandri, S.; Maris, A. How Water Interacts with the NOH Group: The Rotational Spectrum of the 1:1 N,N-diethylhydroxylamine·Water Complex. Molecules 2022, 27, 8190. https://doi.org/10.3390/molecules27238190
Salvitti G, Baroncelli F, Nicotri C, Evangelisti L, Melandri S, Maris A. How Water Interacts with the NOH Group: The Rotational Spectrum of the 1:1 N,N-diethylhydroxylamine·Water Complex. Molecules. 2022; 27(23):8190. https://doi.org/10.3390/molecules27238190
Chicago/Turabian StyleSalvitti, Giovanna, Filippo Baroncelli, Chiara Nicotri, Luca Evangelisti, Sonia Melandri, and Assimo Maris. 2022. "How Water Interacts with the NOH Group: The Rotational Spectrum of the 1:1 N,N-diethylhydroxylamine·Water Complex" Molecules 27, no. 23: 8190. https://doi.org/10.3390/molecules27238190
APA StyleSalvitti, G., Baroncelli, F., Nicotri, C., Evangelisti, L., Melandri, S., & Maris, A. (2022). How Water Interacts with the NOH Group: The Rotational Spectrum of the 1:1 N,N-diethylhydroxylamine·Water Complex. Molecules, 27(23), 8190. https://doi.org/10.3390/molecules27238190