Stepwise Diagnostic Product Ions Filtering Strategy for Rapid Discovery of Diterpenoids in Scutellaria barbata Based on UHPLC-Q-Exactive-Orbitrap-MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of MS Conditions
2.2. DPIs Investigation of Diterpenoids
2.2.1. Structure Analysis and Subtype Attribution
2.2.2. DPIs Investigation
2.3. Research Strategy for the Characterization of Diterpenoids
2.4. Systematic Characterization of Diterpenoids in Scutellaria Barbata
3. Materials and Methods
3.1. Reagents and Materials
3.2. Preparation Standard and Sample Solutions
3.3. UHPLC-Q-Exactive Orbitrap/HRMS
3.4. Stepwise DPIs Filtering
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Chen, Q.; Rahman, K.; Wang, S.-J.; Zhou, S.; Zhang, H. Scutellaria barbata: A review on chemical constituents, pharmacological activities and clinical applications. Curr. Pharm. Des. 2020, 26, 160–175. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.N.; Liu, Y.H.; Liu, Y.L.; Gao, J.Y. Advances in chemical constituents and pharmacological activities of Scutellaria barbata. Asia Pac. Trad. Med. 2014, 10, 57–58. [Google Scholar]
- Liu, T.; Wang, X.Y.; Cao, Z.H.Q. Advances in pharmacological action and clinical application of Scutellaria barbata. Henan Trad. Chin. Med. 2013, 33, 424–426. [Google Scholar]
- Dai, Z.-J.; Wu, W.-Y.; Kang, H.-F.; Ma, X.-B.; Zhang, S.-Q.; Min, W.-L.; Lu, W.-F.; Lin, S.; Wang, X.-J. Protective effects of Scutellaria barbata against rat liver tumorigenesis. Asian Pac. J. Cancer Prev. 2013, 14, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Kan, X.; Zhang, W.; You, R.; Niu, Y.; Guo, J.; Xue, J. Scutellaria barbata D. Don extract inhibits the tumor growth through down-regulating of Treg cells and manipulating Th1/Th17 immune response in hepatoma H22-bearing mice. BMC Complement. Altern. Med. 2017, 17, 41. [Google Scholar] [CrossRef] [Green Version]
- Shiau, A.-L.; Shen, Y.-T.; Hsieh, J.-L.; Wu, C.-L.; Lee, C.-H. Scutellaria barbata inhibits angiogenesis through downregulation of HIF-1 α in lung tumor. Environ. Toxicol. 2014, 29, 363–370. [Google Scholar] [CrossRef]
- Chen, C.-C.; Kao, C.-P.; Chiu, M.-M.; Wang, S.-H. The anti-cancer effects and mechanisms of Scutellaria barbata D. Don on CL1-5 lung cancer cells. Oncotarget 2017, 8, 109340–109357. [Google Scholar] [CrossRef]
- Perez, A.T.; Arun, B.; Tripathy, D.; Tagliaferri, M.A.; Shaw, H.S.; Kimmick, G.G.; Cohen, I.; Shtivelman, E.; Caygill, K.A.; Grady, D.; et al. A phase 1B dose escalation trial of Scutellaria barbata (BZL101) for patients with metastatic breast cancer. Breast Cancer Res. Treat. 2010, 120, 111–118. [Google Scholar] [CrossRef]
- Zheng, X.; Kang, W.; Liu, H.; Guo, S. Inhibition effects of total flavonoids from Sculellaria barbata D. Don on human breast carcinoma bone metastasis via downregulating PTHrP pathway. Int. J. Mol. Med. 2018, 41, 3137–3146. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.; Sun, D.; Wang, X. Effects of Scutellaria barbata polysaccharide on the proliferation, apoptosis and EMT of human colon cancer HT29 Cells. Carbohydr. Polym. 2017, 167, 90–96. [Google Scholar] [CrossRef]
- Wang, M.; Ma, C.; Chen, Y.; Li, X.; Chen, J. Cytotoxic Neo-Clerodane Diterpenoids from Scutellaria barbata D.Don. Chem. Biodivers. 2019, 16, 1800499. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.-C.; Hu, J.-H.; Li, B.-L.; Liu, H.; Wang, J.-Y.; Sun, L.-X. Six new neo-clerodane diterpenoids from aerial parts of Scutellaria barbata and their cytotoxic activities. Planta Med. 2018, 84, 1292–1299. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.-M.; Xia, Y.-Z.; Wang, Z.-M.; Li, L.-N.; Luo, J.-G.; Kong, L.-Y. neo-Clerodane diterpenoids from Scutellaria barbata mediated inhibition of P-glycoprotein in MCF-7/ADR cells. Eur. J. Med. Chem. 2016, 121, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.-J.; Wang, B.-F.; Lu, W.-F.; Wang, Z.-D.; Ma, X.-B.; Min, W.-L.; Kang, H.-F.; Wang, X.-J.; Wu, W.-Y. Total flavonoids of Scutellaria barbata inhibit invasion of hepatocarcinoma via MMP/TIMP In Vitro. Molecules 2013, 18, 934–950. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Chen, X.; Yin, X.; Wang, M.; Zhao, J.; Ren, Y. A strategy integrating parent ions list-modified mass defect filtering-diagnostic product ions for rapid screening and systematic characterization of flavonoids in Scutellaria barbata using hybrid quadrupole-orbitrap high-resolution mass spectrometry. J. Chromatogr. A 2022, 1674, 463149. [Google Scholar] [CrossRef]
- Fu, Q.; Tong, C.; Guo, Y.; Xu, J.; Shi, F.; Shi, S.; Xiao, Y. Flavonoid aglycone-oriented data-mining in high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry: Efficient and targeted profiling of flavonoids in Scutellaria barbata. Anal. Bioanal. Chem. 2020, 412, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Jiang, Y.; Liu, R.; Liu, M.; Yi, L.; Liao, N.; Li, S. Structural features guided “fishing” strategy to identification of flavonoids from lotus plumule in a self-built data “pool” by ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap high resolution mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019, 1124, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-Y.; Wang, Z.-J.; Zhang, Q.; Wang, F.; Ma, Q.; Lin, Z.-Z.; Lu, J.-Q.; Qiao, Y.-J. Rapid screening and identification of target constituents using full scan-parent ions list-dynamic exclusion acquisition coupled to diagnostic product ions analysis on a hybrid LTQ-Orbitrap mass spectrometer. Talanta 2014, 124, 111–122. [Google Scholar] [CrossRef]
- Shi, X.-J.; Yang, W.-Z.; Qiu, S.; Yao, C.-L.; Shen, Y.; Pan, H.-Q.; Bi, Q.-R.; Yang, M.; Wu, W.-Y.; Guo, D.-A. An in-source multiple collision-neutral loss filtering based nontargeted metabolomics approach for the comprehensive analysis of malonyl-ginsenosides from Panax ginseng, P. quinquefolius, and P. notoginseng. Anal. Chim. Acta 2017, 952, 59–70. [Google Scholar] [CrossRef]
- Li, M.-N.; Li, C.-R.; Gao, W.; Li, P.; Yang, H. Highly sensitive strategy for identification of trace chemicals in complex matrix: Application to analysis of monacolin analogues in monascus-fermented rice product. Anal. Chim. Acta 2017, 982, 156–167. [Google Scholar] [CrossRef]
- Pan, H.; Yang, W.; Yao, C.; Shen, Y.; Zhang, Y.; Shi, X.; Yao, S.; Wu, W.; Guo, D. Mass defect filtering-oriented classification and precursor ions list-triggered high-resolution mass spectrometry analysis for the discovery of indole alkaloids from Uncaria sinensis. J. Chromatogr. A 2017, 1516, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Yang, W.; Zhang, Y.; Yang, M.; Feng, R.; Wu, W.; Guo, D. An integrated strategy for the systematic characterization and discovery of new indole alkaloids from Uncaria rhynchophylla by UHPLC/DAD/LTQ-Orbitrap-MS. Anal. Bioanal. Chem. 2015, 407, 6057–6070. [Google Scholar] [CrossRef]
- Pan, H.; Yao, C.; Yang, W.; Yao, S.; Huang, Y.; Zhang, Y.; Wu, W.; Guo, D. An enhanced strategy integrating offline two-dimensional separation and step-wise precursor ion list-based raster-mass defect filter: Characterization of indole alkaloids in five botanical origins of Uncariae Ramulus Cum Unicis as an exemplary application. J. Chromatogr. A 2018, 1563, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Shan, J.; Meng, M. A two-step UPLC-Q-Tof/MS with mass defect filtering method for rapid identification of analogues from known components of different chemical structure types in Fructus Gardeniae-Fructus Forsythiae herb pair extract and in rat’s blood. J. Chromatogr. A 2018, 1563, 99–123. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.-L.; Yang, W.-Z.; Si, W.; Shen, Y.; Zhang, N.-X.; Chen, H.-L.; Pan, H.-Q.; Yang, M.; Wu, W.-Y.; Guo, D.-A. An enhanced targeted identification strategy for the selective identification of flavonoid O-glycosides from Carthamus tinctorius by integrating offline two-dimensional liquid chromatography/linear ion-trap-Orbitrap mass spectrometry, high-resolution diagnostic product ions/neutral loss filtering and liquid chromatography-solid phase extraction-nuclear magnetic resonance. J. Chromatogr. A 2017, 1491, 87–97. [Google Scholar] [PubMed]
- Gao, Y.; Zhang, R.; Bai, J.; Xia, X.; Chen, Y.; Luo, Z.; Xu, J.; Gao, Y.; Liu, Y.; He, J.; et al. Targeted data-independent acquisition and mining strategy for trace drug metabolite identification using liquid chromatography coupled with tandem mass spectrometry. Anal. Chem. 2015, 87, 7535–7539. [Google Scholar] [CrossRef]
- Xu, L.-L.; Guo, F.-X.; Chi, S.-S.; Wang, Z.-J.; Jiang, Y.-Y.; Liu, B.; Zhang, J.-Y. Rapid Screening and Identification of Diterpenoids in Tinospora sinensis Based on High-Performance Liquid Chromatography Coupled with Linear Ion Trap-Orbitrap Mass Spectrometry. Molecules 2017, 22, 912. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Q.-S.; Xu, L.-L.; Zhang, J.-Y.; Wang, Z.-J.; Jiang, Y.-Y.; Liu, B. Rapid Characterization and Identification of Non-Diterpenoid Constituents in Tinospora sinensis by HPLC-LTQ-Orbitrap MSn. Molecules 2018, 23, 274. [Google Scholar] [CrossRef] [Green Version]
- Qiao, X.; Li, R.; Song, W.; Miao, W.-J.; Liu, J.; Chen, H.-B.; Guo, D.-A.; Ye, M. A targeted strategy to analyze untargeted mass spectral data: Rapid chemical profiling of Scutellaria baicalensis using ultra-high performance liquid chromatography coupled with hybrid quadrupole orbitrap mass spectrometry and key ion filtering. J. Chromatogr. A 2016, 1441, 83–95. [Google Scholar] [CrossRef]
- Li, D.D. Studies on the Chemical Constituents and Multidrug Resistance Reversal of Scutellaria Barbata. Master’s Thesis, Kunming University, Kunming, China, 2018. [Google Scholar]
- Wang, M.L. Chemical Constituents of Scutellaria Barbata and their Antitumor Mechanism. Ph.D. Thesis, Nanjing University of Chinese Medicine, Nanjing, China, 2020. [Google Scholar]
- Qu, G.W. Discovery and Antitumor Activity of Neo-Crolane Diterpenoids from Scutellaria barbata. Ph.D. Thesis, Chinese Marine University, Qingdao, China, 2012. [Google Scholar]
Subtypes | Type of Substituents | DPIs |
---|---|---|
A1 | 1. R1, R2 ≠ H | a, b |
2. R1 = H or R2 = H | a, b, c | |
3. R1, R2 = H | a, b, c, d | |
A2 | 1. R1, R2, R3 ≠ H, R4 = H | a, b |
2. R1, R2, R3 ≠ H, R4 = OH | f, g, h | |
3. R1, R3 ≠ H, R2, R4 = H or R2, R3 ≠ H, R1, R4 = H or R1, R2 ≠ H, R3 = H, R4 = OH | a, b, c | |
4. R1, R3 ≠ H, R2 = H, R4 = OH or R2, R2 ≠ H, R1 = H, R4 = OH | f, g, h, i | |
5. R1, R2 ≠ H, R3 = H, R4 = H | j, k | |
6. R1 ≠ H, R2, R3, R4 = H or R2 ≠ H, R1, R3, R4 = H | j, k, l | |
7. R1 ≠ H, R2, R3 = H, R4 = OH; or R2 ≠ H, R1, R3 = H, R4 = OH | a, b, c, d | |
8. R1, R2, R3, R4 = H | j, k, l, m | |
9. R1, R2, R3, = H, R4 = OH | a, b, c, d, e | |
A3 | 1. R1 = H, R2 ≠ H or R2 = H, R1 ≠ H | a, b, c |
2. R1, R2 = H | a, b, c, d | |
A4 | 1. R1 ≠ H, R2 = H | b, c |
2. R1 ≠ H, R2 = OH | g, h, i | |
A5 | 1. R1 = H, R2 = OH, R3, R4 ≠ H or R2 = H, R1 = OH, R3, R4 ≠ H | f, g, h |
2. R1, R2 = H, R3, R4 ≠ H | a, b | |
A6 | 1. R1, R2, R3 ≠ H | g, h |
A7 | - | o, p |
A8, A9 | - | b, c |
A10, A12 | - | u, v |
A11 | - | j, k |
B1 | 1. R1, R3 = H, R4 ≠ H, R2, R5 = OR, R ≠ H or R2, R3 = H, R4 ≠ H, R1, R5 = OR, R ≠ H | a, b |
2. R1, R3 = H, R4 ≠ H, R5 = OH, R2 = OR, R ≠ H or R2, R3 = H, R4 ≠ H, R5 = OH, R1 = OR, R ≠ H | a, b, c | |
3. R1 = OR, R ≠ H, R2, R3, R4 = H, R5 = OH | a, b, c, d | |
4. R1, R2, R3 = H, R4 ≠ H, R5 = OR, R ≠ H or R1, R3, R5 = H, R4 ≠ H, R2 = OR, R ≠ H | j, k | |
5. R2, R5 = OH, R3 = H, R4 ≠ H, R1 = OR, R ≠ H | f, g, h, i | |
6. R2 = OH, R3 = H, R4 ≠ H, R1, R5 = OR, R ≠ H or R1 = H, R3 = OH R4 ≠ H, R2, R5 = OR, R ≠ H | f, g, h | |
B2 | 1. R1, R3 ≠ H, R2 = H | f, g, h, i |
2. R1, R3 ≠ H, R2 = OH | n, o, p, q | |
B3 | 1. R1 = OR, R ≠ H, R2 = H, R3 ≠ H, R4 = OH or R2 = OR, R ≠ H, R1 = H, R3 ≠ H, R4 = OH or R4 = OR, R ≠ H, R2 = H, R3 ≠ H, R1 = OH | a, b, c |
2. R1, R2, R4 = OR, R ≠ H, R3 ≠ H | f, g | |
B4 | 1. R1 = H, R2, R4 = OR, R ≠ H, R3 ≠ H | a, b, c |
B5 | 1. R1, R3, R5 = H, R2 = OR, R ≠ H, R4 ≠ H or R2, R3, R5 = H, R1 = OR, R ≠ H, R4 ≠ H | a, b, c, d |
2. R2, R5 = H, R1 = OR, R ≠ H, R3, R4 ≠ H | a, b, c | |
B6 | 1. R1 = OR, R ≠ H, R2 = H, R3 ≠ H | b, c |
2. R1 = OR, R ≠ H, R2 = OH, R3 ≠ H | g, h, i | |
B7 | 1. R1 = OR, R ≠ H, R2 ≠ H, R3 = H | o, p |
2. R1 = OR, R ≠ H, R2 ≠ H, R3 = OH | r, s, t | |
B8 | 1. R1 ≠ H, R2 = OR, R ≠ H | a, b |
B9 | 1. R1, R3 = OR, R ≠ H, R2 ≠ H | f, g, h |
B10 | 1. R1 ≠ H, R2 = OR, R ≠ H | n, o |
C | 1. R1 = OR, R ≠ H, R2, R3 = H, R4, R5 ≠ H | k |
2. R1, R2, R3 = H, R4, R5 ≠ H | v | |
3. R2 = OR, R ≠ H, R1 = H, R3 = OH, R4, R5 ≠ H | b, c | |
D | 1. R1, R2, R3 ≠ H | w, x |
E1 | 1. R1, R2 ≠ H | y, z, a’ |
E2 | 1. R1, R2 ≠ H | b’, c’ |
E3 | 1. R1 = H, R2 ≠ H | g, h, i |
2. R1, R2 ≠ H | h, i |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Chen, X.; Fan, L.; Dong, H.; Ren, Y.; Chen, X. Stepwise Diagnostic Product Ions Filtering Strategy for Rapid Discovery of Diterpenoids in Scutellaria barbata Based on UHPLC-Q-Exactive-Orbitrap-MS. Molecules 2022, 27, 8185. https://doi.org/10.3390/molecules27238185
Zhou X, Chen X, Fan L, Dong H, Ren Y, Chen X. Stepwise Diagnostic Product Ions Filtering Strategy for Rapid Discovery of Diterpenoids in Scutellaria barbata Based on UHPLC-Q-Exactive-Orbitrap-MS. Molecules. 2022; 27(23):8185. https://doi.org/10.3390/molecules27238185
Chicago/Turabian StyleZhou, Xinhua, Xu Chen, Liping Fan, Huirong Dong, Yan Ren, and Xiangming Chen. 2022. "Stepwise Diagnostic Product Ions Filtering Strategy for Rapid Discovery of Diterpenoids in Scutellaria barbata Based on UHPLC-Q-Exactive-Orbitrap-MS" Molecules 27, no. 23: 8185. https://doi.org/10.3390/molecules27238185
APA StyleZhou, X., Chen, X., Fan, L., Dong, H., Ren, Y., & Chen, X. (2022). Stepwise Diagnostic Product Ions Filtering Strategy for Rapid Discovery of Diterpenoids in Scutellaria barbata Based on UHPLC-Q-Exactive-Orbitrap-MS. Molecules, 27(23), 8185. https://doi.org/10.3390/molecules27238185