Chantriolides F–P, Highly Oxidized Withanolides with Hepatoprotective Activity from Tacca chantrieri
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Elucidation
2.2. Hepatoprotective Effect Assay
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. X-ray Crystallographic Analysis of Compounds 1, 2, 4, 5, 9, 10, and 11
3.5. Cell Culture
3.6. Cell Viability
3.7. Intracellular ROS Determination
3.8. Determination of GSH Level
3.9. Western Blot Analysis
3.10. Confocal Immunofluorescence
3.11. Nucleus Isolation
3.12. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Tomita, T.; Wadhwa, R.; Kaul, S.C.; Kurita, R.; Kojima, N.; Onishi, Y. Withanolide Derivative 2,3-Dihydro-3β-methoxy Withaferin-A Modulates the Circadian Clock via Interaction with RAR-Related Orphan Receptor α (RORa). J. Nat. Prod. 2021, 84, 1882–1888. [Google Scholar] [CrossRef] [PubMed]
- Taddeo, V.A.; Núñez, M.J.; Beltrán, M.; Castillo, U.G.; Menjívar, J.; Jiménez, I.A.; Alcamí, J.; Bedoya, L.M.; Bazzocchi, I.L. Withanolide-Type Steroids from Physalis nicandroides Inhibit HIV Transcription. J. Nat. Prod. 2021, 84, 2717–2726. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.-B.; Xu, Y.-M.; Wijeratne, E.M.K.; Ranjbar, F.; Liu, M.X.; Gunatilaka, A.A.L. Cytotoxic Physalins from Aeroponically Grown Physalis acutifolia. J. Nat. Prod. 2021, 84, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Xiang, K.; Li, C.; Li, M.X.; Song, Z.-R.; Ma, X.-X.; Sun, D.-J.; Li, H.; Chen, L.-X. Withanolides isolated from Tubocapsicum anomalum and their antiproliferative activity. Bioorg. Chem. 2021, 110, 104809. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, T.; Yu, M.; Jia, H.; Zhang, H.; Xu, Q.; Gu, Y.; Zou, Z. Anti-inflammatory Withanolides from Physalis Minima. ACS Omega 2020, 5, 12148–12153. [Google Scholar] [CrossRef]
- Soh, S.; Ong, W.-Y. Effect of Withanolide A on 7-Ketocholesterol Induced Cytotoxicity in hCMEC/D3 Brain Endothelial Cells. Cells 2022, 11, 457. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, F.; Wu, L.; Kuang, H.; Wang, Q.; Cheng, G. Total withanolides ameliorates imiquimod-induced psoriasis-like skin inflammation. J. Ethnopharmacol. 2022, 285, 114895. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Yu, P.; Chen, X.-S.; Wei, H.; Cao, S.-J.; Zhang, M.; Zhang, Y.; Tao, Y.-G.; Cao, D.-S.; Qiu, F.; et al. Identification of HMGCR as the anticancer target of physapubenolide against melanoma cells by in silico target prediction. Acta Pharmacol. Sin. 2022, 43, 1594–1604. [Google Scholar] [CrossRef]
- Khanal, P.; Chikhale, R.; Dey, Y.N.; Pasha, I.; Chand, S.; Gurav, N.; Ayyanar, M.; Patil, B.M.; Gurav, S. Withanolides from Withania somnifera as an immunity booster and their therapeutic options against COVID-19. J. Biomol. Struct. Dyn. 2022, 40, 5295–5308. [Google Scholar] [CrossRef]
- Yang, W.-J.; Chen, X.-M.; Wang, S.-Q.; Hu, H.-X.; Cheng, X.-P.; Xu, L.-T.; Ren, D.-M.; Wang, X.-N.; Zhao, B.-B.; Lou, H.-X.; et al. 4β-Hydroxywithanolide E from Goldenberry (Whole Fruits of Physalis peruviana L.) as a Promising Agent against Chronic Obstructive Pulmonary Disease. J. Nat. Prod. 2020, 83, 1217–1228. [Google Scholar] [CrossRef]
- Shou, P.; Li, J.; Wei, Y.; Kai, G.; Wang, F.; Zhao, H.; Yang, B. Separation and identification of tubocapsanolide MAP and tubocapsunolide A, and the structure-activity relationship of their anti-TNBC activity. Steroids 2020, 164, 108734. [Google Scholar] [CrossRef]
- Straughn, A.R.; Kakar, S.S. Withaferin A: A potential therapeutic agent against COVID-19 infection. J. Ovarian Res. 2020, 13, 79. [Google Scholar] [CrossRef]
- Kuang, Z.; Bai, J.; Ni, L.; Hang, K.; Xu, J.; Ying, L.; Xue, D.; Pan, Z. Withanolide B promotes osteogenic differentiation of human bone marrow mesenchymal stem cells via ERK1/2 and Wnt/β-catenin signaling pathways. Int. Immunopharmacol. 2020, 88, 106960. [Google Scholar] [CrossRef]
- Lem, F.F.; Yong, Y.S.; Goh, S.; Chin, S.N.; Chee, F.T. Withanolides, the hidden gem in Physalis minima: A mini review on their anti-inflammatory, anti-neuroinflammatory and anti-cancer effects. Food Chem. 2022, 377, 132002. [Google Scholar] [CrossRef]
- Singh, A.; Raza, A.; Amin, S.; Damodaran, C.; Sharma, A.K. Recent Advances in the Chemistry and Therapeutic Evaluation of Naturally Occurring and Synthetic Withanolides. Molecules 2022, 27, 886. [Google Scholar] [CrossRef]
- Xia, G.-Y.; Cao, S.-J.; Chen, L.-X.; Qiu, F. Natural withanolides, an update. Nat. Prod. Rep. 2021, 28, 705. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Yan, H.; Liu, H.-Y. Chemical Constituents and Their Bioactivities of Plants of Taccaceae. Chem. Biodivers. 2015, 12, 221–238. [Google Scholar] [CrossRef]
- Jiang, J.; Yang, H.; Wang, Y.; Chen, Y. Phytochemical and Pharmacological Studies of the Genus Tacca: A Review. Trop. J. Pharm. Res. 2014, 13, 635–648. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Ma, R.; Li, Z.-H.; Feng, T.; Liu, J.-K. Taccachatrones A-G, Highly Oxidized Steroids from the Rhizomes of Tacca chantrierii and Their Cytotoxicity Assessment. J. Nat. Prod. 2021, 84, 2265–2271. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, J.K.; Mühlbauer, A.; Henkel, T. Three Novel Taccalonolides from the Tropical Plant Tacca subflaellata. Helv. Chim. Acta 2002, 85, 2553–2558. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Ni, W.; Xie, B.-B.; Zhou, L.-Y.; Hao, X.-J.; Wang, X.; Chen, C.-X. Five New Withanolides from Tacca plantaginea. Chem. Pharm. Bull. 2006, 54, 992–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.-Y.; Chen, C.-X.; Zhao, R.-H.; Hao, X.-J.; Liu, H.-Y. Plantagiolide F, a minor withanolide from Tacca plantaginea. Nat. Prod. Res. 2011, 25, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-H.; Yan, H.; Si, Y.-A.; Ni, W.; Chen, Y.; Chen, C.-X.; He, L.; Zhang, Z.-Q.; Liu, H.-Y. Plantagiolides K-N, three new withanolides and one withanolide glucoside from Tacca plantaginea. Fitoterapia 2015, 105, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Ni, G.; Yang, H.-Z.; Fu, N.-J.; Zhang, L.-L.; Wang, M.-C.; Chen, J.; Zhang, C.-L.; Li, Y.; Chen, X.-G.; Chen, R.-Y.; et al. Cytotoxic taccalonolides and withanolides from Tacca chantrieri. Planta Med. 2015, 81, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Yokosuka, A.; Mimaki, Y.; Sashida, Y. Chantriolides A and B, Two New Withanolide Glucosides from the Rhizomes of Tacca chantrieri. J. Nat. Prod. 2003, 66, 876–878. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.-Y.; Xu, L.-Z.; Yang, S.-L. Chantriolide C, a New Withanolide Glucoside and a New Spirostanol Saponin from the Rhizomes of Tacca chantrieri. Chem. Pharm. Bull. 2009, 57, 1126–1128. [Google Scholar] [CrossRef] [Green Version]
- Yen, P.H.; Chi, V.T.Q.; Kim, D.-C.; Ko, W.; Oh, H.; Kim, Y.-C.; Dung, D.T.; Thanh, N.T.V.; Quang, T.H.; Ngan, N.T.T.; et al. Steroidal Glucosides from the Rhizomes of Tacca chantrieri and Their Inhibitory Activities of NO Production in BV2 Cells. Nat. Prod. Commun. 2016, 11, 45–48. [Google Scholar] [CrossRef]
- Quang, T.H.; Ngan, N.T.T.; Minh, C.V.; Kiem, P.V.; Yen, P.H.; Tai, B.H.; Nhiem, N.X.; Thao, N.P.; Anh, H.L.T.; Luyen, B.T.T.; et al. Plantagiolides I and J, Two New Withanolide Glucosides from Tacca plantaginea with Nuclear Factor-kappaB Inhibitory and Peroxisome Proliferator-Activated Receptor Transactivational Activities. Chem. Pharm. Bull. 2012, 60, 1494–1501. [Google Scholar] [CrossRef] [Green Version]
- Yokosuka, A.; Mimaki, Y. New Glycosides from the Rhizomes of Tacca chantrieri. Chem. Pharm. Bull. 2007, 55, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Gong, Q.; Wang, W.; Mao, Y.-L.; Wang, X.-R.; Yao, S.; Zhang, H.-Y.; Tang, C.; Ye, Y. Neuroprotective and Anti-inflammatory Ditetrahydrofuran-Containing Diarylheptanoids from Tacca chantrieri. J. Nat. Prod. 2020, 83, 3681–3688. [Google Scholar] [CrossRef]
- Snatzke, G. Circular Dichroism and Optical Rotatory Dispersion—Principles and Application to the Investigation of the Stereochemistry of Natural Products. Angew. Chem. Int. Ed. 1968, 7, 14–25. [Google Scholar] [CrossRef]
- Hsieh, P.-W.; Huang, Z.-Y.; Chen, J.-H.; Chang, F.-R.; Wu, C.-C.; Yang, Y.-L.; Chiang, M.Y.; Yen, M.-H.; Chen, S.-L.; Yen, H.-F.; et al. Cytotoxic Withanolides from Tubocapsicum anomalum. J. Nat. Prod. 2007, 70, 747–753. [Google Scholar] [CrossRef]
- Tiamjan, R.; Panthong, A.; Taesotikul, T.; Rujjanawate, C.; Taylor, W.C.; Kanjanapothi, D. Hypotensive Activity of Tacca chantrieri. and Its Hypotensive Principles. Pharm. Biol. 2008, 45, 481–485. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, L.; Gao, S.; Bao, F.; Wang, Y.; Chen, Y.; Li, H.; Chen, L. Withanolides isolated from Nicandra physaloides protect liver cells against oxidative stress-induced damage. J. Funct. Foods 2018, 40, 93–101. [Google Scholar] [CrossRef]
- Jadeja, R.N.; Urrunaga, N.H.; Dash, S.; Khurana, S.; Saxena, N.K. Withaferin-A Reduces Acetaminophen-Induced Liver Injury in Mice. Biochem. Pharmacol. 2015, 97, 122–132. [Google Scholar] [CrossRef] [Green Version]
- Moi, P.; Chan, K.; Asunis, I.; Cao, A.; Kan, Y.W. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc. Natl. Acad. Sci. USA 1994, 91, 9926–9930. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Wang, S.; Jiang, Y.; Chen, M.; Wang, Y.; Lin, L. Bio-assay guided identification of hepatoprotective polyphenols from Penthorum chinense Pursh on t-BHP induced oxidative stress injured L02 cells. Food Funct. 2016, 7, 2074–2083. [Google Scholar] [CrossRef]
- Velichkova, M.; Hasson, T. Keap1 regulates the oxidation-sensitive shuttling of Nrf2 into and out of the nucleus via a Crm1-dependent nuclear export mechanism. Mol. Cell. Biol. 2005, 25, 4501–4513. [Google Scholar] [CrossRef] [Green Version]
- Wakabayashi, N.; Itoh, K.; Wakabayashi, J.; Motohashi, H.; Noda, S.; Takahashi, S.; Imakado, S.; Kotsuji, T.; Otsuka, F.; Roop, D.R.; et al. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat. Genet. 2003, 35, 238–245. [Google Scholar] [CrossRef]
- Wang, A.; Li, D.; Wang, S.; Zhou, F.; Li, P.; Wang, Y.; Lin, L. γ-Mangostin, a xanthone from mangosteen, attenuates oxidative injury in liver via NRF2 and SIRT1 induction. J. Funct. Foods 2018, 40, 544–553. [Google Scholar] [CrossRef]
- Liu, J.-X.; Shen, S.-N.; Tong, Q.; Wang, Y.-T.; Lin, L.-G. Honokiol protects hepatocytes from oxidative injury through mitochondrial deacetylase SIRT3. Eur. J. Pharmacol. 2018, 834, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ren, Y.; Zhu, J.; Chen, J.; Feng, Z.; Zhang, T.; Ye, Y.; Lin, L. Ainsliadimer C, a disesquiterpenoid isolated from Ainsliaea macrocephala, ameliorates inflammatory responses in adipose tissue via Sirtuin 1-NLRP3 inflammasome axis. Acta Pharmacol. Sin. 2022, 43, 1780–1792. [Google Scholar] [CrossRef] [PubMed]
Position | 1 a | 2 b | 3 b | 4 b | ||||
---|---|---|---|---|---|---|---|---|
δC | δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | |
1 | 72.9 | 4.89, d (5.7) | 72.8 | 4.91, d (5.3) | 70.4 | 3.83, m | 71.9 | 4.60, d (5.2) |
2 | 52.0 | 3.87, m | 52.0 | 3.89, dd (5.2, 3.7) | 53.7 | 3.53, dd (5.6, 3.7) | 51.2 | 3.71, dd (5.2, 3.6) |
3 | 55.9 | 3.54, dd (3.7, 1.9) | 56.0 | 3.56, dt (3.7, 1.7) | 54.1 | 3.46, t (2.9) | 55.2 | 3.54, dd (3.6, 1.8) |
4 | 33.6 | α 2.36, m β 2.08, m | 33.6 | α 2.38, dd (15.6, 1.5) β 2.08, dd (15.6, 2.1) | 34.7 | α 2.46, m β 1.99, dd (15.6, 2.5) | 32.7 | α 2.38, d (15.6) β 2.03, m |
5 | 70.7 | 70.7 | 71.8 | 70.1 | ||||
6 | 57.0 | 2.95, d (3.5) | 57.1 | 2.98, d (3.6) | 57.9 | 2.94, d (3.7) | 56.3 | 2.83, d (3.6) |
7 | 54.6 | 3.11, t (2.6) | 54.4 | 3.09, dd (3.6, 2.0) | 56.3 | 3.24, dd (3.7, 2.1) | 54.3 | 3.10, dd (3.6, 2.0) |
8 | 36.8 | 1.72, m | 35.8 | 1.96, td (11.2, 2.2) | 36.7 | 1.79, m | 36.1 | 1.73, td (11.0, 2.0) |
9 | 28.9 | 2.42, m | 29.2 | 2.56, m | 29.2 | 2.47, m | 28.2 | 2.02, m |
10 | 40.8 | 41.0 | 40.4 | 40.0 | ||||
11 | 25.2 | α 1.79, m β 1.46, td (14.0, 2.4) | 24.7 | α 1.85, dt (14.4, 3.4) β 1.59, td (14.2, 2.5) | 25.8 | α 2.45, m β 1.58, m | 24.9 | 1.50, m 1.46, m |
12 | 76.2 | 5.09, t (3.4) | 74.9 | 5.14, q (3.3) | 75.9 | 5.29, d (3.0) | 75.4 | 4.97, d (2.7) |
13 | 46.6 | 46.9 | 46.7 | 46.2 | ||||
14 | 45.4 | 2.12, m | 40.9 | 2.62, m | 45.8 | 2.14, m | 44.6 | 2.02, m |
15 | 23.3 | 1.73, m 1.19, m | 37.9 | 2.51, m 2.15, m | 23.4 | 1.80, m 1.27, m | 22.9 | 1.87, m 1.30, m |
16 | 26.9 | 1.22, m | 216.1 | 27.1 | 1.55, m 1.23, m | 27.6 | 1.99, m 1.40, m | |
17 | 44.2 | 1.80, m | 56.7 | 2.67, d (8.7) | 44.2 | 1.78, m | 43.9 | 2.16, m |
18 | 12.5 | 0.70, s | 14.5 | 0.96, s | 12.6 | 0.73, s | 12.0 | 0.76, s |
19 | 16.7 | 0.77, s | 16.7 | 0.81, s | 15.7 | 0.69, s | 16.4 | 0.76, s |
20 | 39.0 | 2.04, m | 35.6 | 2.47, m | 39.1 | 1.92, m | 39.5 | 1.94, m |
21 | 12.3 | 1.06, d (6.3) | 13.2 | 1.01, d (7.1) | 12.9 | 1.03, d (6.8) | 13.6 | 0.89, d (6.7) |
22 | 79.7 | 5.11, m | 77.7 | 5.16, m | 78.7 | 4.40, dt (13.2, 3.5) | 83.5 | 4.29, m |
23 | 33.5 | 2.20, m 2.00, m | 31.6 | 2.25, m 2.14, m | 30.1 | 2.38, dd (17.6, 13.0); 2.05, m | 66.7 | 4.27, m |
24 | 73.6 | 149.6 | 154.3 | 156.2 | ||||
25 | 77.5 | 122.4 | 127.9 | 125.3 | ||||
26 | 179.2 | 166.7 | 166.7 | 165.6 | ||||
27 | 23.7 | 1.62, s | 13.1 | 1.89, s | 56.6 | 4.87, d (11.7) 4.77, d (11.7) | 57.7 | 4.34, m |
28 | 25.4 | 1.62, s | 20.5 | 1.74, s | 20.5 | 2.11, s | 15.4 | 2.08, s |
1-OAc | 20.8 170.7 | 2.13, s | 20.8 170.8 | 2.16, s | 20.4 170.3 | 2.00, s | ||
12-OAc | 21.5 170.8 | 2.04, s | 21.7 170.8 | 2.18, s | 21.4 170.5 | 1.96, s | 21.5 170.5 | 2.06, s |
5-OH | 3.45 |
Position | 5 a | 6 a | 7 a | 8 b | ||||
---|---|---|---|---|---|---|---|---|
δC | δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | |
1 | 74.2 | 4.09, dd (10.0, 3.9) | 74.2 | 4.11, dd (9.9, 4.0) | 74.0 | 4.08, d (3.9) | 73.8 | 5.11, d (4.3) |
2 | 76.9 | 5.73, dd (10.9, 3.9) | 76.9 | 5.74, dd (11.0, 4.0) | 76.9 | 5.70, dd (10.9, 3.9) | 72.8 | 4.16, dd (10.4, 4.3) |
3 | 57.2 | 5.12, td (11.5, 5.5) | 57.3 | 5.12, td (11.5, 5.4) | 57.2 | 5.10, m | 58.9 | 4.48, td (11.9, 5.0) |
4 | 44.1 | α 2.57, dd (13.3, 5.5) β 2.40, dd (14.6, 10.6) | 44.1 | α 2.58, m β 2.41, dd (13.3, 12.0) | 44.0 | α 2.55, m β 2.39, dd (13.3, 11.9) | 42.2 | α 2.37, m β 2.15, m |
5 | 74.5 | 74.5 | 74.5 | 71.0 | ||||
6 | 56.9 | 3.04, d (3.7) | 57.0 | 3.05, d (3.7) | 56.9 | 3.04, d (3.7) | 57.5 | 3.05, d (3.7) |
7 | 56.0 | 3.27, t (3.0) | 56.0 | 3.31, t (3.1) | 55.7 | 3.24, t (3.0) | 56.5 | 3.26, t (3.0) |
8 | 36.1 | 1.82, m | 35.9 | 2.01, m | 35.1 | 2.06, dd (11.1, 2.4) | 34.8 | 2.03, m |
9 | 30.1 | 2.51, ddd (14.1, 11.3, 3.5) | 30.4 | 2.54, m | 30.3 | 2.68, m | 29.6 | 1.98, dd (9.9, 6.4) |
10 | 41.8 | 41.8 | 41.9 | 41.9 | ||||
11 | 25.7 | α 2.21, dt (14.2, 3.3) β 1.45, td (14.0, 2.8) | 25.4 | α 2.25, m β 1.56, td (13.8, 2.7) | 25.2 | α 2.27, m β 1.58, td (13.9, 2.6) | 24.3 | 1.60, m |
12 | 75.7 | 5.25, m | 76.1 | 5.32, m | 74.3 | 5.31, m | 74.5 | 5.04, d (2.9) |
13 | 46.9 | 47.0 | 47.3 | 46.8 | ||||
14 | 45.8 | 2.11, m | 44.3 | 2.13, m | 41.1 | 2.60, m | 40.0 | 2.41, m |
15 | 23.3 | α 1.83, m β 1.31, dd (12.3, 5.6) | 37.1 | α 2.63, dt (12.7, 7.6) β 1.79, m | 38.0 | 2.55, m 2.25, m | 37.3 | 2.50, m 2.07, m |
16 | 27.1 | 1.55, dtd (13.1, 9.5, 5.5) 1.24, m | 70.1 | 4.40, tt (8.0, 4.3) | 216.1 | 214.5 | ||
17 | 44.2 | 1.70, m | 49.3 | 1.81, m | 56.9 | 2.68, m | 56.6 | 2.53, m |
18 | 12.6 | 0.73, s | 14.1 | 1.23, s | 14.8 | 0.99, s | 14.9 | 1.01, s |
19 | 15.3 | 0.91, s | 15.8 | 0.93, s | 15.9 | 0.92, s | 16.5 | 1.00, s |
20 | 39.1 | 1.93, m | 33.9 | 2.94, dtd (10.6, 6.9, 3.4) | 35.7 | 2.47, td (7.8, 5.6) | 34.8 | 2.36, m |
21 | 13.0 | 1.00, d (6.7) | 12.4 | 1.14, d (7.0) | 13.5 | 1.00, d (7.1) | 14.0 | 0.96, d (7.0) |
22 | 78.7 | 4.40, dt (13.2, 3.5) | 78.4 | 5.27, dt (13.3, 3.5) | 77.8 | 5.13, m | 77.4 | 4.84, ddd (12.7, 6.2, 3.4) |
23 | 30.2 | 2.37, m 2.03, dd (18.1, 3.1) | 30.8 | 2.49, dt (12.7, 7.6) 1.79, m | 32.2 | 2.25, m | 32.6 | 2.36, m 2.15, m |
24 | 154.3 | 154.3 | 154.2 | 152.4 | ||||
25 | 127.9 | 127.9 | 127.9 | 126.1 | ||||
26 | 166.7 | 166.9 | 166.5 | 166.5 | ||||
27 | 56.6 | 4.87, d (11.7) 4.77, d (11.7) | 56.7 | 4.75, m | 56.7 | 4.71, m | 57.5 | 4.34, m |
28 | 20.5 | 2.11, s | 20.5 | 2.10, s | 20.5 | 2.00, s | 20.8 | 2.03, s |
1-OAc | 20.1 171.5 | 2.03, s | ||||||
2-OAc | 21.4 171.0 | 2.17, s | 21.4 171.0 | 2.17, s | 21.4 171.0 | 2.15, s | ||
12-OAc | 21.3 170.3 | 1.94, s | 21.4 170.3 | 1.98, s | 21.5 170.5 | 2.03, s | 21.4 169.6 | 2.13, s |
1-OH | 5.76, d (10.0) | 5.71, d (9.9) | ||||||
5-OH | 7.41, s | 7.32, s | 3.19, s | |||||
15-OH | 6.37, d (4.5) |
Position | 9 a | 10 b | 11 a | |||
---|---|---|---|---|---|---|
δC | δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | |
1 | 78.5 | 3.83, dd (11.9, 4.2) | 71.0 | 4.54, dt (11.1, 4.7) | 210.6 | |
2 | 44.2 | α 2.66, m β 2.28, q (11.7) | 43.5 | α 2.81, dtd (12.8, 5.6, 1.6) β 2.32, q (11.6) | 49.2 | α 3.04, dd (13.5, 6.8) β 3.33, dd (13.5, 9.8) |
3 | 68.4 | 4.01, tdd (9.6, 7.2, 4.4) | 64.7 | 4.89, m | 66.4 | 5.06, m |
4 | 44.0 | 2.71, m | 43.9 | α 2.37, m β 2.14, m | 43.2 | 2.56, m |
5 | 141.1 | 72.9 | 73.7 | |||
6 | 131.8 | 5.94, d (1.7) | 59.4 | 3.14, d (3.8) | 57.4 | 3.20, m |
7 | 72.8 | 4.10, d (8.3) | 57.8 | 3.26, dd (3.8, 2.4) | 56.6 | 3.20, m |
8 | 42.5 | 1.73, m | 37.1 | 1.91, m | 36.5 | 1.67, m |
9 | 50.2 | 1.55, m | 39.9 | 1.90, m | 36.5 | 2.07, m |
10 | 43.7 | 44.3 | 53.9 | |||
11 | 24.9 | α 2.96, dq (14.3, 3.7) β 1.74, m | 25.0 | α 2.42, m β 1.78, m | 22.5 | α 2.72, dq (13.0, 3.5) β 1.27, m |
12 | 41.1 | 2.01, dt (14.2, 4.3) 1.29, m | 41.0 | 1.97, m 1.13, m | 40.7 | 1.91, m 1.14, m |
13 | 43.7 | 44.0 | 44.2 | |||
14 | 57.2 | 1.26, m | 51.9 | 1.34, m | 52.0 | 1.28, m |
15 | 28.0 | α 2.23, dt (9.3, 3.1) β 1.80, m | 24.2 | α 1.69, m β 1.19, m | 24.1 | α 1.64, m β 1.17 m |
16 | 28.2 | 1.80, m 1.32, m | 27.7 | α 1.66, m β 1.25, m | 27.7 | 1.64, m 1.21, m |
17 | 52.4 | 1.14, m | 52.6 | 1.06, m | 52.5 | 0.99, m |
18 | 12.6 | 0.74, s | 12.5 | 0.67, s | 12.7 | 0.64, s |
19 | 14.0 | 1.34, s | 12.1 | 1.17, s | 16.8 | 1.30, s |
20 | 40.1 | 2.08, ddt (9.3, 6.5, 3.1) | 40.0 | 2.04, ddt (9.8, 7.0, 3.6) | 39.9 | 2.01, m |
21 | 13.6 | 1.06, d (6.6) | 13.4 | 1.00, d (6.6) | 13.3 | 0.97, d (6.6) |
22 | 79.1 | 5.13, m | 78.9 | 5.09, m | 78.8 | 5.09, m |
23 | 37.1 | 1.98, m 1.90, m | 37.1 | 1.96, m 1.89, m | 37.0 | 1.88, m |
24 | 69.9 | 69.8 | 69.8 | |||
25 | 47.6 | 2.58, q (7.0) | 47.5 | 2.57, q (7.0) | 47.5 | 2.56, m |
26 | 175.1 | 175.0 | 175.0 | |||
27 | 10.6 | 1.65, d (7.0) | 10.6 | 1.64, d (7.0) | 10.6 | 1.64, d (7.0) |
28 | 28.7 | 1.56, s | 28.6 | 1.56, s | 28.6 | 1.53, s |
5-OH | 4.69, s | 5.93, s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zhou, F.; Wang, M.; Turanazarov, M.; Wang, X.-R.; Ke, C.; Yao, S.; Lin, L.; Tang, C.; Ye, Y. Chantriolides F–P, Highly Oxidized Withanolides with Hepatoprotective Activity from Tacca chantrieri. Molecules 2022, 27, 8197. https://doi.org/10.3390/molecules27238197
Yang Y, Zhou F, Wang M, Turanazarov M, Wang X-R, Ke C, Yao S, Lin L, Tang C, Ye Y. Chantriolides F–P, Highly Oxidized Withanolides with Hepatoprotective Activity from Tacca chantrieri. Molecules. 2022; 27(23):8197. https://doi.org/10.3390/molecules27238197
Chicago/Turabian StyleYang, Yue, Fei Zhou, Min Wang, Mukhammadrizo Turanazarov, Xiao-Rong Wang, Changqiang Ke, Sheng Yao, Ligen Lin, Chunping Tang, and Yang Ye. 2022. "Chantriolides F–P, Highly Oxidized Withanolides with Hepatoprotective Activity from Tacca chantrieri" Molecules 27, no. 23: 8197. https://doi.org/10.3390/molecules27238197
APA StyleYang, Y., Zhou, F., Wang, M., Turanazarov, M., Wang, X. -R., Ke, C., Yao, S., Lin, L., Tang, C., & Ye, Y. (2022). Chantriolides F–P, Highly Oxidized Withanolides with Hepatoprotective Activity from Tacca chantrieri. Molecules, 27(23), 8197. https://doi.org/10.3390/molecules27238197