Heteroligand α-Diimine-Zn(II) Complexes with O,N,O′- and O,N,S-Donor Redox-Active Schiff Bases: Synthesis, Structure and Electrochemical Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. X-ray Structures
2.3. Cyclic Voltammetry
2.3.1. Oxidation
2.3.2. Reduction
2.4. UV-Vis Spectroscopy and DFT Calculations
3. Materials and Methods
3.1. General
3.2. Synthesis and Characterization
3.2.1. General Method for Preparation of Tridentate Schiff Bases
3.2.2. L1H2
3.2.3. L2H2
3.2.4. L4H2
3.2.5. General Method for Preparation of Zinc Complexes 1–8
3.2.6. (L1)Zn(Bipy) (1) O,N,O′-(2,4-Di-tert-butyl-6-((5-chloro-3-nitro-2-oxidophenylimino)methyl)phenolato)-N,N′-(2,2′-bipyridyl)zinc(II)
3.2.7. (L1)Zn(Phen) (2) O,N,O′-(2,4-Di-tert-butyl-6-((5-chloro-3-nitro-2-oxidophenylimino)methyl)phenolato)-N,N′-(1,10-phenanthroline)zinc(II)
3.2.8. (L1)Zn(Neo) O,N,O′-(2,4-Di-tert-butyl-6-((5-chloro-3-nitro-2-oxidophenylimino)methyl)phenolato)-N,N′-(2,9-dimethyl-1,10-phenanthroline)zinc(II)
3.2.9. (L2)Zn(Bipy) (4) O,N,O′-(2,4-Di-tert-butyl-6-((3,5-dichloro-4-methyl-2-oxidophenylimino)methyl)phenolato)-N,N′-(2,2′-bipyridyl)zinc(II)
3.2.10. (L3)Zn(Phen) (5) O,N,O′-(2,4-Di-tert-butyl-6-((5-tert-butyl-2-oxidophenylimino)methyl)phenolato)-N,N′-(1,10-phenanthroline)zinc(II)
3.2.11. (L5)Zn(Bipy) (6) O,N,S-(2,4-Di-tert-butyl-6-((2-sulfidophenylimino)methyl)phenolato)-N,N′-(2,2′-bipyridyl)zinc(II)
3.2.12. (L5)Zn(Neo) (7) O,N,S-(2,4-Di-tert-butyl-6-((2-sulfidophenylimino)methyl)phenolato)-N,N′-(2,9-dimethyl-1,10-phenanthroline)zinc(II)
3.2.13. (L4)Zn(Bipy) (8) O,N,O′-(2,4-Di-tert-butyl-6-((3,5-di-tert-butyl-2-oxidophenylimino)methyl)phenolato)-N,N′-(2,2′-bipyridyl)zinc(II)
3.3. X-ray Diffraction
3.4. Cyclic Voltammetry
3.5. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Tsai, M.-J.; Su, Y.-T.; Wu, J.-Y. Anion Effect on the Formation of Zinc-Salicyaldimine Compounds in Neutral and Anionic Complex Forms: Synthesis, Characterization, 1H NMR Studies, and Photophysical Properties. Eur. J. Inorg. Chem. 2021, 2021, 3139–3147. [Google Scholar] [CrossRef]
- Kumar, N.; Roopa; Bhalla, V.; Kumar, M. Beyond zinc coordination: Bioimaging applications of Zn(II)-complexes. Coord. Chem. Rev. 2021, 427, 213550. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; El-Sagher, H.M.; Shehata, M.R. Fabrication, spectroscopic characterization, calf thymus DNA binding investigation, antioxidant and anticancer activities of some antibiotic azomethine Cu(II), Pd(II), Zn(II) and Cr(III) complexes. Appl. Organometal. Chem. 2019, 33, e4943. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; El-Metwaly, N.M.; Alzahrani, S.O.; Bawazeer, A.M.; Shaaban, S.; Adam, M.S.S. Targeting ctDNA binding and elaborated in-vitro assessments concerning novel Schiff base complexes: Synthesis, characterization, DFT and detailed in-silico confirmation. J. Mol. Liq. 2021, 322, 114977. [Google Scholar] [CrossRef]
- Pellei, M.; Del Bello, F.; Porchia, M.; Santini, C. Zinc coordination complexes as anticancer agents. Coord. Chem. Rev. 2021, 445, 214088. [Google Scholar] [CrossRef]
- Zafar, W.; Sumrra, S.H.; Chohan, Z.H. A review: Pharmacological aspects of metal based 1,2,4-triazole derived Schiff bases. Eur. J. Med. Chem. 2021, 222, 113602. [Google Scholar] [CrossRef]
- Liguori, P.F.; Valentini, A.; Palma, M.; Bellusci, A.; Bernardini, S.; Ghedini, M.; Panno, M.L.; Pettinari, C.; Marchetti, F.; Crispini, A.; et al. Non-classical anticancer agents: Synthesis and biological evaluation of zinc(II) heteroleptic complexes. Dalton Trans. 2010, 39, 4205–4212. [Google Scholar] [CrossRef]
- Mendiguchia, B.S.; Pucci, D.; Mastropietro, T.F.; Ghedinia, M.; Crispini, A. Non-classical anticancer agents: On the way to water soluble zinc(ii) heteroleptic complexes. Dalton Trans. 2013, 42, 6768–6774. [Google Scholar] [CrossRef]
- Halevas, E.; Mavroidi, B.; Pelecanou, M.; Hatzidimitriou, A.G. Structurally characterized zinc complexes of flavonoids chrysin and quercetin with antioxidant potential. Inorg. Chim. Acta 2021, 523, 120407. [Google Scholar] [CrossRef]
- Matos, C.P.; Addis, Y.; Nunes, P.; Barroso, S.; Alho, I.; Martins, M.; Matos, A.P.A.; Marques, F.; Cavaco, I.; Pessoa, J.C.; et al. Exploring the cytotoxic activity of new phenanthroline salicylaldimine Zn(II) complexes. J. Inorg. Biochem. 2019, 198, 110727. [Google Scholar] [CrossRef]
- Andelescu, A.A.; Cretu, C.; Sasca, V.; Marinescu, S.; Cseh, L.; Costisor, O.; Szerb, E.I. New heteroleptic Zn(II) and Cu(II) complexes with quercetine and N^N ligands. Polyhedron 2018, 147, 120–125. [Google Scholar] [CrossRef]
- Gusev, A.N.; Kiskin, M.A.; Braga, E.V.; Kryukova, M.A.; Baryshnikov, G.V.; Karaush-Karmazin, N.N.; Minaeva, V.A.; Minaev, B.F.; Ivaniuk, K.; Stakhira, P.; et al. Schiff Base Zinc(II) Complexes as Promising Emitters for Blue Organic Light-Emitting Diodes. ACS Appl. Electron. Mater. 2021, 3, 3436–3444. [Google Scholar] [CrossRef]
- Di Bella, S.; Colombo, A.; Dragonetti, C.; Righetto, S.; Roberto, D. Zinc(II) as a Versatile Template for Efficient Dipolar and Octupolar Second-Order Nonlinear Optical Molecular Materials. Inorganics 2018, 6, 133. [Google Scholar] [CrossRef] [Green Version]
- Di Bella, S. Lewis acidic zinc(II) salen-type Schiff-base complexes: Sensing properties and responsive nanostructures. Dalton Trans. 2021, 50, 6050. [Google Scholar] [CrossRef]
- Consiglio, G.; Oliveri, I.P.; Failla, S.; Di Bella, S. On the Aggregation and Sensing Properties of Zinc(II) Schiff-Base Complexes of Salen-Type Ligands. Molecules 2019, 24, 2514. [Google Scholar] [CrossRef] [Green Version]
- Diana, R.; Panunzi, B. The Role of Zinc(II) Ion in Fluorescence Tuning of Tridentate Pincers: A Review. Molecules 2020, 25, 4984. [Google Scholar] [CrossRef]
- Hens, A.; Rajak, K.K. Photophysical property vs. medium: Mononuclear, dinuclear and trinuclear Zn(II) complexes. RSC Adv. 2015, 5, 4219–4232. [Google Scholar] [CrossRef]
- Qin, X.; Ji, Y.; Gao, Y.; Yan, L.; Ding, S.; Wang, Y.; Liu, Z. Zinc(II) and Nickel(II) Complexes Based on Schiff Base Ligands: Synthesis, Crystal Structure, Luminescent and Magnetic Properties. Z. Anorg. Allgem. Chem. 2014, 640, 462–468. [Google Scholar] [CrossRef]
- Soliman, A.A.; Linert, W. Structural Features of ONS-Donor Salicylidene Schiff Base Complexes. Monatsh. Chem. 2007, 138, 175–189. [Google Scholar] [CrossRef]
- Donzelli, A.; Potvin, P.G. TiIV Complexes of Redox-Active Schiff Bases. Eur. J. Inorg. Chem. 2012, 2012, 741–750. [Google Scholar] [CrossRef]
- Roy, N.; Sproules, S.; Weyhermüller, T.; Wieghardt, K. Trivalent Iron and Ruthenium Complexes with a Redox Noninnocent (2-Mercaptophenylimino)-methyl-4,6-di-tert-butylphenolate(2-) Ligand. Inorg. Chem. 2009, 48, 3783–3791. [Google Scholar] [CrossRef] [PubMed]
- Roy, N.; Sproules, S.; Bothe, E.; Weyhermüller, T.; Wieghardt, K. Polynuclear Complexes Containing the Redox Noninnocent Schiff Base Ligand 2-[(E)-2-Mercaptophenylimino]methyl-4,6-di-tert-butylphenolate(2-). Eur. J. Inorg. Chem. 2009, 2009, 2655–2663. [Google Scholar] [CrossRef]
- Sproules, S.; Kapre, R.R.; Roy, N.; Weyhermüller, T.; Wieghardt, K. The molecular and electronic structures of monomeric cobalt complexes containing redox noninnocent o-aminobenzenethiolate ligands. Inorg. Chim. Acta 2010, 363, 2702–2714. [Google Scholar] [CrossRef]
- Kawamoto, T.; Nishiwaki, M.; Tsunekawa, Y.; Nozaki, K.; Konno, T. Synthesis and Characterization of Luminescent Zinc(II) and Cadmium(II) Complexes with N,S-Chelating Schiff Base Ligands. Inorg. Chem. 2008, 47, 3095–3104. [Google Scholar] [CrossRef] [PubMed]
- Amirnasr, M.; Bagheri, M.; Farrokhpour, H.; Schenk, K.J.; Mereiter, K.; Ford, P.C. New Zn(II) complexes with N2S2 Schiff base ligands. Experimental and theoretical studies of the role of Zn(II) in disulfide thiolate-exchange. Polyhedron 2014, 71, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Asadizadeh, S.; Amirnasr, M.; Tirani, F.F.; Mansouri, A.; Schenk, K. DNA-BSA interaction, cytotoxicity and molecular docking of mononuclear zinc complexes with reductively cleaved N2S2 Schiff base ligands. Inorg. Chim. Acta 2018, 483, 310–320. [Google Scholar] [CrossRef]
- Labisbal, E.; Garcia-Vazquez, J.A.; Gomez, C.; Macias, A.; Romero, J.; Sousa, A. The synthesis of zinc(I1) complexes of 2-(2-mercaptophenyl)-iminophenol by electrochemical cleavage of a disulfide bond; the crystal structure of {(2,2’-bipyridine)[2-(2-mercaptophenyl)iminophenoxy]}zinc( II). Inorg. Chim. Acta 1993, 203, 67–72. [Google Scholar] [CrossRef]
- Shafaatian, B.; Sedighe Mousavi, S.; Afshari, S. Synthesis, characterization, spectroscopic and theoretical studies of new zinc(II), copper(II) and nickel(II) complexes based on imine ligand containing 2-aminothiophenol moiety. J. Mol. Struct. 2016, 1123, 191–198. [Google Scholar] [CrossRef]
- Patra, C.; Bhanja, A.K.; Sen, C.; Ojha, D.; Chattopadhaya, D.; Mahapatra, A.; Sinha, C. Imine-functionalized thioether Zn(ii) turn-on fluorescent sensor and its selective sequential logic operations with H2PO4−, DFT computation and live cell imaging. RSC Adv. 2016, 6, 53378–53388. [Google Scholar] [CrossRef]
- Kim, Y.-I.; Yun, S.-J.; Hwang, I.-H.; Kima, D.-Y.; Kang, S.K. Bis(2-{[(9H-fluoren-2-yl)methylidene]amino} phenolato-κ2N,O)zinc methanol disolvate. Acta Crystallogr. Sect. E Crystallogr. Commun. 2012, 68, m504–m505. [Google Scholar] [CrossRef]
- Protasenko, N.A.; Baryshnikova, S.V.; Cherkasov, A.V.; Poddel’skii, A.I. Pentacoordinated Complexes of Triphenyltin(IV) with Bidentate N-Phenyl-o-iminophenols. Russ. J. Coord. Chem. 2022, 48, 478–486. [Google Scholar] [CrossRef]
- Klementyeva, S.V.; Lukoyanov, A.N.; Afonin, M.Y.; Mörtel, M.; Smolentsev, A.I.; Abramov, P.A.; Starikova, A.A.; Khusniyarov, M.M.; Konchenko, S.N. Europium and ytterbium complexes with o-iminoquinonato ligands: Synthesis, structure, and magnetic behavior. Dalton Trans. 2019, 48, 3338–3348. [Google Scholar] [CrossRef] [PubMed]
- Klementyeva, S.V.; Smolentsev, A.I.; Abramov, P.A.; Konchenko, S.N. Yttrium 3,5-di-tert-butyl-catecholates supported by 2,6-diisopropylphenyl substituted β-diketiminate. Inorg. Chem. Commun. 2017, 86, 154–158. [Google Scholar] [CrossRef]
- Baryshnikova, S.V.; Bellan, E.V.; Poddel’sky, A.I.; Arsenyev, M.V.; Smolyaninov, I.V.; Fukin, G.K.; Piskunov, A.V.; Berberova, N.T.; Cherkasov, V.K.; Abakumov, G.A. Tin(IV) and antimony(V) complexes bearing catecholate ligand connected to ferrocene. Synthesis, molecular structure and electrochemical properties. Eur. J. Inorg. Chem. 2016, 2016, 5230–5241. [Google Scholar] [CrossRef]
- Baryshnikova, S.V.; Bellan, E.V.; Poddel’sky, A.I.; Fukin, G.K.; Abakumov, G.A. The synthesis and structure of new tin(II) complexes based on ferrocenyl-containing o-iminophenols. Inorg. Chem. Commun. 2016, 69, 94–97. [Google Scholar] [CrossRef]
- Hao, J.; Liu, L.-Z.; Dong, W.-K.; Zhang, J.; Zhang, Y. Three multinuclear Co(II), Zn(II) and Cd(II) complexes based on a single-armed salamo-type bisoxime: Syntheses, structural characterizations and fluorescent properties. J. Coord. Chem. 2017, 70, 1936. [Google Scholar] [CrossRef]
- Dey, D.; Kaur, G.; Ranjani, A.; Gayathri, L.; Chakraborty, P.; Adhikary, J.; Pasan, J.; Dhanasekaran, D.; Choudhury, A.R.; Akbarsha, M.A.; et al. A Trinuclear Zinc–Schiff Base Complex: Biocatalytic Activity and Cytotoxicity. Eur. J. Inorg. Chem. 2014, 2014, 3350. [Google Scholar] [CrossRef]
- Shmakova, T.O.; Garnovsky, D.A.; Lyssenko, K.A.; Ivakhnenko, E.P.; Simakov, V.I.; Vasil’chenko, I.S.; Uraev, A.I.; Burlov, A.S.; Antipin, M.Y.; Garnovsky, A.D.; et al. Chemical and electrochemical syntheses of the binuclear zinc and cadmium chelates based on the sterically hindered Schiff bases. Russ. J. Coord. Chem. 2009, 35, 657. [Google Scholar] [CrossRef]
- Dong, W.-K.; Zhang, J.; Zhang, Y.; Li, N. Novel multinuclear transition metal(II) complexes based on an asymmetric Salamo-type ligand: Syntheses, structure characterizations and fluorescent properties. Inorg. Chim. Acta 2016, 444, 95. [Google Scholar] [CrossRef]
- Kushvaha, S.K.; Arumugam, S.; Shankar, B.; Sarkar, R.S.; Ramkumar, V.; Mondal, K.C. Isolation and Characterization of Different Homometallic and Heterobimetallic Complexes of Nickel and Zinc Ions by Controlling Molar Ratios and Solvents. Eur. J. Inorg. Chem. 2019, 2871. [Google Scholar] [CrossRef]
- Dong, W.-K.; Li, X.-L.; Wang, L.; Zhang, Y.; Ding, Y.-J. A novel relay-sensor for highly sensitive and selective detection of Zn2+/Pic− and fluorescence on/off switch response of H+/OH−. Sens. Actuators B 2016, 229, 370. [Google Scholar] [CrossRef]
- Griffiths, K.; Tsipis, A.C.; Kumar, P.; Townrow, O.P.E.; Abdul-Sada, A.; Akien, G.R.; Baldansuren, A.; Spivey, A.C.; Kostakis, G.E. 3d/4f Coordination Clusters as Cooperative Catalysts for Highly Diastereoselective Michael Addition Reactions. Inorg. Chem. 2017, 56, 9563. [Google Scholar] [CrossRef] [PubMed]
- Addison, A.W.; Rao, T.N.; Reedijk, J.; van Rijn, J.; Verschoor, G.C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(Nmethylbenzimidazol-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 1984, 1984, 1349–1356. [Google Scholar] [CrossRef]
- Smolyaninov, I.V.; Poddel’sky, A.I.; Baryshnikova, S.V.; Kuzmin, V.V.; Korchagina, E.O.; Arsenyev, M.V.; Smolyaninova, S.A.; Berberova, N.T. Electrochemical transformations and evaluation of antioxidant activity of some Schiff bases containing ferrocenyl and (thio-)phenol, catechol fragments. Appl. Organometal. Chem. 2018, 32, e4121. [Google Scholar] [CrossRef]
- Smolyaninov, I.V.; Burmistrova, D.A.; Arsenyev, M.V.; Almyasheva, N.R.; Ivanova, E.S.; Smolyaninova, S.A.; Pashchenko, K.P.; Poddel’sky, A.I.; Berberova, N.T. Catechol- and Phenol-Containing Thio-Schiff Bases: Synthesis, Electrochemical Properties and Biological Evaluation. ChemistrySelect 2021, 6, 10609–10618. [Google Scholar] [CrossRef]
- Yam, V.W.W.; Pui, Y.-L.; Cheung, K.-K. Synthesis, Emission, and Electrochemical Properties of Luminescent Dinuclear Zinc(II) Chalcogenolate Complexes. Dynamic 1H NMR Studies and X-ray Crystal Structure of [(bpy)Zn2(SC6H4-Cl-p)(µ-SC6H4-Cl-p)(µ-OAc)2]. Inorg. Chem. 2000, 39, 5741–5746. [Google Scholar] [CrossRef]
- Ngan, T.-W.; Ko, C.-C.; Zhu, N.; Yam, V.W.W. Syntheses, Luminescence Switching, and Electrochemical Studies of Photochromic Dithienyl-1,10-phenanthroline Zinc(II) Bis(thiolate) Complexes. Inorg. Chem. 2007, 46, 1144–1152. [Google Scholar] [CrossRef] [PubMed]
- Budnikova, Y.H.; Dudkina, Y.B.; Kalinin, A.A.; Balakina, M.Y. Considerations on electrochemical behavior of NLO chromophores: Relation of redox properties and NLO activity. Electrochim. Acta 2021, 368, 137578. [Google Scholar] [CrossRef]
- Jimenez-Perez, V.M.; Camacho-Camacho, C.; Guizado-Rodrıguez, M.; Noth, H.; Contreras, R. New hexacyclic binuclear tin complexes derived from bis-(3,5-di-tert-butyl-2-phenol)oxamide. J. Organomet. Chem. 2000, 614–615, 283–293. [Google Scholar] [CrossRef]
- Gordon, A.J.; Ford, R.A. The Chemist’s Companion; Wiley: New York, NY, USA, 1972; p. 541. [Google Scholar]
- Xinga, A.; Zenga, D.; Chen, Z. Synthesis, crystal structure and antioxidant activity of butylphenol Schiff bases: Experimental and DFT study. J. Mol. Struct. 2022, 1253, 132209. [Google Scholar] [CrossRef]
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. SHELXT-Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision, D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Perdew, J.P.; Erznzerhof, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982–9985. [Google Scholar] [CrossRef]
- Carlo, A.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3093. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
Bond | 4∙H2O | 6A/6B | 8 |
---|---|---|---|
Zn1–N1 | 2.189(2) | 2.181(3)/2.158(3) | 2.109(2) |
Zn1–N2 | 2.148(2) | 2.128(3)/2.151(3) | 2.100(2) |
Zn1–N3 | 2.086(2) | 2.084(3)/2.079(3) | 2.062(2) |
Zn1–O1 | 2.0634(19) | 1.951(2)/1.952(3) | 1.985(2) |
Zn1–O2 | 2.0055(19) | - | 1.998(2) |
Zn1–O3 | 2.238(2) | - | - |
Zn1–S1 | - | 2.3149(10)/2.3219(10) | - |
C1–O1 | 1.311(3) | - | 1.326(3) |
C8–O2 | 1.294(3) | - | 1.307(3) |
C8–O1 | - | 1.310(4)/1.299(4) | - |
C2–N3 | 1.412(4) | 1.422(4)/1.413(5) | 1.426(4) |
C7–N3 | 1.298(4) | 1.292(4)/1.292(5) | 1.279(4) |
C1–S1 | - | 1.766(4)/1.769(4) | - |
C1–C2 | 1.425(4) | 1.404(5)/1.415(5) | 1.408(4) |
C1–C6 | 1.411(4) | 1.402(5)/1.395(5) | 1.427(4) |
C2–C3 | 1.387(4) | 1.399(5)/1.389(5) | 1.392(4) |
C3–C4 | 1.382(4) | 1.387(5)/1.389(5) | 1.392(4) |
C4–C5 | 1.390(4) | 1.391(5)/1.388(6) | 1.399(4) |
C5–C6 | 1.386(4) | 1.388(5)/1.383(5) | 1.396(4) |
C7–C13 | 1.433(4) | 1.434(5)/1.438(5) | 1.442(4) |
C8–C9 | 1.443(4) | 1.440(5)/1.440(5) | 1.439(4) |
C8–C13 | 1.434(4) | 1.431(5)/1.431(5) | 1.435(4) |
C9–C10 | 1.384(4) | 1.376(5)/1.383(5) | 1.388(4) |
C10–C11 | 1.412(4) | 1.422(5)/1.404(5) | 1.408(4) |
C11–C12 | 1.369(4) | 1.361(5)/1.369(5) | 1.367(4) |
C12–C13 | 1.413(4) | 1.417(5)/1.419(5) | 1.395(4) |
Compound | Eox11/2, V | Ic/Ia | Eox2, V | Ered11/2, V | Ia/Ic | Ered2p, V | ΔEel, eV |
---|---|---|---|---|---|---|---|
1 | 0.87 | 0.7 | 1.40 | −1.49 * | - | −1.74 * | 2.42 |
2 | 0.87 | 0.8 | 1.23 | −1.50 * | - | −1.72 * | 2.44 |
3 | 0.92 | 1.0 | 1.43 | −1.40 * | - | −1.70 * | 2.38 |
4 | 0.70 * | - | 0.86 | −1.48 | 0.4 | - | 2.18 |
5 | 0.46 | 0.6 | 1.09 | −1.55 | 0.4 | - | 2.01 |
6 | 0.77 * | - | 1.10 | −1.56 | 0.8 | - | 2.38 |
7 | 0.73 * | - | 1.24 ** | −1.62 | 0.7 | - | 2.38 |
8 | 0.41 | 1.0 | 0.77 | −1.56 | 0.7 | - | 1.97 |
No. | Compound | λMax, nm (ε, 103 M−1cm−1) | ΔE, eV |
---|---|---|---|
1 | (L1)Zn(Bipy) | 305 (16.6), 385 (6.5), 490 (18.7) | 2.53 |
2 | (L1)Zn(Phen) | 378 (4.4), 491 (17.1) | 2.52 |
3 | (L1)Zn(Neo) | 385 (4.6), 497 (18.0) | 2.49 |
4 | (L2)Zn(Bipy) | 304 (28.5), 376 (10.2), 457 (28.8) | 2.71 |
5 | (L3)Zn(Phen) | 310 (6.6), 382 (4.7), 448 (10.8) | 2.76 |
6 | (L5)Zn(Bipy) | 303 (20.0), 432 (10.1) | 2.87 |
7 | (L5)Zn(Neo) | 316 (6.9), 438 (10.6) | 2.82 |
8 | (L4)Zn(Bipy) | 307 (9.8), 381 (9.7), 451 (7.7) | 2.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smolyaninov, I.V.; Poddel’sky, A.I.; Burmistrova, D.A.; Voronina, J.K.; Pomortseva, N.P.; Fokin, V.A.; Tselukovskaya, E.D.; Ananyev, I.V.; Berberova, N.T.; Eremenko, I.L. Heteroligand α-Diimine-Zn(II) Complexes with O,N,O′- and O,N,S-Donor Redox-Active Schiff Bases: Synthesis, Structure and Electrochemical Properties. Molecules 2022, 27, 8216. https://doi.org/10.3390/molecules27238216
Smolyaninov IV, Poddel’sky AI, Burmistrova DA, Voronina JK, Pomortseva NP, Fokin VA, Tselukovskaya ED, Ananyev IV, Berberova NT, Eremenko IL. Heteroligand α-Diimine-Zn(II) Complexes with O,N,O′- and O,N,S-Donor Redox-Active Schiff Bases: Synthesis, Structure and Electrochemical Properties. Molecules. 2022; 27(23):8216. https://doi.org/10.3390/molecules27238216
Chicago/Turabian StyleSmolyaninov, Ivan V., Andrey I. Poddel’sky, Daria A. Burmistrova, Julia K. Voronina, Nadezhda P. Pomortseva, Vasiliy A. Fokin, Ekaterina D. Tselukovskaya, Ivan V. Ananyev, Nadezhda T. Berberova, and Igor L. Eremenko. 2022. "Heteroligand α-Diimine-Zn(II) Complexes with O,N,O′- and O,N,S-Donor Redox-Active Schiff Bases: Synthesis, Structure and Electrochemical Properties" Molecules 27, no. 23: 8216. https://doi.org/10.3390/molecules27238216
APA StyleSmolyaninov, I. V., Poddel’sky, A. I., Burmistrova, D. A., Voronina, J. K., Pomortseva, N. P., Fokin, V. A., Tselukovskaya, E. D., Ananyev, I. V., Berberova, N. T., & Eremenko, I. L. (2022). Heteroligand α-Diimine-Zn(II) Complexes with O,N,O′- and O,N,S-Donor Redox-Active Schiff Bases: Synthesis, Structure and Electrochemical Properties. Molecules, 27(23), 8216. https://doi.org/10.3390/molecules27238216