Synthesis of a Chiral 3,6T22-Zn-MOF with a T-Shaped Bifunctional Pyrazole-Isophthalate Ligand Following the Principles of the Supramolecular Building Layer Approach
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials and Characterization
3.2. Single Crystal X-ray Diffraction
3.3. Synthesis of H2Isa-az-tmpz
3.4. Synthesis of [Zn(Isa-az-tmpz)]·~1–1.5 DMF
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Safaei, M.; Foroughi, M.M.; Ebrahimpoor, N.; Jahani, S.; Omidi, A.; Khatami, M. A review on metal-organic frameworks: Synthesis and applications. TrAC Trends Anal. Chem. 2019, 118, 401–425. [Google Scholar] [CrossRef]
- Jiao, L.; Seow, J.Y.R.; Skinner, W.S.; Wang, Z.U.; Jiang, H.-L. Metal–organic frameworks: Structures and functional applications. Mater. Today 2019, 27, 43–68. [Google Scholar] [CrossRef]
- Kirchon, A.; Feng, L.; Drake, H.F.; Joseph, E.A.; Zhou, H.-C. From fundamentals to applications: A toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev. 2018, 47, 8611–8638. [Google Scholar] [CrossRef]
- Guillerm, V.; Kim, D.; Eubank, J.F.; Luebke, R.; Liu, X.; Adil, K.; Lah, M.S.; Eddaoudi, M. A supermolecular building approach for the design and construction of metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 6141–6172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dybtsev, D.N.; Chun, H.; Kim, K. Rigid and flexible: A highly porous metal-organic framework with unusual guest-dependent dynamic behavior. Angew. Chem. Int. Ed. 2004, 43, 5033–5036. [Google Scholar] [CrossRef]
- He, H.; Dou, J.; Li, D.; Ma, H.; Sun, D. Synthesis, crystal structures and properties of four topological structures based on 2,3,5,6-tetramethyl-1,4-benzenedicarboxylate acid and bipyridine ligands. CrystEngComm 2011, 13, 1509–1517. [Google Scholar] [CrossRef]
- Zhang, L.-P.; Ma, J.-F.; Yang, J.; Pang, Y.-Y.; Ma, J.-C. Series of 2D and 3D coordination polymers based on 1,2,3,4-benzenetetracarboxylate and N-donor ligands: Synthesis, topological structures, and photoluminescent properties. Inorg. Chem. 2010, 49, 1535–1550. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.-Q.; Mulfort, K.L.; Hupp, J.T. Microporous pillared paddle-wheel frameworks based on mixed-ligand coordination of zinc ions. Inorg. Chem. 2005, 44, 4912–4914. [Google Scholar] [CrossRef]
- Seki, K.; Takamizawa, S.; Mori, W. Design and Gas Adsorption Property of a Three-Dimensional Coordination Polymer with a Stable and Highly Porous Framwork. Chem. Lett. 2001, 30, 332–333. [Google Scholar] [CrossRef]
- Eubank, J.F.; Wojtas, L.; Hight, M.R.; Bousquet, T.; Kravtsov, V.C.; Eddaoudi, M. The next chapter in MOF pillaring strategies: Trigonal heterofunctional ligands to access targeted high-connected three dimensional nets, isoreticular platforms. J. Am. Chem. Soc. 2011, 133, 17532–17535. [Google Scholar] [CrossRef]
- Liu, X.; Oh, M.; Lah, M.S. Size- and shape-selective isostructural microporous metal-organic frameworks with different effec-tive aperture sizes. Inorg. Chem. 2011, 50, 5044–5053. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.-S.; Lin, R.-B.; Wang, P.; Liao, P.-Q.; He, C.-T.; Xue, W.; Hou, L.; Zhang, W.-X.; Zhang, J.-P.; Chen, X.-M. New porous coordination polymers based on expanded pyridyl-dicarboxylate ligands and a paddle-wheel cluster. CrystEngComm 2014, 16, 6325–6330. [Google Scholar] [CrossRef]
- Millan, S.; Gil-Hernández, B.; Milles, E.; Gökpinar, S.; Makhloufi, G.; Schmitz, A.; Schlüsener, C.; Janiak, C. rtl-M-MOFs (M = Cu, Zn) with a T-shaped bifunctional pyrazole-isophthalate ligand showing flexibility and S-shaped Type F-IV sorption iso-therms with high saturation uptakes for M = Cu. Dalton Trans. 2019, 48, 8057–8067. [Google Scholar] [CrossRef]
- Wang, S.; Wei, Z.-W.; Zhang, J.; Jiang, L.; Liu, D.; Jiang, J.-J.; Si, R.; Su, C.-Y. Framework disorder and its effect on selective hysteretic sorption of a T-shaped azole-based metal-organic framework. IUCrJ 2019, 6, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Bryant, M.R.; Burrows, A.D.; Fitchett, C.M.; Hawes, C.S.; Hunter, S.O.; Keenan, L.L.; Kelly, D.J.; Kruger, P.E.; Mahon, M.F.; Richardson, C. The synthesis and characterisation of coordination and hydrogen-bonded networks based on 4-(3,5-dimethyl-1H-pyrazol-4-yl)benzoic acid. Dalton Trans. 2015, 44, 9269–9280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, W.-Y.; Cai, R.; Pham, T.; Forrest, K.A.; Hogan, A.; Nugent, P.; Williams, K.; Wojtas, L.; Luebke, R.; Weseliński, Ł.J.; et al. Remote Stabilization of Copper Paddlewheel Based Molec-ular Building Blocks in Metal–Organic Frameworks. Chem. Mater. 2015, 27, 2144–2151. [Google Scholar] [CrossRef]
- Sussardi, A.; Marshall, R.J.; Moggach, S.A.; Jones, A.C.; Forgan, R.S. Photophysics of Azobenzene Constrained in a UiO Met-al-Organic Framework: Effects of Pressure, Solvation and Dynamic Disorder. Chem. Eur. J. 2021, 27, 14871–14875. [Google Scholar] [CrossRef]
- Geng, J.; Liu, K.; Liang, Y.-Y.; Yu, J.; Hu, K.-Q.; Yuan, L.-H.; Feng, W.; Chai, Z.-F.; Mei, L.; Shi, W.-Q. An Azobenzene-Modified Photoresponsive Thorium-Organic Framework: Monitoring and Quantitative Analysis of Reversible trans-cis Photoisomeri-zation. Inorg. Chem. 2021, 60, 8519–8529. [Google Scholar] [CrossRef]
- Khayyami, A.; Philip, A.; Multia, J.; Karppinen, M. Composition-tuned metal-organic thin-film structures based on pho-toswitchable azobenzene by ALD/MLD. Dalton Trans. 2020, 49, 11310–11316. [Google Scholar] [CrossRef]
- Gong, W.; Chen, Z.; Dong, J.; Liu, Y.; Cui, Y. Chiral Metal-Organic Frameworks. Chem. Rev. 2022, 122, 9078–9144. [Google Scholar] [CrossRef]
- Verma, G.; Mehta, R.; Kumar, S.; Ma, S. Metal-Organic Frameworks as a New Platform for Enantioselective Separations. Isr. J. Chem. 2021, 61, 708–726. [Google Scholar] [CrossRef]
- Dhurjad, P.; Dharalam, C.S.; Ali, N.; Kumari, N.; Sonti, R. Metal-organic frameworks in chiral separation of pharmaceuticals. Chirality 2022. [Google Scholar] [CrossRef] [PubMed]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spek, A.L. PLATON—A Multipurpose Crystallographic Tool, Windows Implementation, Version 270519. Farrugia, L.J., Ed.; University of Glasgow, Scotland, UK. 2019.
- Spek, A.L. Structure validation in chemical crystallography. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148–155. [Google Scholar] [CrossRef]
- Feldblyum, J.I.; Liu, M.; Gidley, D.W.; Matzger, A.J. Reconciling the discrepancies between crystallographic porosity and guest access as exemplified by Zn-HKUST-1. J. Am. Chem. Soc. 2011, 133, 18257–18263. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, X.; Wang, S.; Dou, J.; Cui, P.; Chen, Z.; Sun, D.; Wang, X.; Sun, D. Novel Metal–Organic Framework Based on Cubic and Trisoctahedral Supermolecular Building Blocks: Topological Analysis and Photoluminescent Property. Cryst. Growth Des. 2012, 12, 2736–2739. [Google Scholar] [CrossRef]
- Flack, H.D. Chiral and Achiral Crystal Structures. Helv. Chim. Acta 2003, 86, 905–921. [Google Scholar] [CrossRef]
- A chiral space group needs to have an element from one of the following four pairs of enantiomorphous screw rotations: {31, 32}, {41, 43}, {61, 65}, {62, 64}. Only 22 out of the 230 space groups are chiral. A crystal structure in P21 is chiral but the space group itself is achiral since it does not form one member of an enantiomorphous pair.
- Reinsch, H.; van der Veen, M.A.; Gil, B.; Marszalek, B.; Verbiest, T.; de Vos, D.; Stock, N. Structures, Sorption Characteristics, and Nonlinear Optical Properties of a New Series of Highly Stable Aluminum MOFs. Chem. Mater. 2013, 25, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Reinsch, H.; Waitschat, S.; Stock, N. Mixed-linker MOFs with CAU-10 structure: Synthesis and gas sorption characteristics. Dalton Trans. 2013, 42, 4840–4847. [Google Scholar] [CrossRef]
- Fröhlich, D.; Pantatosaki, E.; Kolokathis, P.D.; Markey, K.; Reinsch, H.; Baumgartner, M.; van der Veen, M.A.; de Vos, D.E.; Stock, N.; Papadopoulos, G.K.; et al. Water adsorption behaviour of CAU-10-H: A thorough investigation of its structure–property relationships. J. Mater. Chem. A 2016, 4, 11859–11869. [Google Scholar] [CrossRef] [Green Version]
- Flack, H.D. On enantiomorph-polarity estimation. Acta. Crystallogr. Sect. A Found. Crystallogr. 1983, 39, 876–881. [Google Scholar] [CrossRef]
- Flack, H.D.; Bernardinelli, G. Absolute structure and absolute configuration. Acta. Crystallogr. Sect. A Found. Crystallogr. 1999, A55, 908–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flack, H.D.; Bernardinelli, G. The use of X-ray crystallography to determine absolute configuration. Chirality 2007, 20, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Flack, H.D.; Sadki, M.; Thompson, A.L.; Watkin, D.J. Practical applications of averages and differences of Friedel opposites. Acta. Crystallogr. Sect. A Found. Crystallogr. 2011, 67, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Janiak, C. A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc. Dalton Trans. 2000, 3885–3896. [Google Scholar] [CrossRef]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
- Alexandrov, E.V.; Blatov, V.A.; Kochetkov, A.V.; Proserpio, D.M. Underlying nets in three-periodic coordination polymers: Topology, taxonomy and prediction from a computer-aided analysis of the Cambridge Structural Database. CrystEngComm 2011, 13, 3947. [Google Scholar] [CrossRef]
- Alexandrov, E.V.; Shevchenko, A.P.; Blatov, V.A. Topological Databases: Why Do We Need Them for Design of Coordination Polymers? Cryst. Growth Des. 2019, 19, 2604–2614. [Google Scholar] [CrossRef]
- Blatov, V.A.; Proserpio, D.M. Topological relations between three-periodic nets. II. Binodal nets. Acta. Crystallogr. A Found. Crystallogr. 2009, 65, 202–212. [Google Scholar] [CrossRef]
- Liu, Q.-K.; Ma, J.-P.; Dong, Y.-B. Reversible adsorption and complete separation of volatile chlorocarbons based on a Cd(II)-triazole MOF in a single-crystal-to-single-crystal fashion. Chem. Commun. 2011, 47, 12343–12345. [Google Scholar] [CrossRef]
- Liu, Q.-K.; Ma, J.-P.; Dong, Y.-B. Adsorption and separation of reactive aromatic isomers and generation and stabilization of their radicals within cadmium(II)-triazole metal-organic confined space in a single-crystal-to-single-crystal fashion. J. Am. Chem. Soc. 2010, 132, 7005–7017. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.-H.; Liu, D.-X.; Yang, K.-Q.; Dong, S.-J.; Li, W.; Wang, Y.-J. A new cluster-based metal-organic framework with triazine backbones for selective luminescent detection of mercury(II) ion. Inorg. Chem. Commun. 2018, 90, 61–64. [Google Scholar] [CrossRef]
- Wang, X.-L.; Dong, L.-Z.; Qiao, M.; Tang, Y.-J.; Liu, J.; Li, Y.; Li, S.-L.; Su, J.-X.; Lan, Y.-Q. Exploring the Performance Im-provement of the Oxygen Evolution Reaction in a Stable Bimetal-Organic Framework System. Angew. Chem. Int. Ed. 2018, 57, 9660–9664. [Google Scholar] [CrossRef]
- Glomb, S.; Woschko, D.; Makhloufi, G.; Janiak, C. Metal-Organic Frameworks with Internal Urea-Functionalized Dicarboxylate Linkers for SO2 and NH3 Adsorption. ACS Appl. Mater. Interfaces 2017, 9, 37419–37434. [Google Scholar] [CrossRef] [PubMed]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Gurvich, L.G. Physico-chemical force of attraction. J. Phys. Chem. Soc. Russ. 1915, 47, 805–827. [Google Scholar]
- APEX2. Data Collection Program for the CCD Area-Detector System, Version 2.1-0; Bruker Analytical X-ray Systems, Madison (WI), USA, 1997–2014.
- SAINT. Data Reduction and Frame Integration Program for the CCD Area-Detector System; Bruker Analytical X-ray Systems, Madison (WI) USA, 1997–2014.
- Sheldrick, G.M. SADABS: Area-Detector Absorption Correction; University of Göttingen: Göttingen, Germany, 1996. [Google Scholar]
- CrysAlisPro. Rigaku Oxford Diffraction; release 1.171.40.103a; Agilent Technologies UK Ltd.: Yarnton, UK, 2021. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta. Crystallogr. Sect. C Cryst. Struct. Commun. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta. Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Brandenburg, K.; Putz, H. Diamond, Crystal and Molecular Structure Visualization, Crystal Impact—Gbr, Version 4.5; Bonn, Germany, 2009–2018.
- Turner, M.J.; McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Visualisation and characterisation of voids in crystalline materials. CrystEngComm 2011, 13, 1804–1813. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Spackman, M.A.; Mitchell, A.S. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr. B 2004, 60, 627–668. [Google Scholar] [CrossRef] [PubMed]
Crystal 1a | Crystal 1b | Crystal 2a | Crystal 2b | |
---|---|---|---|---|
CCDC no. | 2192050 | 2192051 | 2192052 | 2192053 |
Device | Bruker Apex | Rigaku Synergy | Bruker Apex | Rigaku Synergy |
Radiation Wavelength (Å) | Mo Kα 0.71073 | Cu Kα 1.54184 | Mo Kα 0.71073 | Cu Kα 1.54184 |
Chemical formula | C14H12N4O4Zn | C14H12N4O4Zn | C14H12N4O4Zn | C14H12N4O4Zn |
Mr (g mol−1) | 365.65 | 365.65 | 365.65 | 365.65 |
Crystal system, space group | Tetragonal, P43212 | Tetragonal, P43212 | Tetragonal, P41212 | Tetragonal, P41212 |
Temperature (K) | 100 | 100 | 140 | 100 |
a = b (Å) | 12.8882 (9) | 12.89036 (2) | 12.9058 (6) | 12.89103 (4) |
c (Å) | 25.421 (2) | 25.44987 (7) | 25.5686 (18) | 25.47177 (13) |
V (Å3) | 4222.6 (7) | 4228.79 (2) | 4258.7 (5) | 4232.86 (3) |
Z | 8 | 8 | 8 | 8 |
μ (mm–1) | 1.18 | 1.79 | 1.17 | 1.79 |
dcalc (g cm–3) | 1.150 | 1.149 | 1.141 | 1.148 |
F (000) | 1488 | 1488 | 1488 | 1488 |
Crystal size (mm) | 0.27 × 0.25 × 0.22 | 0.49 × 0.43 × 0.34 | 0.02 × 0.02 × 0.02 | 0.35 × 0.29 × 0.18 |
Exp. abs. correct. (min/max) | 0.8683/1.0000 | 0.95677/0.95677 | 0.8874/1.0000 | 0.97219/0.97219 |
meas., indep., obs. reflect. | 17351, 4337, 4014 | 256848, 3776, 3774 | 54539, 4362, 4094 | 39328, 3781, 3730 |
parameters, restraints | 212, 0 | 212, 0 | 212, 0 | 212, 0 |
Rint | 0.030 | 0.050 | 0.055 | 0.037 |
(sin θ/λ)max (Å–1) | 0.604 | 0.597 | 0.626 | 0.597 |
R, wR(F2) | 0.0215, 0.0516 | 0.0185, 0.0526 | 0.0252, 0.0586 | 0.0208, 0.0592 |
S [F2 > 2σ (F2)] a | 1.051 | 1.098 | 1.063 | 1.056 |
R, wR(F2) | 0.0244, 0.0524 | 0.0185, 0.0526 | 0.0283, 0.0598 | 0.0211, 0.0595 |
S [all data] a | 1.051 | 1.098 | 1.063 | 1.056 |
Δρmax., Δρmin. (e Å–3) b | 0.24, -0.17 | 0.17; -0.24 | 0.69; -0.29 | 0.19; -0.29 |
Flack parameter c | 0.298(11) | 0.43 (2) | 0.443 (13) | 0.20 (3) |
Squeeze solvent access. vol. (Å3) d | 1686 | 1744 | 1699 | 1756 |
Squeeze void count electrons d | 438 | 496 | 478 | 480 |
approx. no. DMF molec. per formula unit e | 1.4 | 1.5 | 1.5 | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woschko, D.; Millan, S.; Ceyran, M.-A.; Oestreich, R.; Janiak, C. Synthesis of a Chiral 3,6T22-Zn-MOF with a T-Shaped Bifunctional Pyrazole-Isophthalate Ligand Following the Principles of the Supramolecular Building Layer Approach. Molecules 2022, 27, 5374. https://doi.org/10.3390/molecules27175374
Woschko D, Millan S, Ceyran M-A, Oestreich R, Janiak C. Synthesis of a Chiral 3,6T22-Zn-MOF with a T-Shaped Bifunctional Pyrazole-Isophthalate Ligand Following the Principles of the Supramolecular Building Layer Approach. Molecules. 2022; 27(17):5374. https://doi.org/10.3390/molecules27175374
Chicago/Turabian StyleWoschko, Dennis, Simon Millan, Muhammed-Ali Ceyran, Robert Oestreich, and Christoph Janiak. 2022. "Synthesis of a Chiral 3,6T22-Zn-MOF with a T-Shaped Bifunctional Pyrazole-Isophthalate Ligand Following the Principles of the Supramolecular Building Layer Approach" Molecules 27, no. 17: 5374. https://doi.org/10.3390/molecules27175374
APA StyleWoschko, D., Millan, S., Ceyran, M. -A., Oestreich, R., & Janiak, C. (2022). Synthesis of a Chiral 3,6T22-Zn-MOF with a T-Shaped Bifunctional Pyrazole-Isophthalate Ligand Following the Principles of the Supramolecular Building Layer Approach. Molecules, 27(17), 5374. https://doi.org/10.3390/molecules27175374