MRI Contrast Agents in Glycobiology
Abstract
:1. Introduction
2. Relaxivity of MRI Contrast Agents
3. Glyconanoparticles
4. Plant Lectins as Probes
5. Targeting of Selectins
6. Targeting the Asialoglycoprotein Receptor
7. Sialic Acids as Tumor Markers
8. Sensing of Glycated HSA and Hemoglobin
9. MRI Contrast Agents with Glucose or Derivatives as a Targeting Group
10. Enzyme-Responsive Contrast Agents Containing a Carbohydrate Group
11. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Varki, A.; Cummings, R.D.; Esko, J.D.; Stanley, P.; Hart, G.W.; Aebi, M.; Mohnen, D.; Kinoshita, T.; Packer, N.H.; Prestegard, J.H.; et al. Essentials of Glycobiology, 4th ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2022. [Google Scholar]
- Peters, J.A.; Djanashvili, K.; Geraldes, C.F.G.C. Imaging with lanthanides. In Comprehensive Supramolecular Chemistry II; Atwood, J.L., Ed.; Elsevier: Oxford, UK, 2017; pp. 261–293. [Google Scholar]
- Gupta, A.; Sood, A.; Fuhrer, E.; Djanashvili, K.; Agrawal, G. Polysaccharide-based theranostic systems for combined imaging and cancer therapy: Recent advances and challenges. ACS Biomater. Sci. Eng. 2022, 8, 2281–2306. [Google Scholar] [CrossRef]
- Machado, V.; Morais, M.; Medeiros, R. Hyaluronic acid-based nanomaterials applied to cancer: Where are we now? Pharmaceutics 2022, 14, 2092. [Google Scholar] [CrossRef]
- Yasin, A.; Ren, Y.; Li, J.; Sheng, Y.; Cao, C.; Zhang, K. Advances in hyaluronic acid for biomedical applications. Front. Bioeng. Biotechnol. 2022, 10, 910290. [Google Scholar] [CrossRef]
- Della Sala, F.; Fabozzi, A.; di Gennaro, M.; Nuzzo, S.; Makvandi, P.; Solimando, N.; Pagliuca, M.; Borzacchiello, A. Advances in hyaluronic-acid-based (nano)devices for cancer therapy. Macromol. Biosci. 2022, 22, 2100304. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Eleftheriou, A.; Ravotto, L.; Weber, B.; Rivlin, M.; Navon, G.; Capozza, M.; Anemone, A.; Longo, D.L.; Aime, S.; et al. What do we know about dynamic glucose-enhanced (DGE) MRI and how close is it to the clinics? Horizon 2020 GLINT consortium report. MAGMA 2022, 35, 87–104. [Google Scholar] [CrossRef] [PubMed]
- Merbach, A.E.; Helm, L.; Tóth, É. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, 2nd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2013. [Google Scholar]
- Caravan, P.; Ellison, J.J.; McMurry, T.J.; Lauffer, R.B. Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem. Rev. 1999, 99, 2293–2352. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.A.; Djanashvili, K. An introduction to MRI contrast agents. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Geraldes, C.F.G.C.; Laurent, S. Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol. Imaging 2009, 4, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Pierre, V.C.; Allen, M.J. Contrast Agents for MRI, Experimental Methods; Pierre Valérie, C., Allen, M.J., Eds.; The Royal Society of Chemistry: London, UK, 2018. [Google Scholar]
- Wahsner, J.; Gale, E.M.; Rodríguez-Rodríguez, A.; Caravan, P. Chemistry of MRI contrast agents: Current challenges and new frontiers. Chem. Rev. 2018, 119, 957–1057. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Meade, T.J. Molecular magnetic resonance imaging with Gd(III)-based contrast agents: Challenges and key advances. J. Am. Chem. Soc. 2019, 141, 17025–17041. [Google Scholar] [CrossRef] [PubMed]
- Robic, C.; Port, M.; Rousseaux, O.; Louguet, S.; Fretellier, N.; Catoen, S.; Factor, C.; Le Greneur, S.; Medina, C.; Bourrinet, P.; et al. Physicochemical and pharmacokinetic profiles of gadopiclenol: A new macrocyclic gadolinium chelate with high T1 relaxivity. Investig. Radiol. 2019, 54, 475–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohrer, M.; Bauer, H.; Mintorovitch, J.; Requardt, M.; Weinmann, H.-J. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Investig. Radiol. 2005, 40, 715–724. [Google Scholar] [CrossRef] [Green Version]
- de Haan, H.W. Mechanisms of proton spin dephasing in a system of magnetic particles. Magn. Reson. Med. 2011, 66, 1748–1758. [Google Scholar] [CrossRef]
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110. [Google Scholar] [CrossRef]
- Vuong, Q.L.; Berret, J.-F.; Fresnais, J.; Gossuin, Y.; Sandre, O. A universal scaling law to predict the efficiency of magnetic nanoparticles as MRI T2-contrast agents. Adv. Healthc. Mater. 2012, 1, 502–512. [Google Scholar] [CrossRef] [Green Version]
- Vuong, Q.L.; Gossuin, Y.; Gillis, P.; Delangre, S. New simulation approach using classical formalism to water nuclear magnetic relaxation dispersions in presence of superparamagnetic particles used as MRI contrast agents. J. Chem. Phys. 2012, 137, 114505. [Google Scholar] [CrossRef]
- Gossuin, Y.; Orlando, T.; Basini, M.; Henrard, D.; Lascialfari, A.; Mattea, C.; Stapf, S.; Vuong, Q.L. NMR relaxation induced by iron oxide particles: Testing theoretical models. Nanotechnology 2016, 27, 155706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, K.M.; Aletras, A.H.; Balaban, R.S. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J. Magn. Reson. 2000, 143, 79–87. [Google Scholar] [CrossRef]
- Terreno, E.; Castelli, D.D.; Aime, S. Paramagnetic CEST MRI contrast agents. In The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, 2nd ed.; Tóth, É., Helm, L., Merbach, A., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2013; pp. 387–425. [Google Scholar]
- Evbuomwan, O.M.; Terreno, E.; Aime, S.; Sherry, A.D. CEST and PARACEST agents for molecular imaging. In The Chemistry of Molecular Imaging; Long, N., Wong, W.-T., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 225–243. [Google Scholar]
- De Leon-Rodriguez, L.M.; Lubag, A.J.M.; Malloy, C.R.; Martinez, G.V.; Gillies, R.J.; Sherry, A.D. Responsive MRI agents for sensing metabolism in vivo. Acc. Chem. Res. 2009, 42, 948–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanaoka, K.; Lubag, A.J.M.; Castillo-Muzquiz, A.; Kodadek, T.; Sherry, A.D. The detection limit of a Gd3+-based T1 agent is substantially reduced when targeted to a protein microdomain. Magn. Reson. Imaging 2008, 26, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Iwaki, S.; Hokamura, K.; Ogawa, M.; Takehara, Y.; Muramatsu, Y.; Yamane, T.; Hirabayashi, K.; Morimoto, Y.; Hagisawa, K.; Nakahara, K.; et al. A design strategy for small molecule-based targeted MRI contrast agents: Their application for detection of atherosclerotic plaques. Org. Biomol. Chem. 2014, 12, 8611–8618. [Google Scholar] [CrossRef]
- Kelloff, G.J.; Krohn, K.A.; Larson, S.M.; Weissleder, R.; Mankoff, D.A.; Hoffman, J.M.; Link, J.M.; Guyton, K.Z.; Eckelman, W.C.; Scher, H.I.; et al. The progress and promise of molecular imaging probes in oncologic drug development. Clin. Cancer Res. 2005, 11, 7967–7985. [Google Scholar] [CrossRef] [Green Version]
- Jacques, V.; Dumas, S.; Sun, W.-C.; Troughton, J.S.; Greenfield, M.T.; Caravan, P. High-relaxivity magnetic resonance imaging contrast agents part 2: Optimization of inner- and second-sphere relaxivity. Investig. Radiol. 2010, 45, 613–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumas, S.; Jacques, V.; Sun, W.-C.; Troughton, J.S.; Welch, J.T.; Chasse, J.M.; Schmitt-Willich, H.; Caravan, P. High relaxivity magnetic resonance imaging contrast agents part 1: Impact of single donor atom substitution on relaxivity of serum albumin-bound gadolinium complexes. Investig. Radiol. 2010, 45, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Terreno, E.; Geninatti Crich, S.; Belfiore, S.; Biancone, L.; Cabella, C.; Esposito, G.; Manazza, A.D.; Aime, S. Effect of the intracellular localization of a Gd-based imaging probe on the relaxation enhancement of water protons. Magn. Reson. Med. 2006, 55, 491–497. [Google Scholar] [CrossRef]
- Torchilin, V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev. 2011, 63, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Ferrauto, G.; Delli Castelli, D.; Di Gregorio, E.; Langereis, S.; Burdinski, D.; Grüll, H.; Terreno, E.; Aime, S. Lanthanide-loaded erythrocytes as highly sensitive chemical exchange saturation transfer MRI contrast agents. J. Am. Chem. Soc. 2014, 136, 638–641. [Google Scholar] [CrossRef] [PubMed]
- Ferrauto, G.; Delli Castelli, D.; Di Gregorio, E.; Terreno, E.; Aime, S. LipoCEST and cellCEST imaging agents: Opportunities and challenges. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 8, 602–618. [Google Scholar] [CrossRef]
- Kottari, N.; Chabre, Y.M.; Sharma, R.; Roy, R. Applications of glyconanoparticles as “sweet” glycobiological therapeutics and diagnostics. Adv. Polym. Sci. 2013, 254, 297–341. [Google Scholar] [CrossRef]
- Chen, X.; Ramström, O.; Yan, M. Glyconanomaterials: Emerging applications in biomedical research. Nano Res. 2014, 7, 1381–1403. [Google Scholar] [CrossRef]
- Kalita, M.; Payne, M.M.; Bossmann, S.H. Glyco-nanotechnology: A biomedical perspective. Nanomed. NBM 2022, 42, 102542. [Google Scholar] [CrossRef]
- Eroglu, S.M.; Oner, T.E.; Mutlu, C.E.; Bostan, S.M. Sugar based biopolymers in nanomedicine; new emerging era for cancer imaging and therapy. Curr. Top. Med. Chem. 2017, 17, 1507–1520. [Google Scholar] [CrossRef] [PubMed]
- Corot, C.; Robert, P.; Idée, J.-M.; Port, M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev. 2006, 58, 1471–1504. [Google Scholar] [CrossRef]
- Mornet, S.; Vasseur, S.; Grasset, F.; Duguet, E. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 2004, 14, 2161–2175. [Google Scholar] [CrossRef]
- Mornet, S.; Portier, J.; Duguet, E. A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran. J. Magn. Magn. Mater. 2005, 293, 127–134. [Google Scholar] [CrossRef]
- Arias, J.L.; Gallardo, V.; Linares-Molinero, F.; Delgado, A.V. Preparation and characterization of carbonyl iron/poly(butylcyanoacrylate) core/shell nanoparticles. J. Colloid Interface Sci. 2006, 299, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Bjørnerud, A.; Johansson, L.O.; Ahlström, H.K. Pre-clinical results with Clariscan™ (NC100150 Injection); experience from different disease models. MAGMA 2001, 12, 99–103. [Google Scholar] [CrossRef]
- Lartigue, L.; Innocenti, C.; Kalaivani, T.; Awwad, A.; Sanchez Duque, M.d.M.; Guari, Y.; Larionova, J.; Guerin, C.; Montero, J.-L.G.; Barragan-Montero, V.; et al. Water-dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties. J. Am. Chem. Soc. 2011, 133, 10459–10472. [Google Scholar] [CrossRef] [Green Version]
- Groult, H.; García-Álvarez, I.; Romero-Ramírez, L.; Nieto-Sampedro, M.; Herranz, F.; Fernández-Mayoralas, A.; Ruiz-Cabello, J. Micellar iron oxide nanoparticles coated with anti-tumor glycosides. Nanomaterials 2018, 8, 567. [Google Scholar] [CrossRef] [Green Version]
- Unnikrishnan, B.S.; Sen, A.; Preethi, G.U.; Joseph, M.M.; Maya, S.; Shiji, R.; Anusree, K.S.; Sreelekha, T.T. Folic acid-appended galactoxyloglucan-capped iron oxide nanoparticles as a biocompatible nanotheranostic agent for tumor-targeted delivery of doxorubicin. Int. J. Biol. Macromol. 2021, 168, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Groult, H.; Poupard, N.; Herranz, F.; Conforto, E.; Bridiau, N.; Sannier, F.; Bordenave, S.; Piot, J.-M.; Ruiz-Cabello, J.; Fruitier-Arnaudin, I.; et al. Family of bioactive heparin-coated iron oxide nanoparticles with positive contrast in magnetic resonance imaging for specific biomedical applications. Biomacromolecules 2017, 18, 3156–3167. [Google Scholar] [CrossRef]
- Krishnan, G.; Cousins, A.; Pham, N.; Milanova, V.; Nelson, M.; Krishnan, S.; Shetty, A.; van den Berg, N.; Rosenthal, E.; Krishnan, S.; et al. Preclinical evaluation of a mannose-labeled magnetic tracer for enhanced sentinel lymph node retention in the head and neck. Nanomed. NBM 2022, 42, 102546. [Google Scholar] [CrossRef]
- Pongrac, I.M.; Radmilović, M.D.; Ahmed, L.B.; Mlinarić, H.; Regul, J.; Škokić, S.; Babič, M.; Horák, D.; Hoehn, M.; Gajović, S. D-mannose-coating of maghemite nanoparticles improved labeling of neural stem cells and allowed their visualization by ex vivo MRI after transplantation in the mouse brain. Cell Transplant. 2019, 28, 553–567. [Google Scholar] [CrossRef] [Green Version]
- Marradi, M.; Chiodo, F.; Garcia, I.; Penadés, S. Glyconanoparticles as multifunctional and multimodal carbohydrate systems. Chem. Soc. Rev. 2013, 42, 4728–4745. [Google Scholar] [CrossRef] [PubMed]
- Marradi, M.; Alcantara, D.; de la Fuente, J.M.; Garcia-Martín, M.L.; Cerdán, S.; Penadés, S. Paramagnetic Gd-based gold glyconanoparticles as probes for MRI: Tuning relaxivities with sugars. Chem. Commun. 2009, 3922–3924. [Google Scholar] [CrossRef] [Green Version]
- Candiota, A.P.; Acosta, M.; Simões, R.V.; Delgado-Goñi, T.; Lope-Piedrafita, S.; Irure, A.; Marradi, M.; Bomati-Miguel, O.; Miguel-Sancho, N.; Abasolo, I.; et al. A new ex vivo method to evaluate the performance of candidate MRI contrast agents: A proof-of-concept study. J. Nanobiotechnol. 2014, 12, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.; Liu, H.; Sacco, P.; Marsich, E.; Li, X.; Djaker, N.; Spadavecchia, J. DOTAREM (DOTA)-gold-nanoparticles: Design, spectroscopic evaluation to build hybrid contrast agents to applications in nanomedecine. Int. J. Nanomed. 2022, 17, 4105–4118. [Google Scholar] [CrossRef]
- Norman, A.B.; Thomas, S.R.; Pratt, R.G.; Lu, S.Y.; Norgren, R.B. Magnetic resonance imaging of neural transplants in rat brain using a superparamagnetic contrast agent. Brain Res. 1992, 594, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Peumans, W.J.; Van Damme, E.J.M. Tomato lectin. In Tomatoes and Tomato Products Nutritional, Medicinal and Therapeutic Properties; Preedy, V.R., Watson, R.R., Eds.; Science Publishers, Inc.: Enfield, NH, USA, 2008; pp. 165–192. [Google Scholar]
- Paschkunova-Martic, I.; Kremser, C.; Mistlberger, K.; Shcherbakova, N.; Dietrich, H.; Talasz, H.; Zou, Y.; Hugl, B.; Galanski, M.; Sölder, E.; et al. Design, synthesis, physical and chemical characterization, and biological interactions of lectin-targeted latex nanoparticles bearing Gd-DTPA chelates: An exploration of magnetic resonance molecular imaging (MRMI). Histochem. Cell Biol. 2005, 123, 283–301. [Google Scholar] [CrossRef] [PubMed]
- Kundu, A.; Keppler, B. Nanoparticles for diagnosis of blood vessel diseases. Nachr. Chem. 2007, 55, 842, 844–846. [Google Scholar]
- Pashkunova-Martic, I.; Galanski, M.; Schluga, P.; Arion, V.; Keppler, B.; Kremser, C.; Jaschke, W.; Debbage, P. Lectin conjugates as biospecific contrast agents for MRI. Coupling of Lycopersicon esculentum agglutinin to linear water-soluble DTPA-loaded oligomers. Mol. Imaging Biol. 2011, 13, 432–442. [Google Scholar] [CrossRef]
- Pashkunova-Martic, I.; Kremser, C.; Galanski, M.; Arion, V.; Debbage, P.; Jaschke, W.; Keppler, B. Lectin-Gd-loaded chitosan hydrogel nanoparticles: A new biospecific contrast agent for MRI. Mol. Imaging Biol. 2011, 13, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Pashkunova-Martic, I.; Kremser, C.; Talasz, H.; Mistlberger, K.; Bechter-Hugl, B.; Pfaller, K.; Baurecht, D.; Debbage, P.; Jaschke, W.; Helbich, T.H.; et al. Doubly derivatized poly(lactide)-albumin nanoparticles as blood vessel-targeted transport device for magnetic resonance imaging (MRI). J. Nanopart. Res. 2021, 23, 51. [Google Scholar] [CrossRef]
- Singh, A.; Dilnawaz, F.; Sahoo, S.K. Long circulating lectin conjugated paclitaxel loaded magnetic nanoparticles: A new theranostic avenue for leukemia therapy. PLoS ONE 2011, 6, e26803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Liu, F.; Liu, L.; Duan, T.; Zhang, H.; Wang, Z. Lectin-conjugated Fe2O3@Au core@shell nanoparticles as dual mode contrast agents for in vivo detection of tumor. Mol. Pharm. 2014, 11, 738–745. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.E.; Drickamer, K.; Imberty, A.; van Kooyk, Y.; Schnaar, R.L.; Etzler, M.E.; Varki, A. Discovery and classification of glycan-binding proteins. In Essentials of Glycobiology, 4th ed.; Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Mohnen, D., Kinoshita, T., Packer, N.H., Prestegard, J.H., et al., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2022. [Google Scholar]
- McAteer, M.A.; Choudhury, R.P. Chapter 4—Applications of nanotechnology in molecular imaging of the brain. In Progress in Brain Research; Hari Shanker, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 180, pp. 72–96. [Google Scholar]
- Kogan, T.P.; Dupre, B.; Keller, K.M.; Scott, I.L.; Bui, H.; Market, R.V.; Beck, P.J.; Voytus, J.A.; Revelle, B.M.; Scott, D. Rational design and synthesis of small molecule, non-oligosaccharide selectin inhibitors: α-D-mannopyranosyloxy)biphenyl-substituted carboxylic acids. J. Med. Chem. 1995, 38, 4976–4984. [Google Scholar] [CrossRef]
- Fu, Y.J.; Laurent, S.; Muller, R.N. Synthesis of a sialyl Lewis(X) mimetic conjugated with DTPA, potential ligand of new contrast agents for medical imaging. Eur. J. Org. Chem. 2002, 3966–3973. [Google Scholar] [CrossRef]
- Laurent, S.; Vander Elst, L.; Fu, Y.; Muller, R.N. Synthesis and physicochemical characterization of Gd-DTPA-B(slex)A, a new MRI contrast agent targeted to inflammation. Bioconjug. Chem. 2004, 15, 99–103. [Google Scholar] [CrossRef]
- Barber, P.A.; Foniok, T.; Kirk, D.; Buchan, A.M.; Laurent, S.; Boutry, S.; Muller, R.N.; Hoyte, L.; Tomanek, B.; Tuor, U.I. MR molecular imaging of early endothelial activation in focal ischemia. Ann. Neurol. 2004, 56, 116–120. [Google Scholar] [CrossRef]
- Sibson, N.R.; Blamire, A.M.; Bernades-Silva, M.; Laurent, S.; Boutry, S.; Muller, R.N.; Styles, P.; Anthony, D.C. MRI detection of early endothelial activation in brain inflammation. Magn. Reson. Med. 2004, 51, 248–252. [Google Scholar] [CrossRef]
- Boutry, S.; Burtea, C.; Laurent, S.; Toubeau, G.; Vander Elst, L.; Muller, R.N. Magnetic resonance imaging of inflammation with a specific selectin-targeted contrast agent. Magn. Reson. Med. 2005, 53, 800–807. [Google Scholar] [CrossRef]
- Boutry, S.; Laurent, S.; Vander Elst, L.; Muller Robert, N. Specific E-selectin targeting with a superparamagnetic MRI contrast agent. Contrast Media Mol. Imaging 2006, 1, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Radermacher, K.A.; Beghein, N.; Boutry, S.; Laurent, S.; Vander Elst, L.; Muller, R.N.; Jordan, B.F.; Gallez, B. In vivo detection of inflammation using pegylated iron oxide particles targeted at E-selectin: A multimodal approach using MR imaging and EPR spectroscopy. Investig. Radiol. 2009, 44, 398–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Liu, L.; Li, Y.; Huang, X.; Gu, D.; Wei, B.; Su, D.; Jin, G. Ultrasmall superparamagnetic nanoparticles targeting E-selectin: Synthesis and effects in mice in vitro and in vivo. Int. J. Nanomed. 2019, 14, 4517–4528. [Google Scholar] [CrossRef] [Green Version]
- van Kasteren, S.I.; Campbell, S.J.; Serres, S.; Anthony, D.C.; Sibson, N.R.; Davis, B.G. Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease. Proc. Natl. Acad. Sci. USA 2009, 106, 18–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaubet, F.; Bertholon, I.; Serfaty, J.-M.; Bazeli, R.; Alsaid, H.; Jandrot-Perrus, M.; Zahir, C.; Even, P.; Bachelet, L.; Touat, Z.; et al. A new macromolecular paramagnetic MR contrast agent binds to activated human platelets. Contrast Media Mol. Imaging 2007, 2, 178–188. [Google Scholar] [CrossRef]
- Alsaid, H.; de Souza, G.; Bourdillon, M.-C.; Chaubet, F.; Sulaiman, A.; Desbleds-Mansard, C.; Chaabane, L.; Zahir, C.; Lancelot, E.; Rousseaux, O.; et al. Biomimetic MRI contrast agent for imaging of inflammation in atherosclerotic plaque of ApoE-/-mice: A pilot study. Investig. Radiol. 2009, 44, 151–158. [Google Scholar] [CrossRef]
- Fan, K.; Lu, C.; Shu, G.; Lv, X.-L.; Qiao, E.; Zhang, N.; Chen, M.; Song, J.; Wu, F.; Zhao, Z.; et al. Sialic acid-engineered mesoporous polydopamine dual loaded with ferritin gene and SPIO for achieving endogenous and exogenous synergistic T2-weighted magnetic resonance imaging of HCC. J. Nanobiotechnol. 2021, 19, 76. [Google Scholar] [CrossRef]
- Shu, G.; Chen, M.; Song, J.; Xu, X.; Lu, C.; Du, Y.; Xu, M.; Zhao, Z.; Zhu, M.; Fan, K.; et al. Sialic acid-engineered mesoporous polydopamine nanoparticles loaded with SPIO and Fe3+ as a novel theranostic agent for T1/T2 dual-mode MRI-guided combined chemo-photothermal treatment of hepatic cancer. Bioact. Mater. 2021, 6, 1423–1435. [Google Scholar] [CrossRef]
- Yanagisawa, K.; Odaka, A.; Suzuki, N.; Ihara, Y. GM1 ganglioside-bound amyloid β-protein (Aβ): A possible form of preamyloid in Alzheimer’s disease. Nat. Med. 1995, 1, 1062–1066. [Google Scholar] [CrossRef] [PubMed]
- Kouyoumdjian, H.; Zhu, D.C.; El-Dakdouki, M.H.; Lorenz, K.; Chen, J.; Li, W.; Huang, X. Glyconanoparticle aided detection of β-amyloid by magnetic resonance imaging and attenuation of β-amyloid induced cytotoxicity. ACS Chem. Neurosci. 2013, 4, 575–584. [Google Scholar] [CrossRef]
- Nasr, S.H.; Kouyoumdjian, H.; Mallett, C.; Ramadan, S.; Zhu, D.C.; Shapiro, E.M.; Huang, X. Detection of β-amyloid by sialic acid coated bovine serum albumin magnetic nanoparticles in a mouse model of Alzheimer’s disease. Small 2018, 14, 1701828. [Google Scholar] [CrossRef] [PubMed]
- Hinds, K.A.; Hill, J.M.; Shapiro, E.M.; Laukkanen, M.O.; Silva, A.C.; Combs, C.A.; Varney, T.R.; Balaban, R.S.; Koretsky, A.P.; Dunbar, C.E. Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 2003, 102, 867–872. [Google Scholar] [CrossRef]
- Shapiro, E.M.; Skrtic, S.; Koretsky, A.P. Sizing it up: Cellular MRI using micron-sized iron oxide particles. Magn. Reson. Med. 2005, 53, 329–338. [Google Scholar] [CrossRef]
- Brown, R.J.S. Distribution of fields from randomly placed dipoles: Free-precession signal decay as result of magnetic grains. Phys. Rev. 1961, 121, 1379–1382. [Google Scholar] [CrossRef]
- Yablonskiy, D.A.; Haacke, E.M. Theory of NMR signal behavior in magnetically inhomogeneous tissues: The static dephasing regime. Magn. Reson. Med. 1994, 32, 749–763. [Google Scholar] [CrossRef]
- Gillis, P.; Moiny, F.; Brooks, R.A. On T2-shortening by strongly magnetized spheres: A partial refocusing model. Magn. Reson. Med. 2002, 47, 257–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAteer, M.A.; Mankia, K.; Ruparelia, N.; Jefferson, A.; Nugent, H.B.; Stork, L.-A.; Channon, K.M.; Schneider, J.E.; Choudhury, R.P. A leukocyte-mimetic magnetic resonance imaging contrast agent homes rapidly to activated endothelium and tracks with atherosclerotic lesion macrophage content. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1427–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAteer, M.A.; Schneider, J.E.; Ali, Z.A.; Warrick, N.; Bursill, C.A.; von zur Muhlen, C.; Greaves, D.R.; Neubauer, S.; Channon, K.M.; Choudhury, R.P. Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 77–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAteer, M.A.; Akhtar, A.M.; von zur Muhlen, C.; Choudhury, R.P. An approach to molecular imaging of atherosclerosis, thrombosis, and vascular inflammation using microparticles of iron oxide. Atherosclerosis 2010, 209, 18–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAteer, M.A.; Choudhury, R.P. Targeted molecular imaging of vascular inflammation in cardiovascular disease using nano- and micro-sized agents. Vascul. Pharmacol. 2012, 58, 31–38. [Google Scholar] [CrossRef]
- Bachelet, L.; Bertholon, I.; Lavigne, D.; Vassy, R.; Jandrot-Perrus, M.; Chaubet, F.; Letourneur, D. Affinity of low molecular weight fucoidan for P-selectin triggers its binding to activated human platelets. Biochim. Biophys. Acta Gen. Subj. 2009, 1790, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Bachelet-Violette, L.; Silva, A.K.A.; Maire, M.; Michel, A.; Brinza, O.; Ou, P.; Ollivier, V.; Nicoletti, A.; Wilhelm, C.; Letourneur, D.; et al. Strong and specific interaction of ultra-small superparamagnetic iron oxide nanoparticles and human activated platelets mediated by fucoidan coating. RSC Adv. 2014, 4, 4864–4871. [Google Scholar] [CrossRef]
- Bonnard, T.; Serfaty, J.-M.; Journe, C.; Ho Tin Noe, B.; Arnaud, D.; Louedec, L.; Derkaoui, S.M.; Letourneur, D.; Chauvierre, C.; Le Visage, C. Leukocyte mimetic polysaccharide microparticles tracked in vivo on activated endothelium and in abdominal aortic aneurysm. Acta Biomater. 2014, 10, 3535–3545. [Google Scholar] [CrossRef]
- Suzuki, M.; Bachelet-Violette, L.; Rouzet, F.; Beilvert, A.; Autret, G.; Maire, M.; Menager, C.; Louedec, L.; Choqueux, C.; Saboural, P.; et al. Ultrasmall superparamagnetic iron oxide nanoparticles coated with fucoidan for molecular MRI of intraluminal thrombus. Nanomedicine 2015, 10, 73–87. [Google Scholar] [CrossRef]
- Cheng, T.-M.; Li, R.; Kao, Y.-C.J.; Hsu, C.-H.; Chu, H.-L.; Lu, K.-Y.; Changou, C.A.; Chang, C.-C.; Chang, L.-H.; Tsai, M.-L.; et al. Synthesis and characterization of Gd-DTPA/fucoidan/peptide complex nanoparticle and in vitro magnetic resonance imaging of inflamed endothelial cells. Mater. Sci. Eng. Proc. C 2020, 114, 111064. [Google Scholar] [CrossRef] [PubMed]
- Forero Ramirez, L.M.; Gobin, E.; Aid-Launais, R.; Journe, C.; Moraes, F.C.; Picton, L.; Le Cerf, D.; Letourneur, D.; Chauvierre, C.; Chaubet, F. Gd(DOTA)-grafted submicronic polysaccharide-based particles functionalized with fucoidan as potential MR contrast agent able to target human activated platelets. Carbohydr. Polym. 2020, 245, 116457. [Google Scholar] [CrossRef] [PubMed]
- Ashwell, G.; Harford, J. Carbohydrate-specific receptors of the liver. Annu. Rev. Biochem. 1982, 51, 531–554. [Google Scholar] [CrossRef] [PubMed]
- Stockert, R.J. The asialoglycoprotein receptor: Relationships between structure, function, and expression. Physiol. Rev. 1995, 75, 591–609. [Google Scholar] [CrossRef]
- Weigel, P.H.; Yik, J.H.N. Glycans as endocytosis signals: The cases of the asialoglycoprotein and hyaluronan/chondroitin sulfate receptors. Biochim. Biophys. Acta Gen. Subj. 2002, 1572, 341–363. [Google Scholar] [CrossRef] [PubMed]
- Koyama, Y.; Ishikawa, M.; Ueda, A.; Sudo, T.; Kojima, S.; Suginaka, A. Body distribution of galactose-containing synthetic polymer and galactosylated albumin. Polym. J. 1993, 25, 355. [Google Scholar] [CrossRef]
- Treichel, U.; Meyer zum Büschenfelde, K.H.; Stockert, R.J.; Poralla, T.; Gerken, G. The asialoglycoprotein receptor mediates hepatic binding and uptake of natural hepatitis B virus particles derived from viraemic carriers. J. Gen. Virol. 1994, 75 Pt 11, 3021–3029. [Google Scholar] [CrossRef]
- Weissleder, R.; Reimer, P.; Lee, A.S.; Wittenberg, J.; Brady, T.J. MR receptor imaging: Ultrasmall iron oxide particles targeted to asialoglycoprotein receptors. Am. J. Roentgenol. 1990, 155, 1161–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reimer, P.; Weissleder, R.; Lee, A.S.; Buettner, S.; Wittenberg, J.; Brady, T.J. Asialoglycoprotein receptor function in benign liver disease: Evaluation with MR imaging. Radiology 1991, 178, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Reimer, P.; Weissleder, R.; Wittenberg, J.; Brady, T.J. Receptor-directed contrast agents for MR imaging: Preclinical evaluation with affinity assays. Radiology 1992, 182, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Reimer, P.; Kwong, K.K.; Weisskoff, R.; Cohen, M.S.; Brady, T.J.; Weissleder, R. Dynamic signal intensity changes in liver with superparamagnetic MR contrast agents. J. Magn. Reson. Imaging 1992, 2, 177–181. [Google Scholar] [CrossRef]
- Schaffer, B.K.; Linker, C.; Papisov, M.; Tsai, E.; Nossiff, N.; Shibata, T.; Bogdanov Jr, A.; Brady, T.J.; Weissleder, R. Mion-ASF: Biokinetics of an MR receptor agent. Magn. Reson. Imaging 1993, 11, 411–417. [Google Scholar] [CrossRef]
- Xia, L.; Song, X.; Yan, G.; Quan, J.; Jin, G. Preparation and evaluation of LA-PEG-SPION, a targeted MRI contrast agent for liver cancer. Open Life Sci. 2022, 17, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Reimer, P.; Weissleder, R.; Lee, A.S.; Wittenberg, J.; Brady, T.J. Receptor imaging: Application to MR imaging of liver cancer. Radiology 1990, 177, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Reimer, P.; Weissleder, R.; Brady, T.J.; Yeager, A.E.; Baldwin, B.H.; Tennant, B.C.; Wittenberg, J. Experimental hepatocellular carcinoma: MR receptor imaging. Radiology 1991, 180, 641–645. [Google Scholar] [CrossRef]
- Yoo Mi, K.; Kim In, Y.; Kim Eun, M.; Jeong, H.-J.; Lee, C.-M.; Jeong Yong, Y.; Akaike, T.; Cho Chong, S. Superparamagnetic iron oxide nanoparticles coated with galactose-carrying polymer for hepatocyte targeting. J. Biomed. Biotechnol. 2007, 2007, 94740. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, G.; Corricelli, M.; Iacobazzi, R.M.; Canepa, F.; Comegna, D.; Fanizza, E.; Del Gatto, A.; Saviano, M.; Laquintana, V.; Comparelli, R.; et al. Gold-speckled SPION@SiO2 nanoparticles decorated with thiocarbohydrates for ASGPR1 targeting: Towards HCC dual mode imaging potential applications. Chem. Eur. J. 2020, 26, 11048–11059. [Google Scholar] [CrossRef]
- Yang, H.-K.; Bao, J.-F.; Mo, L.; Yang, R.-M.; Xu, X.-D.; Tang, W.-J.; Lin, J.-T.; Wang, G.-H.; Zhang, L.-M.; Jiang, X.-Q. Bioreducible amphiphilic block copolymers based on PCL and glycopolypeptide as multifunctional theranostic nanocarriers for drug delivery and MR imaging. RSC Adv. 2017, 7, 21093–21106. [Google Scholar] [CrossRef] [Green Version]
- Saraswathy, A.; Nazeer, S.S.; Nimi, N.; Santhakumar, H.; Suma, P.R.; Jibin, K.; Victor, M.; Fernandez, F.B.; Arumugam, S.; Shenoy, S.J.; et al. Asialoglycoprotein receptor targeted optical and magnetic resonance imaging and therapy of liver fibrosis using pullulan stabilized multi-functional iron oxide nanoprobe. Sci. Rep. 2021, 11, 18324. [Google Scholar] [CrossRef] [PubMed]
- Vera, D.R.; Buonocore, M.H.; Wisner, E.R.; Katzberg, R.W.; Stadalnik, R.C. A molecular receptor-binding contrast agent for magnetic resonance imaging of the liver. Acad. Radiol. 1995, 2, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Gallez, B.; Lacour, V.; Demeure, R.; Debuyst, R.; Dejehet, F.; De Keyser, J.L.; Dumont, P. Spin labelled arabinogalactan as MRI contrast agent. Magn. Reson. Imaging 1994, 12, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Xue, R.; You, T.; Li, X.; Pei, F.; Wang, X.; Lei, H. Gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid conjugate of arabinogalactan as a potential liver-targeting magnetic resonance imaging contrast agent. Carbohydr. Res. 2014, 395, 9–14. [Google Scholar] [CrossRef]
- Gottschaldt, M.; Schubert, U.S. Prospects of metal complexes peripherally substituted with sugars in biomedicinal applications. Chem. Eur. J. 2009, 15, 1548–1557. [Google Scholar] [CrossRef]
- André, J.P.; Geraldes, C.F.G.C.; Martins, J.A.; Merbach, A.E.; Prata, M.I.M.; Santos, A.C.; de Lima, J.J.P.; Tóth, É. Lanthanide (III) complexes of DOTA-glycoconjugates: A potential new class of lectin-mediated medical imaging agents. Chem. Eur. J. 2004, 10, 5804–5816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- André, J.P.; Geraldes, C.F.G.C.; Martins, J.A.; Merbach, A.E.; Tóth, É. Lanthanide (III) Chelates of DTPA bis(amide) glycoconjugates: Potential imaging agents targeted at the asyaloglycoprotein receptor. Eur. J. Inorg. Chem. 2005, 2005, 2110–2119. [Google Scholar] [CrossRef] [Green Version]
- Torres, S.; Martins, J.A.; André, J.P.; Neves, M.; Santos, A.C.; Prata, M.I.M.; Geraldes Carlos, F.G.C. Radiolabelled 153Sm-chelates of glycoconjugates: Multivalence and topology effects on the targeting of the asialoglycoprotein receptor. Radiochim. Acta 2007, 95, 343. [Google Scholar] [CrossRef]
- Prata, M.I.M.; Santos, A.C.; Torres, S.; André, J.P.; Martins, J.A.; Neves, M.; García-Martín, M.L.; Rodrigues, T.B.; López-Larrubia, P.; Cerdán, S.; et al. Targeting of lanthanide (III) chelates of DOTA-type glycoconjugates to the hepatic asyaloglycoprotein receptor: Cell internalization and animal imaging studies. Contrast Media Mol. Imaging 2006, 1, 246–258. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, M.; Hara, Y.; Aoshima, K.; Kurihara, H.; Oshikawa, T.; Yamashita, M. Utilization of dendritic framework as a multivalent ligand: A functionalized gadolinium(III) carrier with glycoside cluster periphery. Tetrahedron Lett. 2000, 41, 8485–8488. [Google Scholar] [CrossRef]
- Fulton, D.A.; Elemento, E.M.; Aime, S.; Chaabane, L.; Botta, M.; Parker, D. Glycoconjugates of gadolinium complexes for MRI applications. Chem. Commun. 2006, 1064–1066. [Google Scholar] [CrossRef] [PubMed]
- Werz, D.B.; Ranzinger, R.; Herget, S.; Adibekian, A.; von der Lieth, C.-W.; Seeberger, P.H. Exploring the structural diversity of mammalian carbohydrates (“glycospace”) by statistical databank analysis. ACS Chem. Biol. 2007, 2, 685–691. [Google Scholar] [CrossRef]
- Varki, A.; Kannagi, R.; Toole, B.P. Chapter 44: Glycosylation Changes in Cancer, 2nd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2009; pp. 617–632. [Google Scholar]
- Vajaria, B.N.; Patel, K.R.; Begum, R.; Patel, P.S. Sialylation: An avenue to target cancer cells. Pathol. Oncol. Res. 2016, 22, 443–447. [Google Scholar] [CrossRef]
- Harduin-Lepers, A.; Krzewinski-Recchi, M.-A.; Colomb, F.; Foulquier, F.; Groux-Degroote, S.; Delannoy, P. Sialyltransferases functions in cancers. Front. Biosci. Elite Ed. 2012, E4, 499–515. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Jun, Y.-W.; Yeon, S.-I.; Shin, J.-S.; Cheon, J. Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew. Chem. Int. Ed. 2006, 45, 8160–8162. [Google Scholar] [CrossRef]
- Choi, J.-s.; Jun, Y.-w.; Yeon, S.-I.; Kim, H.C.; Shin, J.-S.; Cheon, J. Biocompatible heterostructured nanoparticles for multimodal biological detection. J. Am. Chem. Soc. 2006, 128, 15982–15983. [Google Scholar] [CrossRef]
- Peters, J.A. Interactions between boric acid derivatives and saccharides in aqueous media: Structures and stabilities of resulting esters. Coord. Chem. Rev. 2014, 268, 1–22. [Google Scholar] [CrossRef]
- Djanashvili, K.; Frullano, L.; Peters, J.A. Molecular recognition of sialic acid end groups by phenylboronates. Chem. Eur. J. 2005, 11, 4010–4018. [Google Scholar] [CrossRef]
- Frullano, L.; Rohovec, J.; Aime, S.; Maschmeyer, T.; Prata, M.I.; Pedroso de Lima, J.J.; Geraldes, C.F.G.C.; Peters, J.A. Towards targeted MRI: New MRI contrast agents for sialic acid detection. Chem. Eur. J. 2004, 10, 5205–5217. [Google Scholar] [CrossRef] [Green Version]
- Djanashvili, K.; Koning, G.A.; van der Meer, A.J.G.M.; Wolterbeek, H.T.; Peters, J.A. Phenylboronate 160Tb complexes for molecular recognition of glycoproteins expressed on tumor cells. Contrast Media Mol. Imaging 2007, 2, 35–41. [Google Scholar] [CrossRef]
- Geninatti Crich, S.; Alberti, D.; Szabo, I.; Aime, S.; Djanashvili, K. MRI visualization of melanoma cells by targeting overexpressed sialic acid with a GdIII-dota-en-pba imaging reporter. Angew. Chem. Int. Ed. 2013, 54, 1161–1164. [Google Scholar] [CrossRef]
- Martinelli, J.; Jiménez-Juárez, R.; Alberti, D.; Geninatti Crich, S.; Djanashvili, K. Solid-phase synthesis and evaluation of tumour-targeting phenylboronate-based MRI contrast agents. Org. Biomol. Chem. 2020, 18, 7899–7906. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, J.; Tei, L.; Geninatti Crich, S.; Alberti, D.; Djanashvili, K. Towards enhanced MRI performance of tumor-specific dimeric phenylboronic contrast agents. Molecules 2021, 26, 1730. [Google Scholar] [CrossRef] [PubMed]
- Tsoukalas, C.; Geninatti-Crich, S.; Gaitanis, A.; Tsotakos, T.; Paravatou-Petsotas, M.; Aime, S.; Jiménez-Juárez, R.; Anagnostopoulos, C.D.; Djanashvili, K.; Bouziotis, P. Tumor targeting via sialic acid: [68Ga]DOTA-en-pba as a new tool for molecular imaging of cancer with PET. Mol. Imaging Biol. 2018, 20, 798–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Cai, Y.; Xu, Z.; Zhu, D. Preparation and properties of tumor-targeting MRI contrast agent based on linear polylysine derivatives. Molecules 2019, 24, 1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laughlin, S.T.; Bertozzi, C.R. Imaging the glycome. Proc. Natl. Acad. Sci. USA 2009, 106, 12–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witte, C.; Martos, V.; Rose, H.M.; Reinke, S.; Klippel, S.; Schroeder, L.; Hackenberger, C.P.R. Live-cell MRI with Xenon hyper-CEST biosensors targeted to metabolically labeled cell-surface glycans. Angew. Chem. Int. Ed. 2015, 54, 2806–2810. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, J.; Li, X.; Cai, C.; Cao, X.; Shi, X.; Guo, R. A polydopamine-coated LAPONITE-stabilized iron oxide nanoplatform for targeted multimodal imaging-guided photothermal cancer therapy. J. Mater. Chem. B 2019, 7, 3856–3864. [Google Scholar] [CrossRef]
- Lu, H.; Xu, Y.; Qiao, R.; Lu, Z.; Wang, P.; Zhang, X.; Chen, A.; Zou, L.; Wang, Z. A novel clustered SPIO nanoplatform with enhanced magnetic resonance T2 relaxation rate for micro-tumor detection and photothermal synergistic therapy. Nano Res. 2020, 13, 2216–2225. [Google Scholar] [CrossRef]
- Reinauer, H.; Home, P.D.; Kanagasabapathy, A.S.; Heuck, C.-C. Laboratory Diagnosis and Monitoring of Diabetes Mellitus; World Health Organization: Geneva, Switzerland, 2002.
- Rohovec, J.; Maschmeyer, T.; Aime, S.; Peters, J.A. The structure of the sugar residue in glycated human serum albumin and its molecular recognition by phenylboronate. Chem. Eur. J. 2003, 9, 2193–2199. [Google Scholar] [CrossRef] [PubMed]
- Aime, S.; Botta, M.; Dastru, W.; Fasano, M.; Panero, M.; Arnelli, A. Synthesis and characterization of a novel DTPA-like gadolinium(III) complex: A potential reagent for the determination of glycated proteins by water proton NMR relaxation measurements. Inorg. Chem. 1993, 32, 2068–2071. [Google Scholar] [CrossRef]
- Battistini, E.; Mortillaro, A.; Aime, S.; Peters, J.A. Molecular recognition of sugars by lanthanide (III) complexes of a conjugate of N,N-bis [2-[bis [2-(1,1-dimethylethoxy)-2-oxoethyl]amino]ethyl]glycine and phenylboronic acid. Contrast Media Mol. Imaging 2007, 2, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Aime, S.; Digilio, G.; Fasano, M.; Paoletti, S.; Arnelli, A.; Ascenzi, P. Metal complexes as allosteric effectors of human hemoglobin: An NMR study of the interaction of the gadolinium(III) bis(m-boroxyphenylamide)diethylenetriaminepentaacetic acid complex with human oxygenated and deoxygenated hemoglobin. Biophys. J. 1999, 76, 2735–2743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Trokowski, R.; Sherry, A.D. A paramagnetic CEST agent for imaging glucose by MRI. J. Am. Chem. Soc. 2003, 125, 15288–15289. [Google Scholar] [CrossRef]
- Trokowski, R.; Zhang, S.; Sherry, A.D. Cyclen-based phenylboronate ligands and their Eu3+ complexes for sensing glucose by MRI. Bioconjug. Chem. 2004, 15, 1431–1440. [Google Scholar] [CrossRef]
- Ren, J.; Trokowski, R.; Zhang, S.; Malloy, C.R.; Sherry, A.D. Imaging the tissue distribution of glucose in livers using a PARACEST sensor. Magn. Reson. Med. 2008, 60, 1047–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, J.; Suh, E.; Kovacs, Z.; Sherry, A.D. A new MRI PARACEST agent for sensing glucose. Proc. Intl. Soc. Mag. Reson. Med. 2007, 15, 1178. [Google Scholar]
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Piel, M.; Rösch, F. Radiopharmaceutical chemistry. In Molecular Imaging in the Clinical Neurosciences, Neuromethods; Gründer, G., Ed.; Springer: New York, NY, USA, 2012; pp. 41–73. [Google Scholar]
- Amanlou, M.; Siadat, S.D.; Ebrahim, S.E.S.; Alavi, A.; Aghasadeghi, M.R.; Ardestani, M.S.; Shanehsaz, S.; Ghorbani, M.; Mehravi, B.; Alavidjeh, M.S.; et al. Gd3+-DTPA-DG: Novel nanosized dual anticancer and molecular imaging agent. Int. J. Nanomed. 2011, 6, 747–763. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Y.; Guo, D.J.; Huang, Z.W.; Cai, L.; He, L. The synthesis of a D-glucosamine contrast agent, Gd-DTPA-DG, and its application in cancer molecular imaging with MRI. Eur. J. Radiol. 2011, 79, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Luciani, A.; Olivier, J.-C.; Clement, O.; Siauve, N.; Brillet, P.-Y.; Bessoud, B.; Gazeau, F.; Uchegbu, I.F.; Kahn, E.; Frija, G.; et al. Glucose-receptor MR imaging of tumors: Study in mice with PEGylated paramagnetic niosomes. Radiology 2004, 231, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.H.; Hu, H.; Xiong, F.; Gu, N.; Geng, X.D.; Zhu, W.; Lin, J.; Wang, Y.F. Targeting Glut1-overexpressing MDA-MB-231 cells with 2-deoxy-D-g1ucose modified SPIOs. Eur. J. Radiol. 2012, 81, 95–99. [Google Scholar] [CrossRef]
- Shan, X.-H.; Wang, P.; Xiong, F.; Lu, H.-Y.; Hu, H. Detection of human breast cancer cells using 2-deoxy-D-glucose-functionalized superparamagnetic iron oxide nanoparticles. Cancer Biomark. 2017, 18, 367–374. [Google Scholar] [CrossRef]
- Zhao, L.; Zheng, Y.; Yan, H.; Xie, W.; Sun, X.; Li, N.; Tang, J. 2-Deoxy-D-glucose modified magnetic nanoparticles with dual functional properties: Nanothermotherapy and magnetic resonance imaging. J. Nanosci. Nanotechnol. 2016, 16, 2401–2407. [Google Scholar] [CrossRef]
- Bonnet, C.S.; Tei, L.; Botta, M.; Tóth, É. Responsive probes. In The Chemistry of Contrast Agents in Medical Magnetic Resonance, 2nd ed.; Merbach, A.E., Helm, L., Tóth, É., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2013; pp. 343–385. [Google Scholar]
- Hingorani, D.V.; Yoo, B.; Bernstein, A.S.; Pagel, M.D. Detecting enzyme activities with exogenous MRI contrast agents. Chem. Eur. J. 2014, 20, 9840–9850. [Google Scholar] [CrossRef] [Green Version]
- Moats, R.A.; Fraser, S.E.; Meade, T.J. A “smart” magnetic resonance imaging agent that reports on specific enzymatic activity. Angew. Chem. Int. Ed. Engl. 1997, 36, 726–728. [Google Scholar] [CrossRef]
- Louie, A.Y.; Huber, M.M.; Ahrens, E.T.; Rothbacher, U.; Moats, R.; Jacobs, R.E.; Fraser, S.E.; Meade, T.J. In vivo visualization of gene expression using magnetic resonance imaging. Nat. Biotechnol. 2000, 18, 321–325. [Google Scholar] [CrossRef]
- Major, J.L.; Meade, T.J. Bioresponsive, cell-penetrating, and multimeric MR contrast agents. Acc. Chem. Res. 2009, 42, 893–903. [Google Scholar] [CrossRef] [Green Version]
- Urbanczyk-Pearson, L.M.; Femia, F.J.; Smith, J.; Parigi, G.; Duimstra, J.A.; Eckermann, A.L.; Luchinat, C.; Meade, T.J. Mechanistic investigation of β-galactosidase-activated MR contrast agents. Inorg. Chem. 2008, 47, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Duimstra, J.A.; Femia, F.J.; Meade, T.J. A gadolinium chelate for detection of beta-glucuronidase: A self-immolative approach. J. Am. Chem. Soc. 2005, 127, 12847–12855. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Cheng, C.-M.; Su, Y.-Z.; Lee, W.-T.; Hsu, J.-S.; Liu, G.-C.; Cheng, T.-L.; Wang, Y.-M. Synthesis and characterization of a new bioactivated paramagnetic gadolinium (III) complex [Gd(DOTA-FPG)(H2O)] for tracing gene expression. Bioconjug. Chem. 2007, 18, 1716–1727. [Google Scholar] [CrossRef]
- Hanaoka, K.; Kikuchi, K.; Terai, T.; Komatsu, T.; Nagano, T. A Gd3+-based magnetic resonance imaging contrast agent sensitive to β-galactosidase activity utilizing a receptor-induced magnetization enhancement (RIME) phenomenon. Chem. Eur. J. 2008, 14, 987–995. [Google Scholar] [CrossRef]
- Arena, F.; Singh, J.B.; Gianolio, E.; Stefania, R.; Aime, S. β-Gal gene expression MRI reporter in melanoma tumor cells. Design, synthesis, and in vitro and in vivo testing of a Gd(III) containing probe forming a high relaxivity, melanin-like structure upon β-Gal enzymatic activation. Bioconjug. Chem. 2011, 22, 2625–2635. [Google Scholar] [CrossRef]
- Chauvin, T.; Durand, P.; Bernier, M.; Meudal, H.; Doan, B.-T.; Noury, F.; Badet, B.; Beloeil, J.-C.; Tóth, É. Detection of enzymatic activity by PARACEST MRI: A general approach to target a large variety of enzymes. Angew. Chem. Int. Ed. 2008, 47, 4370–4372. [Google Scholar] [CrossRef] [PubMed]
- Chauvin, T.; Torres, S.; Rosseto, R.; Kotek, J.; Badet, B.; Durand, P.; Tóth, É. Lanthanide (III) complexes that contain a self-immolative arm: Potential enzyme responsive contrast agents for magnetic resonance imaging. Chem. Eur. J. 2012, 18, 1408–1418. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Bonnet, C.S.; Eliseeva, S.V.; Lacerda, S.; Chauvin, T.; Retailleau, P.; Szeremeta, F.; Badet, B.; Petoud, S.; Tóth, É.; et al. Prototypes of lanthanide (III) agents responsive to enzymatic activities in three complementary imaging modalities: Visible/near-infrared luminescence, PARACEST-, and T1-MRI. J. Am. Chem. Soc. 2016, 138, 2913–2916. [Google Scholar] [CrossRef]
- Fernandez-Cuervo, G.; Tucker, K.A.; Malm, S.W.; Jones, K.M.; Pagel, M.D. Diamagnetic imaging agents with a modular chemical design for quantitative detection of β-galactosidase and β-glucuronidase activities with catalyCEST MRI. Bioconjug. Chem. 2016, 27, 2549–2557. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Liu, L.; Kodibagkar, V.D.; Mason, R.P. S-Gal®, a novel 1H MRI reporter for β-galactosidase. Magn. Reson. Med. 2010, 64, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, N.E.; Brown, G.; Scott, E.W.; Walter, G.A. lacZ as a genetic reporter for real-time MRI. Magn. Reson. Med. 2010, 63, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.-X.; Gulaka, P.K.; Liu, L.; Kodibagkar, V.D.; Mason, R.P. Novel Fe3+-based 1H MRI β-galactosidase reporter molecules. ChemPlusChem 2012, 77, 370–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Otten, P.; Ma, Z.; Cui, W.; Liu, L.; Mason, R.P. Novel NMR platform for detecting gene transfection: Synthesis and evaluation of fluorinated phenyl β-D-galactosides with potential application for assessing lacz gene expression. Bioconjug. Chem. 2004, 15, 1334–1341. [Google Scholar] [CrossRef] [PubMed]
- Kodibagkar, V.D.; Yu, J.; Liu, L.; Hetherington, H.P.; Mason, R.P. Imaging β-galactosidase activity using 19F chemical shift imaging of LacZ gene-reporter molecule 2-fluoro-4-nitrophenol-β-d-galactopyranoside. Magn. Reson. Imaging 2006, 24, 959–962. [Google Scholar] [CrossRef]
- Liu, L.; Kodibagkar, V.D.; Yu, J.-X.; Mason, R.P. 19F-NMR detection of lacZ gene expression via the enzymic hydrolysis of 2-fluoro-4-nitrophenyl β-d-galactopyranoside in vivo in PC3 prostate tumor xenografts in the mouse. FASEB J. 2007, 21, 2014–2019. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Otten, P.; Li, Y.; Koeneman, K.S.; Yu, J.; Mason, R.P. Novel NMR approach to assessing gene transfection: 4-fluoro-2-nitrophenyl-β-D-galactopyranoside as a prototype reporter molecule for β-galactosidase. Magn. Reson. Med. 2004, 51, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Keliris, A.; Mamedov, I.; Hagberg, G.E.; Logothetis, N.K.; Scheffler, K.; Engelmann, J. A smart 19F and 1H MRI probe with self-immolative linker as a versatile tool for detection of enzymes. Contrast Media Mol. Imaging 2012, 7, 478–483. [Google Scholar] [CrossRef]
- Mizukami, S.; Matsushita, H.; Takikawa, R.; Sugihara, F.; Shirakawa, M.; Kikuchi, K. 19F MRI detection of [small beta]-galactosidase activity for imaging of gene expression. Chem. Sci. 2011, 2, 1151–1155. [Google Scholar] [CrossRef]
- Shiftan, L.; Israely, T.; Cohen, M.; Frydman, V.; Dafni, H.; Stern, R.; Neeman, M. Magnetic resonance imaging visualization of hyaluronidase in ovarian carcinoma. Cancer Res. 2005, 65, 10316–10323. [Google Scholar] [CrossRef] [Green Version]
- Shiftan, L.; Neeman, M. Kinetic analysis of hyaluronidase activity using a bioactive MRI contrast agent. Contrast Media Mol. Imaging 2006, 1, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Wang, G.; Ren, J.; Zhang, B.; Yan, J.; Li, W.; Khashab, N.M. Enzymatically triggered multifunctional delivery system based on hyaluronic acid micelles. RSC Adv. 2012, 2, 12909–12914. [Google Scholar] [CrossRef]
- Granot, D.; Shapiro, E.M. Release activation of iron oxide nanoparticles: (REACTION) A novel environmentally sensitive MRI paradigm. Magn. Reson. Med. 2011, 65, 1253–1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brücher, E.; Tircsó, G.; Baranyai, Z.; Kovács, Z.; Sherry, A.D. Stability and toxicity of contrast agents. In Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, 2nd ed.; Merbach Andre, E., Helm, L., Tóth, É., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2013; pp. 157–208. [Google Scholar]
- Kanal, E.; Tweedle, M.F. Residual or retained gadolinium: Practical implications for radiologists and our patients. Radiology 2015, 275, 630–634. [Google Scholar] [CrossRef] [Green Version]
- Baranyai, Z.; Brücher, E.; Uggeri, F.; Maiocchi, A.; Tóth, I.; Andrási, M.; Gáspár, A.; Zékány, L.; Aime, S. The role of equilibrium and kinetic properties in the dissociation of Gd[DTPA-bis(methylamide)] (Omniscan) at near to physiological conditions. Chem. Eur. J. 2015, 21, 4789–4799. [Google Scholar] [CrossRef]
- Kanda, T.; Ishii, K.; Kawaguchi, H.; Kitajima, K.; Takenaka, D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: Relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 2014, 270, 834–841. [Google Scholar] [CrossRef] [Green Version]
- Robert, P.; Violas, X.; Grand, S.; Lehericy, S.; Idee, J.-M.; Ballet, S.; Corot, C. Linear gadolinium-based contrast agents are associated with brain gadolinium retention in healthy rats. Investig. Radiol. 2016, 51, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Kanda, T.; Fukusato, T.; Matsuda, M.; Toyoda, K.; Oba, H.; Kotoku, J.i.; Haruyama, T.; Kitajima, K.; Furui, S. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: Evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 2015, 276, 228–232. [Google Scholar] [CrossRef] [PubMed]
- EMA’s Final Opinion Confirms Restrictions on Use of Linear Gadolinium Agents in Body Scans. Available online: https://www.ema.europa.eu/en/news/emas-final-opinion-confirms-restrictions-use-linear-gadolinium-agents-body-scans (accessed on 16 November 2022).
- FDA Drug Safety Communication: FDA Identifies No Harmful Effects to Date with Brain Retention of Gadolinium-Based Contrast Agents for MRIs; Review to Continue. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-identifies-no-harmful-effects-date-brain-retention-gadolinium (accessed on 16 November 2022).
- Bradu, A.; Penescu, M.; Pitrou, C.; Hao, J.; Bourrinet, P. Pharmacokinetics, dialysability, and safety of gadopiclenol, a new gadolinium-based contrast agent, in patients with impaired renal function. Investig. Radiol. 2021, 56, 486–493. [Google Scholar] [CrossRef]
- Botta, M.; Carniato, F.; Esteban-Gomez, D.; Platas-Iglesias, C.; Tei, L. Mn(II) compounds as an alternative to Gd-based MRI probes. Future Med. Chem. 2019, 11, 1461–1483. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Zhu, Q.; Zeng, Y.; Zeng, Q.; Chen, X.; Zhan, Y. Manganese Oxide Nanoparticles as MRI Contrast Agents in Tumor Multimodal Imaging and Therapy. Int. J. Nanomed. 2019, 14, 8321–8344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranyai, Z.; Carniato, F.; Nucera, A.; Horváth, D.; Tei, L.; Platas-Iglesias, C.; Botta, M. Defining the conditions for the development of the emerging class of FeIII based MRI contrast agents. Chem. Sci. 2021, 12, 11138–11145. [Google Scholar] [CrossRef] [PubMed]
- Kras, E.A.; Snyder, E.M.; Sokolov, G.E. Morrow, Distinct coordination chemistry of Fe(III)-based MRI probes. Acc. Chem. Res. 2022, 55, 1435–1444. [Google Scholar] [CrossRef] [PubMed]
- Botta, M.; Geraldes, C.F.G.C.; Tei, L. High spin Fe(III)-doped nanostructures as T1 MR imaging probes. WIREs Nanomed. Nanobiotechnol. 2022, e1858. [Google Scholar] [CrossRef]
- Laurent, S.; Bridot, J.-L.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles for biomedical applications. Future Med. Chem. 2010, 2, 427–449. [Google Scholar] [CrossRef] [Green Version]
- Shultz, M.D.; Calvin, S.; Fatouros, P.P.; Morrison, S.A.; Carpenter, E.E. Enhanced ferrite nanoparticles as MRI contrast agents. J. Magn. Magn. Mater. 2007, 311, 464–468. [Google Scholar] [CrossRef]
- Peters, J.A. Relaxivity of manganese ferrite nanoparticles. Prog. Nucl. Magn. Reason. Spectrosc. 2020, 120–121, 72–94. [Google Scholar] [CrossRef] [PubMed]
- Boretius, S.; Frahm, J. Manganese-enhanced magnetic resonance imaging. In In Vivo NMR Imaging, Methods and Protocols; Schröder, L., Faber, C., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2011; Volume 771, pp. 531–568. [Google Scholar]
- Valdiglesias, V.; Kiliç, G.; Costa, C.; Fernández-Bertólez, N.; Pásaro, E.; Teixeira, J.P.; Laffon, B. Effects of iron oxide nanoparticles: Cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Environ. Mol. Mutagen. 2015, 56, 125–148. [Google Scholar] [CrossRef]
- Chrishtop, V.V.; Mironov, V.A.; Prilepskii, A.Y.; Nikonorova, V.G.; Vinogradov, V.V. Organ-specific toxicity of magnetic iron oxide-based nanoparticles. Nanotoxicology 2021, 15, 167–204. [Google Scholar] [CrossRef]
- Malhotra, N.; Lee, J.S.; Liman, R.A.D.; Ruallo, J.M.S.; Villaflores, O.B.; Ger, T.R.; Hsiao, C.D. Potential toxicity of iron oxide magnetic nanoparticles: A review. Molecules 2020, 25, 3159. [Google Scholar] [CrossRef]
- Zhou, Q.; Wei, Y. For Better or Worse, Iron Overload by Superparamagnetic Iron Oxide Nanoparticles as a MRI Contrast Agent for Chronic Liver Diseases. Chem. Res. Toxicol. 2017, 30, 73–80. [Google Scholar] [CrossRef]
- Nunn, A.D.P. The cost of developing imaging agents for routine clinical use. Investig. Radiol. 2006, 41, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Josephson, L.; Rudin, M. Barriers to clinical translation with diagnostic drugs. J. Nucl. Med. 2013, 54, 329–332. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geraldes, C.F.G.C.; Peters, J.A. MRI Contrast Agents in Glycobiology. Molecules 2022, 27, 8297. https://doi.org/10.3390/molecules27238297
Geraldes CFGC, Peters JA. MRI Contrast Agents in Glycobiology. Molecules. 2022; 27(23):8297. https://doi.org/10.3390/molecules27238297
Chicago/Turabian StyleGeraldes, Carlos F. G. C., and Joop A. Peters. 2022. "MRI Contrast Agents in Glycobiology" Molecules 27, no. 23: 8297. https://doi.org/10.3390/molecules27238297
APA StyleGeraldes, C. F. G. C., & Peters, J. A. (2022). MRI Contrast Agents in Glycobiology. Molecules, 27(23), 8297. https://doi.org/10.3390/molecules27238297