Chemical Composition, Nutritional Value, and Acceptance of Nut Bars with the Addition of Edible Insect Powder
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of the Bars
2.2. Protein and Amino Acid Composition
2.3. Fatty Acid Composition
2.4. Consumer Acceptance Analysis
2.5. Instrumental Analysis of Sensory Features
3. Materials and Methods
3.1. Materials
Preparation of Nut Bars with Insect Powder
3.2. Methods
3.2.1. Chemical Analysis
3.2.2. Amino Acid Analysis
3.2.3. SDS-PAGE Electrophoresis
3.2.4. Determination of Fatty Acid Profile
3.2.5. Consumer Acceptance Analysis
3.2.6. Analysis of Volatile Compounds Using an Electronic Nose
3.2.7. Analysis of Chemical Compounds Using an Electronic Tongue
4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Probst, L.; Frideres, L.; Pedersen, B.; Amato, F.; PwC Luxembourg. Safe and Nutritious Food New Nutrient Sources; Business Innovation Observatory Contract No 190/PP/ENT/CIP/12/C/N03C01; European Commission: Brussels, Belgium, 2015; pp. 1–17. [Google Scholar]
- Zborowski, M.; Mikulec, A. Dietary Catering: The Perfect Solution for Rational Food Management in Households. Sustainability 2022, 14, 9174. [Google Scholar] [CrossRef]
- Tomaszewska, M.; Bilska, B.; Kołożyn-Krajewska, D. The Influence of Selected Food Safety Practices of Consumers on Food Waste Due to Its Spoilage. Int. J. Environ. Res. Public Health 2022, 19, 8144. [Google Scholar] [CrossRef] [PubMed]
- Skotnicka, M.; Karwowska, K.; Kłobukowski, F.; Borkowska, A.; Pieszko, M. Possibilities of the development of edible insect-based foods in Europe. Foods 2021, 10, 766. [Google Scholar] [CrossRef] [PubMed]
- González, C.M.; Garzón, R.; Rosell, C.M. Insects as ingredients for bakery goods. A comparison study of H. illucens, A. domestica and T. molitor flours. Innov. Food Sci. Emerg. Technol. 2019, 51, 205–210. [Google Scholar] [CrossRef]
- Kowalski, S.; Mikulec, A.; Mickowska, B.; Skotnicka, M.; Mazurek, A. Wheat bread supplementation with various edible insect flours. Influence of chemical composition on nutritional and technological aspects. LWT—Food Sci. Technol. 2022, 159, 113220. [Google Scholar] [CrossRef]
- Osimani, A.; Milanović, V.; Cardinali, F.; Roncolini, A.; Garofalo, C.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; Raffaelli, N.; et al. Bread enriched with cricket powder (Acheta domesticus): A technological, microbiological and nutritional evaluation. Innov. Food Sci. Emerg. Technol. 2018, 48, 150–163. [Google Scholar] [CrossRef]
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; Food and Agriculture Organisation of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Megido, R.C.; Gierts, C.; Blecker, C.; Brostaux, Y.; Haubruge, É.; Alabi, T.; Francis, F. Consumer acceptance of insect-based alternative meat products in Western countries. Food Qual. Prefer. 2016, 52, 237–243. [Google Scholar] [CrossRef]
- Sosa, D.A.T.; Fogliano, V. Potential of insect-derived ingredients for food applications. In Insect Physiology and Ecology; Shields, V.D.C., Ed.; Intech Inc.: London, UK, 2017; pp. 215–231. [Google Scholar]
- De Oliveira, L.M.; da Silva Lucas, A.J.; Cadaval, C.L.; Mellado, M.S. Bread enriched with flour from cinereous cockroach (Nauphoeta cinerea). Innov. Food Sci. Emerg. Technol. 2017, 44, 30–35. [Google Scholar] [CrossRef]
- Cappelli, A.; Oliva, N.; Bonaccorsi, G.; Lorini, C.; Cini, E. Assessment of the rheological properties and bread characteristics obtained by innovative protein sources (Cicer arietinum, Acheta domesticus, Tenebrio molitor): Novel food or potential improvers for wheat flour? LWT—Food Sci. Technol. 2020, 118, 108867. [Google Scholar] [CrossRef]
- Khuenpet, K.; Pakasap, C.; Vatthanakul, S.; Kitthawee, S. Effect of larval-stage mealworm Tenebrio molitor powder on qualities of bread. Int. J. Agric. Technol. 2020, 16, 283–296. [Google Scholar]
- Roncolini, A.; Milanović, V.; Cardinali, F.; Osimani, A.; Garofalo, C.; Sabbatini, R.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; et al. Protein fortification with mealworm (Tenebrio molitor L.) powder: Effect on textural, microbiological, nutritional, and sensory features of bread. PLoS ONE 2019, 14, e0211747. [Google Scholar] [CrossRef]
- Kowalski, S.; Mikulec, A.; Skotnicka, M.; Mickowska, B.; Makarewicz, M.; Sabat, R.; Wywrocka-Gurgul, A.; Mazurek, A. Effect of the addition of edible insect flour from yellow mealworm (Tenebrio molitor) on the sensory acceptance, and the physicochemical and textural properties of sponge cake. Pol. J. Food Nutr. Sci. 2022, 72, 393–405. [Google Scholar] [CrossRef]
- García-Segovia, P.; Igual, M.; Noguerol, A.T.; Martínez-Monzó, J. Use of insects and pea powder as alternative protein and mineral sources in extruded snacks. Eur. Food Res. Technol. 2020, 246, 703–712. [Google Scholar] [CrossRef]
- Jantzen da Silva Lucas, A.; Menegon de Oliveira, L.; da Rocha, M.; Prentice, C. Edible insects: An alternative of nutritional, functional and bioactive compounds. Food Chem. 2020, 311, 126022. [Google Scholar] [CrossRef]
- Kulma, M.; Kouřimská, L.; Plachý, V.; Božik, M.; Adámková, A.; Vrabec, V. Effect of sex on the nutritional value of house cricket, Acheta domestica L. Food Chem. 2019, 272, 267–272. [Google Scholar] [CrossRef]
- Sun, H.; Necochea Velazco, O.; Lakemond, C.; Dekker, M.; Cadesky, L.; Mishyna, M. Differences in moisture sorption characteristics and browning of lesser mealworm (Alphitobius diaperinus) ingredients. LWT—Food Sci. Technol. 2021, 142, 110989. [Google Scholar] [CrossRef]
- Snacks Market Size, Share & Trends Analysis Report by Product (Frozen & Refrigerated, Fruit, Bakery, Savory, Confectionery, Dairy, Others), by Distribution Channel, by Region, and Segment Forecasts, 2022–2030. Available online: www.grandviewresearch.com/industry-analysis/snacks-market (accessed on 17 November 2022).
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef] [PubMed]
- Rumpold, B.A.; Schlüter, O.K. Potential and challenges of insects as an innovative source for food and feed production. Innov. Food Sci. Emerg. Technol. 2013, 17, 1–11. [Google Scholar] [CrossRef]
- Selenius, O.; Korpela, J.; Salminen, S.; Gallego, C.G. Effect of chitin and chitooligosaccharide on in vitro growth of Lactobacillus rhamnosus GG and Escherichia coli TG. Appl. Food Biotechnol. 2018, 5, 163–172. [Google Scholar] [CrossRef]
- Fernandes, J.C.; Tavaria, F.K.; Soares, J.C.; Ramos, O.S.; João Monteiro, M.; Pintado, M.E.; Xavier Malcata, F. Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli in food model systems. Food Microbiol. 2008, 25, 922–928. [Google Scholar] [CrossRef]
- Wu, R.A.; Ding, Q.; Yin, L.; Chi, X.; Sun, N.; He, R.; Luo, L.; Ma, H.; Li, Z. Comparison of the nutritional value of mysore thorn borer (Anoplophora chinensis) and mealworm larva (Tenebrio molitor): Amino acid, fatty acid, and element profiles. Food Chem. 2020, 323, 126818. [Google Scholar] [CrossRef] [PubMed]
- FAO; WHO. Protein Quality Evaluation Report of a Joint FAO/WHO Expert Consultation; Technical report; Food and Agriculture Organization: Rome, Italy, 1991. [Google Scholar]
- Radzikowska, U.; Rinaldi, A.O.; Çelebi Sözener, Z.; Karaguzel, D.; Wojcik, M.; Cypryk, K.; Akdis, M.; Akdis, C.A.; Sokolowska, M. The influence of dietary fatty acids on immune responses. Nutrients 2019, 11, 2990. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.; Jeong, H.; Jo, S.M.; Hong, S.J.; Kim, Y.J.; Kim, J.K.; Shinource, E.-C. Chemosensoric approach for microwave- or oven-roasted Coffea arabica L. (cv. Yellow Bourbon) using electronic sensors. LWT—Food Sci. Technol. 2022, 167, 113844. [Google Scholar] [CrossRef]
- Man, S.M.; Stan, L.; Păucean, A.; Chiş, M.S.; Mureşan, V.; Socaci, S.A.; Pop, A.; Muste, S. Nutritional, sensory, texture properties and volatile compounds profile of biscuits with roasted flaxseed flour partially substituting for wheat flour. Appl. Sci. 2021, 11, 4791. [Google Scholar] [CrossRef]
- Valdés García, A.; Sánchez Romero, R.; Juan Polo, A.; Prats Moya, S.; Maestre Pérez, S.E.; Beltrán Sanahuja, A. Volatile Profile of Nuts, Key Odorants and Analytical Methods for Quantification. Foods 2021, 10, 1611. [Google Scholar] [CrossRef]
- Vasilica, B.B.; Chiș, M.S.; Alexa, E.; Pop, C.; Păucean, A.; Man, S.; Igual, M.; Haydee, K.M.; Dalma, K.E.; Stănilă, S.; et al. The impact of insect flour on sourdough fermentation-fatty acids, amino-acids, minerals, and volatile profile. Insects 2022, 13, 576. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC—Association of Analytical Chemists International: Gainthersburg, MD, USA, 2006. [Google Scholar]
- Katano, H.; Takakuwa, M.; Hayakawa, H.; Kimoto, H. Determination of chitin based on the colorimetric assay of glucosamine in acidic hydrolysate. Anal. Sci. 2016, 32, 701–703. [Google Scholar] [CrossRef] [Green Version]
- Moore, S.; Stein, W.H. Chromatography of amino acids on sulfonated polystyrene resins. J. Biol. Chem. 1951, 192, 663–681. [Google Scholar] [CrossRef]
- Davidson, I. Hydrolysis of Samples for Amino Acid Analysis. In Protein Sequencing Protocols; Smith, B.J., Ed.; Humana Press: Totowa, NJ, USA, 2003; pp. 111–122. [Google Scholar] [CrossRef]
- Smith, A.J. Post column amino acid analysis. In Protein Sequencing Protocols, Methods in Molecular Biology™; Smith, B.J., Ed.; Humana Press: Totowa, NJ, USA, 2003; pp. 133–141. [Google Scholar] [CrossRef]
- Moore, S.; Spackman, D.H.; Stein, W.H. Chromatography of amino acids on sulfonated polystyrene resins. An improved system. Anal. Chem. 1958, 30, 1185–1190. [Google Scholar] [CrossRef]
- FAO. Dietary Protein Quality Evaluation in Human Nutrition: Report of an FAO Expert Consultation; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Schägger, H.; von Jagow, G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 1987, 166, 368–379. [Google Scholar] [CrossRef]
- Żyżelewicz, D.; Oracz, J.; Bilicka, M.; Kulbat-Warycha, K.; Klewicka, E. Influence of Freeze-Dried Phenolic-Rich Plant Powders on the Bioactive Compounds Profile, Antioxidant Activity and Aroma of Different Types of Chocolates. Molecules 2021, 26, 7058. [Google Scholar] [CrossRef] [PubMed]
- Raithore, S.; Bai, J.; Plotto, A.; Manthey, J.; Irey, M.; Baldwin, E. Electronic Tongue Response to Chemicals in Orange Juice that Change Concentration in Relation to Harvest Maturity and Citrus Greening or Huanglongbing (HLB) Disease. Sensors 2015, 15, 30062–30075. [Google Scholar] [CrossRef] [PubMed]
Samples | Protein | Ash | Fat | Dietary Fiber | |||
---|---|---|---|---|---|---|---|
Insoluble Fraction | Including Chitin | Soluble Fraction | Total | ||||
BW | 49.51 i ± 0.16 | 4.71 i ± 0.03 | 26.44 b ± 0.22 | 12.96 i ± 0.04 | 7.33 i ± 0.01 | 0.00 a ± 0.00 | 12.96 k ± 0.04 |
CF | 55.18 j ± 0.11 | 4.34 h ± 0.07 | 29.01 d ± 0.04 | 18.48 j ± 0.06 | 9.92 h ± 0.01 | 0.24 b ± 0.01 | 18.72 l ± 0.05 |
TM | 45.39 h ± 0.06 | 3.86 g ± 0.01 | 14.29 a ± 0.06 | 11.56 h ± 0.07 | 6.93 g ± 0.02 | 0.36 c ± 0.02 | 11.92 j ± 0.05 |
CN | 21.50 g ± 0.03 | 2.53 f ± 0.00 | 45.62 i ± 0.48 | 5.19 d ± 0.01 | 0.00 a ± 0.00 | 0.67 e ± 0.06 | 5.86 e ± 0.05 |
HN | 16.64 f ± 0.08 | 2.15 e ± 0.01 | 64.31 j ± 0.37 | 9.58 g ± 0.08 | 0.00 a ± 0.00 | 1.49 j ± 0.00 | 11.07 i ± 0.08 |
ST | 10.78 a ± 0.02 | 1.49 a ± 0.01 | 36.20 h ± 0.06 | 3.14 a ± 0.03 | 0.00 a ± 0.00 | 0.84 g ± 0.01 | 3.98 a ± 0.02 |
BW15 | 13.23 b ± 0.15 | 1.51 a ± 0.02 | 34.07 f ± 0.01 | 4.14 b ± 0.06 | 0.77 b ± 0.01 | 0.85 g ± 0.04 | 4.99 b ± 0.09 |
BW30 | 14.06 d ± 0.01 | 1.57 c ± 0.01 | 32.62 e ± 0.16 | 5.20 d ± 0.04 | 1.91 e ± 0.01 | 0.84 g ± 0.03 | 6.04 f ± 0.07 |
CF15 | 13.48 c ± 0.04 | 1.56 b ± 0.01 | 32.91 e ± 0.08 | 4.88 c ± 0.07 | 1.01 c ± 0.01 | 0.75 f ± 0.04 | 5.63 d ± 0.03 |
CF30 | 15.51 e ± 0.04 | 1.73 d ± 0.01 | 26.69 c ± 0.11 | 6.04 f ± 0.01 | 2.35 f ± 0.01 | 0.53 d ± 0.01 | 6.57 h ± 0.03 |
TM15 | 13.11 b ± 0.12 | 1.52 a ± 0.01 | 35.48 g ± 0.23 | 4.14 b ± 0.09 | 0.77 b ± 0.01 | 1.04 i ± 0.01 | 5.18 c ± 0.11 |
TM30 | 13.69 c ± 0.16 | 1.57 c ± 0.00 | 29.35 d ± 0.23 | 5.46 e ± 0.03 | 1.53 d ± 0.01 | 0.95 h ± 0.02 | 6.41 g ± 0.05 |
Samples | Protein (%) | Essential Amino Acids (mg/g of Protein) | Total EAA | |||||||
---|---|---|---|---|---|---|---|---|---|---|
His | Ile | Leu | Lys | Met | Phe | Thr | Val | |||
BW | 49.51 i ± 0.16 | 40.36 h ± 0.10 | 48.46 cb ± 1.13 | 74.78 b ± 1.96 | 73.17 hg ± 2.16 | 22.21 bc ± 2.68 | 48.76 b ± 1.87 | 44.98 c ± 1.02 | 64.20 cd ± 1.29 | 416.91 c ± 7.88 |
CF | 55.18 j ± 0.11 | 25.85 c ± 0.17 | 44.19 b ± 0.26 | 79.14 b ± 0.58 | 57.26 c ± 0.65 | 19.70 a ± 0.85 | 37.11 a ± 0.31 | 41.04 b ± 0.43 | 62.40 c ± 0.76 | 366.93 b ± 2.37 |
TM | 45.39 h ± 0.06 | 35.55 g ± 0.47 | 47.38 bc ± 0.78 | 77.47 b ± 1.28 | 60.85 dc ± 0.98 | 20.14 ab ± 2.19 | 36.87 a ± 0.56 | 43.89 c ± 0.85 | 67.62 de ± 1.15 | 389.79 b ± 4.06 |
CN | 21.50 g ± 0.03 | 18.79 b ± 0. | 32.35 a ± 0.89 | 57.83 a ± 1.45 | 39.55 b ± 0.86 | 23.70 cb ± 2.52 | 37.00 a ± 0.65 | 28.55 a ± 0.76 | 44.81 b ± 1.16 | 282.58 a ± 8.56 |
HN | 16.64 f ± 0.08 | 21.63 a ± 0.66 | 31.37 a ± 1.17 | 57.23 a ± 1.93 | 24.39 a ± 0.75 | 26.30 d ± 1.37 | 37.44 a ± 1.29 | 26.58 a ± 0.76 | 40.13 a ± 1.38 | 265.09 a ± 7.36 |
ST | 10.78 a ± 0.02 | 31.41 ef ± 3.00 | 63.46 g ± 6.00 | 109.67 e ± 10.55 | 68.82 fg ± 7.74 | 40.39 g ± 1.79 | 71.91 f ± 6.48 | 56.88 g ± 5.10 | 77.35 ih ± 6.96 | 519.88 e ± 44.12 |
BW15 | 13.23 b ± 0.15 | 30.12 e ± 0.33 | 56.43 f ± 0.36 | 94.71 dc ± 0.79 | 66.11 ef ± 2.61 | 36.99 e ± 1.05 | 61.73 de ± 0.51 | 50.78 ed ± 0.30 | 69.51 efg ± 0.31 | 466.39 d ± 3.84 |
BW30 | 14.06 d ± 0.01 | 33.21 fe ± 0.66 | 57.29 f ± 0.88 | 95.29 dc ± 1.59 | 69.46 gh ± 1.55 | 35.78 f ± 0.62 | 62.41 ed ± 2.51 | 52.93 fe ± 0.57 | 72.31 fgh ± 0.62 | 478.70 d ± 7.32 |
CF15 | 13.48 c ± 0.04 | 28.09 dc ± 0.41 | 55.80 ed ± 0.35 | 97.42 d ± 0.44 | 64.08 e ± 1.54 | 36.28 f ± 0.28 | 60.69 de ± 2.19 | 51.31 edf ± 0.26 | 70.97 efg ± 0.59 | 464.64 d ± 3.87 |
CF30 | 15.51 e ± 0.04 | 26.79 cd ± 0.36 | 52.70 d ± 1.09 | 91.13 c ± 1.66 | 60.05 dc ± 1.17 | 33.83 e ± 1.36 | 54.31 c ± 1.13 | 49.22 d ± 1.09 | 68.28 ef ± 1.50 | 436.32 c ± 7.87 |
TM15 | 13.11 b ± 0.12 | 30.89 ef ± 1.63 | 57.27 f ± 2.74 | 99.30 d ± 4.79 | 62.28 dce ± 4.49 | 34.62 ef ± 1.04 | 61.25 de ± 2.97 | 52.48 fe ± 2.59 | 73.19 gh ± 2.62 | 471.26 d ± 20.91 |
TM30 | 13.69 c ± 0.16 | 31.93 ef ± 2.29 | 57.30 f ± 3.667 | 98.40 d ± 6.46 | 66.51 ef ± 4.98 | 36.87 f ± 0.85 | 58.00 cd ± 3.61 | 54.03 f ± 2.86 | 74.25 hgf ± 4.39 | 477.29 d ± 28.55 |
Samples | AAS (%) | |||||||
---|---|---|---|---|---|---|---|---|
His | Ile | Leu | Lys | Thr | Val | AAA | SAA | |
BW | 252.24 | 161.53 | 122.59 | 152.43 | 179.93 | 160.49 | 338.68 | 156.63 |
CF | 161.59 | 147.31 | 129.74 | 119.29 | 164.16 | 156.60 | 233.49 | 126.13 |
TM | 222.20 | 157.95 | 127.01 | 126.77 | 175.57 | 169.05 | 271.87 | 144.82 |
CN | 117.43 | 107.83 | 94.81 | 82.40 | 114.18 | 112.01 | 158.532 | 165.31 |
HN | 135.22 | 104.58 | 93.82 | 50.82 | 106.33 | 100.33 | 152.964 | 195.59 |
ST | 196.31 | 211.52 | 179.78 | 143.37 | 227.52 | 193.37 | 275.83 | 317.37 |
BW15 | 188.23 | 188.09 | 155.27 | 137.74 | 203.13 | 173.78 | 270.24 | 272.26 |
BW30 | 207.57 | 190.96 | 156.22 | 144.72 | 211.72 | 180.78 | 296.59 | 265.28 |
CF15 | 175.55 | 186.01 | 159.71 | 133.51 | 205.25 | 177.42 | 260.84 | 264.90 |
CF30 | 167.48 | 175.67 | 149.39 | 125.10 | 196.88 | 170.71 | 244.28 | 253.41 |
TM15 | 193.03 | 190.89 | 162.79 | 129.75 | 209.90 | 182.97 | 272.44 | 262.53 |
TM30 | 199.58 | 190.99 | 161.31 | 138.56 | 216.11 | 185.63 | 280.26 | 269.59 |
Fatty Acids | BW | CF | TM | CN | HN | ST | BW15 | BW30 | CF15 | CF30 | TM15 | TM30 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C16:0 | 27.21 b ± 0.02 | 28.90 a ± 0.00 | 23.34 c ± 0.14 | 9.14 f ± 0.01 | 5.99 l ± 0.01 | 8.76 g ± 0.00 | 9.61 e ± 0.02 | 11.64 d ± 0.00 | 7.39 k ± 0.01 | 7.63 j ± 0.01 | 7.81 i ± 0.02 | 8.20 h ± 0.02 |
C18:0 | 8.55 b ± 0.01 | 11.85 a ± 0.04 | 4.68 j ± 0.04 | 8.25 c ± 0.04 | 3.06 k ± 0.03 | 5.60 f ± 0.01 | 5.72 e ± 0.00 | 5.03 i ± 0.01 | 5.63 f ± 0.00 | 5.32 h ± 0.00 | 5.97 d ± 0.01 | 5.43 g ± 0.01 |
C18:1 cis oleic | 34.12 i ± 0.00 | 25.85 j ± 0.00 | 54.87 h ± 0.36 | 62.97 g ± 0.03 | 82.44 a ± 0.06 | 70.96 d ± 0.05 | 70.51 e ± 0.08 | 69.56 f ± 0.02 | 73.88 b ± 0.00 | 73.87 b ± 0.00 | 73.10 c ± 0.06 | 73.11 c ± 0.00 |
C18:2 (9.12) n-6 cis | 24.84 a ± 0.02 | 23.36 b ± 0.05 | 7.80 l ± 0.04 | 17.70 c ± 0.01 | 7.87 k ± 0.00 | 12.75 d ± 0.02 | 12.35 e ± 0.01 | 10.93 j ± 0.00 | 11.73 g ± 0.001 | 11.81 f ± 0.00 | 11.06 h ± 0.02 | 11.00 i ± 0.02 |
C18:2 (9.12) n-6 trans | 0.10 b ± 0.00 | 0.28 a ± 0.00 | 0.11 b ± 0.01 | n.d. | n.d. | 0.02 d ± 0.00 | 0.02 cd ± 0.00 | 0.03 c ± 0.00 | 0.01 d ± 0.00 | 0.02 cd ± 0.00 | 0.01 d ± 0.00 | 0.01 d ± 0.00 |
∑SFA | 37.76 b ± 0.01 | 40.75 a ± 0.08 | 28.02 c ± 0.28 | 17.39 d ± 0.01 | 9.05 j ± 0.04 | 14.36 g ± 0.01 | 15.32 f ± 0.04 | 16.67 e ± 0.02 | 13.02 i ± 0.01 | 12.95 i ± 0.01 | 13.78 h ± 0.04 | 13.630 h ± 0.015 |
∑MUFA | 34.12 i ± 0.02 | 25.852 j ± 0.036 | 54.871 h ± 0.314 | 62.97 g ± 0.02 | 82.44 a ± 0.06 | 70.96 d ± 0.03 | 70.51 e ± 0.06 | 69.56 f ± 0.02 | 73.88 b ± 0.01 | 73.86 b ± 0.00 | 73.10 c ± 0.06 | 73.11 c ± 0.00 |
∑PUFA | 24.94 a ± 0.03 | 23.65 b ± 0.04 | 7.91 j ± 0.03 | 17.70 c ± 0.01 | 7.87 k ± 0.02 | 12.76 d ± 0.02 | 12.37 e ± 0.02 | 10.94 i ± 0.00 | 11.74 g ± 0.00 | 11.83 f ± 0.00 | 11.08 h ± 0.02 | 11.09 h ± 0.0124 |
∑PUFA/∑SFA | 0.69 h ± 0.00 | 0.58 j ± 0.00 | 0.28 k ± 0.00 | 1.02 a ± 0.00 | 0.87 c ± 0.00 | 0.89 d ± 0.00 | 0.81 e ± 0.00 | 0.66 i ± 0.00 | 0.90 c ± 0.00 | 0.91 b ± 0.00 | 0.80 g ± 0.00 | 0.81 f ± 0.00 |
Samples | Descriptors | |||||
---|---|---|---|---|---|---|
Appearance | Color | Smell | Texture | Smell | Overall Acceptance | |
ST | 6.56 b ± 0.82 | 6.40 b ± 1.00 | 6.40 cb ± 1.04 | 6.32 ba ± 1.03 | 6.48 dc ± 0.65 | 6.48 cb ± 0.77 |
BW15 | 6.37 b ± 1.01 | 6.22 b ± 1.09 | 6.00 bc ± 1.71 | 6.41 ba ± 0.93 | 6.30 cd ± 0.95 | 6.26 bc ± 0.81 |
BW30 | 5.92 b ± 1.61 | 5.76 ba ± 1.56 | 5.60 ba ± 1.35 | 5.88 a ± 1.36 | 6.28 cd ± 0.94 | 6.28 bc ± 0.89 |
CF15 | 6.23 b ± 1.18 | 6.04 b ± 1.37 | 5.31 ba ± 1.44 | 5.58 a ± 1.53 | 5.58 cb ± 1.42 | 5.73 ba ± 1.22 |
CF30 | 5.10 a ± 1.78 | 5.28 a ± 1.81 | 4.90 a ± 1.74 | 5.66 a ± 1.34 | 5.76 cb ± 1.41 | 5.79 ba ± 1.35 |
TM15 | 6.32 b ± 0.84 | 6.32 b ± 0.88 | 5.21 ba ± 1.41 | 5.91 a ± 1.29 | 5.35 b ± 1.76 | 5.76 ba ± 1.44 |
TM30 | 6.50 b ± 0.76 | 6.46 b ± 0.76 | 5.23 ba ± 1.66 | 5.73 a ± 1.34 | 4.54 a ± 1.98 | 4.77 a ± 1.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalski, S.; Oracz, J.; Skotnicka, M.; Mikulec, A.; Gumul, D.; Mickowska, B.; Mazurek, A.; Sabat, R.; Wywrocka-Gurgul, A.; Żyżelewicz, D. Chemical Composition, Nutritional Value, and Acceptance of Nut Bars with the Addition of Edible Insect Powder. Molecules 2022, 27, 8472. https://doi.org/10.3390/molecules27238472
Kowalski S, Oracz J, Skotnicka M, Mikulec A, Gumul D, Mickowska B, Mazurek A, Sabat R, Wywrocka-Gurgul A, Żyżelewicz D. Chemical Composition, Nutritional Value, and Acceptance of Nut Bars with the Addition of Edible Insect Powder. Molecules. 2022; 27(23):8472. https://doi.org/10.3390/molecules27238472
Chicago/Turabian StyleKowalski, Stanisław, Joanna Oracz, Magdalena Skotnicka, Anna Mikulec, Dorota Gumul, Barbara Mickowska, Aleksandra Mazurek, Renata Sabat, Anna Wywrocka-Gurgul, and Dorota Żyżelewicz. 2022. "Chemical Composition, Nutritional Value, and Acceptance of Nut Bars with the Addition of Edible Insect Powder" Molecules 27, no. 23: 8472. https://doi.org/10.3390/molecules27238472
APA StyleKowalski, S., Oracz, J., Skotnicka, M., Mikulec, A., Gumul, D., Mickowska, B., Mazurek, A., Sabat, R., Wywrocka-Gurgul, A., & Żyżelewicz, D. (2022). Chemical Composition, Nutritional Value, and Acceptance of Nut Bars with the Addition of Edible Insect Powder. Molecules, 27(23), 8472. https://doi.org/10.3390/molecules27238472