Enhance ZnO Photocatalytic Performance via Radiation Modified g-C3N4
Abstract
:1. Introduction
2. Results and Discussion
2.1. XRD and FT-IR Analysis
2.2. XPS Analysis
2.3. FE-SEM and HR-TEM Analysis
2.4. Photocatalytic Activity
2.5. Photocatalytic Activity
3. Experimental
3.1. Preparation of CN-X by Irradiation (X = 100, 200, 300, and 400 kGy)
3.2. Preparation of ZnO
3.3. Synthesis of CN-200/Z-500
3.4. Characterization
3.5. Photocatalytic Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zhang, Z.Y.; Sun, Y.S.; Wang, Y.L.; Yang, Y.; Wang, P.P.; Shi, L.F.; Feng, L.; Fang, S.Q.; Liu, Q.; Ma, L.Y.; et al. Synthesis and photocatalytic activity of g-C3N4/ZnO composite microspheres under visible light exposure. Ceram. Int. 2022, 3, 3293–3302. [Google Scholar] [CrossRef]
- Liu, W.; Wang, M.; Xu, C.; Chen, S. Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties. Chem. Eng. J. 2012, 209, 386–393. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Z.; Gao, X.X.; Yao, W.Q.; Wei, W.Q.; Chen, X.J.; Zong, R.L.; Zhu, Y.F. Core-shell g-C3N4@ZnO composites as photoanodes with double synergistic effects for enhanced visible-light photoelectrocatalytic activities. Appl. Catal. B Environ. 2017, 217, 169–180. [Google Scholar] [CrossRef]
- Le, A.T.; Duy, H.L.T.; Cheong, K.Y.; Pung, S.Y. Immobilization of zinc oxide-based photocatalysts for organic pollutant degradation: A review. J. Environ. Chem. Eng. 2022, 10, 108505. [Google Scholar] [CrossRef]
- Golli, A.E.; Fendrich, M.; Bazzanella, N.; Dridi, C.; Miotello, A.; Orlandi, M. Wastewater remediation with ZnO photocatalysts: Green synthesis and solar concentration as an economically and environmentally viable route to application. J. Environ. Manag. 2021, 286, 112226. [Google Scholar] [CrossRef]
- Wang, H.J.; Li, X.; Zhao, X.X.; Li, C.Y.; Song, X.H.; Zhang, P.; Huo, P.W.; Li, X. A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies. Chin. J. Catal. 2022, 43, 178–214. [Google Scholar] [CrossRef]
- Wang, H.P.; Yang, Y.L.; Zhou, Z.W.; Li, X.; Gao, J.F.; Yu, R.; Li, J.Q.; Wang, N.; Chang, H.Q. Photocatalysis-enhanced coagulation for removal of intracellular organic matter from Microcystis aeruginosa: Efficiency and mechanism. Sep. Purif. Technol. 2022, 283, 120192. [Google Scholar] [CrossRef]
- Cheung, K.P.S.; Sarkar, S.; Gevorgyan, V. Visible light-induced transition metal catalysis. Chem. Rev. 2022, 122, 1543–1625. [Google Scholar] [CrossRef]
- Lincho, J.; Zaleska-Medynska, A.; Martins, R.C.; Gomes, J. Nanostructured photocatalysts for the abatement of contaminants by photocatalysis and photocatalytic ozonation: An overview. Sci. Total Environ. 2022, 837, 155776. [Google Scholar] [CrossRef]
- Qumar, U.; Hassan, J.Z.; Bhatti, R.A.; Raza, A.; Nazir, G.; Nabgan, W.; Ikram, M. Photocatalysis vs adsorption by metal oxide nanoparticles. J. Mater. Sci. Technol. 2022, 131, 122–166. [Google Scholar] [CrossRef]
- Su, G.W.; Feng, T.Y.; Huang, Z.J.; Zheng, Y.N.; Zhang, W.X.; Liu, G.Z.; Wang, W.; Wei, H.Y.; Dang, L.P. MOF derived hollow CuO/ZnO nanocages for the efficient and rapid degradation of fluoroquinolones under natural sunlight. Chem. Eng. J. 2022, 436, 135119. [Google Scholar] [CrossRef]
- Sanakousar, F.M.; Vidyasagar, C.C.; Jiménez-Pérez, V.M.; Prakash, K. Recent progress on visible-light-driven metal and non-metal doped ZnO nanostructures for photocatalytic degradation of organic pollutants. Mater. Sci. Semicond. Process. 2022, 140, 106390. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanji, K.; Navio, J.A.; Chaqroune, A.; Naja, J.; Puga, F.; Hidalgo, M.C.; Kherbeche, A. Fast photodegradation of rhodamine B and caffeine using ZnO-hydroxyapatite composites under UV-light illumination. Catal. Today 2022, 388–389, 176–186. [Google Scholar] [CrossRef]
- Meng, F.P.; Liu, Y.Z.; Wang, J.; Tan, X.Y.; Sun, H.Q.; Liu, S.M.; Wang, S.B. Temperature dependent photocatalysis of g-C3N4, TiO2 and ZnO: Differences in photoactive mechanism. J. Colloid Interface Sci. 2018, 532, 321–330. [Google Scholar] [CrossRef]
- Naseri, A.; Samadi, M.; Pourjavadi, A.; Ramakrishna, S.; Moshfegh, A.Z. Enhanced photocatalytic activity of ZnO/g-C3N4 nanofibers constituting carbonaceous species under simulated sunlight for organic dye removal. Ceram. Int. 2021, 47, 26185–26196. [Google Scholar] [CrossRef]
- Li, N.; Tian, Y.; Zhao, J.H.; Zhang, J.; Zuo, W.; Kong, L.C.; Cui, H. Z-scheme 2D/3D g-C3N4@ZnO with enhanced photocatalytic activity for cephalexin oxidation under solar light. Chem. Eng. J. 2018, 352, 412–422. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, J.; Che, H.N.; Wang, P.F.; Liu, B.; Ao, Y.H. Recent advances in g-C3N4-based donor-acceptor photocatalysts for photocatalytic hydrogen evolution: An exquisite molecular structure engineering. ACS Mater. Lett. 2022, 4, 2166–2186. [Google Scholar] [CrossRef]
- Wang, L.Y.; Wang, K.H.; He, T.T.; Zhao, Y.; Song, H.; Wang, H. Graphitic carbon nitride-based photocatalytic materials: Preparation strategy and application. ACS Sustain. Chem. Eng. 2020, 8, 16048–16085. [Google Scholar] [CrossRef]
- Tang, C.S.; Cheng, M.; Lai, C.; Li, L.; Yang, X.F.; Du, L.; Zhang, G.X.; Wang, G.F.; Yang, L. Recent progress in the applications of non-metal modified graphitic carbon nitride in photocatalysis. Coordin. Chem. Rev. 2023, 474, 214846. [Google Scholar] [CrossRef]
- Bai, L.Q.; Huang, H.W.; Yu, S.X.; Zhang, D.Y.; Huang, H.T.; Zhang, Y.H. Role of transition metal oxides in g-C3N4-based heterojunctions for photocatalysis and supercapacitors. J. Energy Chem. 2022, 64, 214–235. [Google Scholar] [CrossRef]
- Lin, B.; Xia, M.Y.; Xu, B.R.; Chong, B.; Chen, Z.H.; Yang, G.D. Bio-inspired nanostructured g-C3N4-based photocatalysts: A comprehensive review. Chin. J. Catal. 2022, 43, 2141–2172. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zhang, H.J.; Cheng, L.L.; Wang, Y.J.; Miao, Y.; Ding, G.J.; Jiao, Z. Two physical strategies to reinforce a nonmetallic photocatalyst, g-C3N4: Vacuum heating and electron beam irradiation. RSC Adv. 2016, 6, 14002–14008. [Google Scholar] [CrossRef]
- Jin, C.; Li, W.; Chen, Y.; Li, R.; Huo, J.B.; He, Q.Y.; Wang, Y.Z. Efficient photocatalytic degradation and adsorption of tetracycline over type-II heterojunctions consisting of ZnO nanorods and K-doped exfoliated g-C3N4 nanosheets. Ind. Eng. Chem. Res. 2020, 59, 2860–2873. [Google Scholar] [CrossRef]
- Liu, Y.J.; Jin, Y.L.; Cheng, X.X.; Ma, J.Y.; Li, L.L.; Fan, X.X.; Ding, Y.; Han, Y.; Tao, R. K+-Doped ZnO/g-C3N4 heterojunction: Controllable preparation, efficient charge separation, and excellent photocatalytic VOC degradation performance. Ind. Eng. Chem. Res. 2022, 61, 187–197. [Google Scholar] [CrossRef]
- Jiang, X.L.; Wang, W.T.; Wang, H.; He, Z.H.; Yang, Y.; Wang, K.; Liu, Z.T.; Han, B.X. Solvent-free aerobic photocatalytic oxidation of alcohols to aldehydes over ZnO/C3N4. Green Chem. 2022, 24, 7652–7660. [Google Scholar] [CrossRef]
- Thuan, D.V.; Nguyen, T.B.H.; Pham, T.H.; Kim, J.; Chu, T.T.H.; Nguyen, M.V.; Nguyen, K.D.; Al-Onazi, W.A.; Elshikh, M.S. Photodegradation of ciprofloxacin antibiotic in water by using ZnO-doped g-C3N4 photocatalyst. Chemosphere 2022, 308, 136408. [Google Scholar] [CrossRef]
- Sun, Q.; Sun, Y.; Zhou, M.Y.; Cheng, H.M.; Chen, H.Y.; Dorus, B.; Lu, M.; Le, T. A 2D/3D g-C3N4/ZnO heterojunction enhanced visible-light driven photocatalytic activity for sulfonamides degradation. Ceram. Int. 2022, 48, 7283–7290. [Google Scholar] [CrossRef]
- Ding, C.M.; Zhu, Q.R.; Yang, B.; Petropoulos, E.; Xue, L.H.; Feng, Y.F.; He, S.Y.; Yang, L.Z. Efficient photocatalysis of tetracycline hydrochloride (TC-HCl) from pharmaceutical wastewater using AgCl/ZnO/g-C3N4 composite under visible light: Process and mechanisms. J. Environ. Sci. 2023, 126, 249–262. [Google Scholar] [CrossRef]
- Ganesh, V.; Yahia, I.S.; Chidhambaram, N. Facile synthesis of ZnO:Sb/g-C3N4 composite materials for photocatalysis applications. J. Clust. Sci. 2022, 1–10. [Google Scholar] [CrossRef]
- Li, X.F.; Li, M.; Yang, J.H.; Li, X.Y.; Hu, T.J.; Wang, J.S.; Sui, Y.R.; Wu, X.T.; Kong, L.N. Synergistic effect of efficient adsorption g-C3N4/ZnO composite for photocatalytic property. J. Phys. Chem. Solids 2014, 75, 441–446. [Google Scholar] [CrossRef]
- Nie, N.; Zhang, L.Y.; Fu, J.W.; Cheng, B.; Yu, J.G. Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance. Appl. Surf. Sci. 2018, 441, 12–22. [Google Scholar] [CrossRef]
- Wang, Y.J.; Shi, R.; Lin, J.; Zhu, Y.F. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ. Sci. 2011, 4, 2922–2929. [Google Scholar] [CrossRef]
y = ln(C0/Ct) | R2 | Degradation Rate (%) | |
---|---|---|---|
10% CN-200/Z-400 | Y = 0.02194X + 0.07045 | 0.96537 | 94.6% |
10% CN-200/Z-500 | Y = 0.02796X + 0.27089 | 0.97759 | 97.376% |
10% CN-200/Z-600 | Y = 0.01819X + 0.07533 | 0.99565 | 89.529% |
10% CN-200/Z-700 | Y = 0.0247X + 0.15485 | 0.97284 | 96.195% |
y = ln(C0/Ct) | R2 | Degradation Rate (%) | |
---|---|---|---|
5% CN-200/Z-500 | Y = 0.01705X + 0.33072 | 0.92233 | 89.637% |
10% CN-200/Z-500 | Y = 0.03473X + 0.21363 | 0.98704 | 98.857% |
15% CN-200/Z-500 | Y = 0.02599X + 0.23163 | 0.98333 | 96.249% |
20% CN-200/Z-500 | Y = 0.02417X + 0.35889 | 0.95197 | 96.133% |
Z-500 | Y = 0.01223X + 0.14589 | 0.95744 | 80.971% |
CN-200 | Y = 0.02809X + 0.03753 | 0.99826 | 96.776% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yang, X.; Lou, J.; Huang, Y.; Peng, J.; Li, Y.; Liu, Y. Enhance ZnO Photocatalytic Performance via Radiation Modified g-C3N4. Molecules 2022, 27, 8476. https://doi.org/10.3390/molecules27238476
Wang Y, Yang X, Lou J, Huang Y, Peng J, Li Y, Liu Y. Enhance ZnO Photocatalytic Performance via Radiation Modified g-C3N4. Molecules. 2022; 27(23):8476. https://doi.org/10.3390/molecules27238476
Chicago/Turabian StyleWang, Yayang, Xiaojie Yang, Jiahui Lou, Yaqiong Huang, Jian Peng, Yuesheng Li, and Yi Liu. 2022. "Enhance ZnO Photocatalytic Performance via Radiation Modified g-C3N4" Molecules 27, no. 23: 8476. https://doi.org/10.3390/molecules27238476
APA StyleWang, Y., Yang, X., Lou, J., Huang, Y., Peng, J., Li, Y., & Liu, Y. (2022). Enhance ZnO Photocatalytic Performance via Radiation Modified g-C3N4. Molecules, 27(23), 8476. https://doi.org/10.3390/molecules27238476