Synthesis and Anti-Inflammatory Activity of 1-Methylhydantoin Cinnamoyl Imides
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. General Synthetic Method
3.3. 3-cinnamoyl-1-methylimidazolidine-2,4-dione (1)
3.4. (E)-3-(3-(furan-2-yl)acryloyl)-1-methylimidazolidine-2,4-dione (2)
3.5. (E)-3-(3-(benzo[d][1,3]dioxol-5-yl)acryloyl)-1-methylimidazolidine-2,4-dione (3)
3.6. (E)-4-(3-(3-methyl-2,5-dioxoimidazolidin-1-yl)-3-oxoprop-1-en-1-yl)phenyl acetate (4)
3.7. (E)-2-methoxy-4-(3-(3-methyl-2,5-dioxoimidazolidin-1-yl)-3-oxoprop-1-en-1-yl)phenyl acetate (5)
3.8. In Vitro COX Inhibition Assay
3.9. Cell Culture
3.10. Cytotoxicity Determination
3.11. Determination of NO, TNF-α, IL-1β Content
3.12. Molecular Docking
3.13. Animals
3.14. Anti-Inflammatory Activity In Vivo
3.15. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Petreski, T.; Piko, N.; Ekart, R.; Hojs, R.; Bevc, S. Review on Inflammation Markers in Chronic Kidney Disease. Biomedicines 2021, 9, 16. [Google Scholar] [CrossRef]
- Theeuwes, W.F.; van den Bosch, M.H.J.; Thurlings, R.M.; Blom, A.B.; van Lent, P. The role of inflammation in mesenchymal stromal cell therapy in osteoarthritis, perspectives for post-traumatic osteoarthritis: A review. Rheumatology 2021, 60, 1042–1053. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Kim, E.H.; Hahm, K.B. Oxidative stress in inflammation-based gastrointestinal tract diseases: Challenges and opportunities. J. Gastroenterol. Hepatol. 2012, 27, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Samuel, M.; Tardif, J.C. Lessons learned from large Cardiovascular Outcome Trials targeting inflammation in cardiovascular disease (CANTOS, CIRT, COLCOT and LoDoCo2). Futur. Cardiol. 2021, 17, 411–414. [Google Scholar] [CrossRef]
- Suss, P.; Lana, A.J.; Schlachetzki, J.C.M. Chronic peripheral inflammation: A possible contributor to neurodegenerative diseases. Neural Regen. Res. 2021, 16, 1711–1714. [Google Scholar]
- Ailuno, G.; Zuccari, G.; Baldassari, S.; Lai, F.; Caviglioli, G. Anti-Vascular Cell Adhesion Molecule-1 Nanosystems: A Promising Strategy Against Inflammatory Based Diseases. J. Nanosci. Nanotechnol. 2021, 21, 2793–2807. [Google Scholar] [CrossRef]
- Sagandykova, G.N.; Pomastowski, P.P.; Kaliszan, R.; Buszewski, B. Modern analytical methods for consideration of natural biological activity. Trac-Trends Anal. Chem. 2018, 109, 198–213. [Google Scholar] [CrossRef]
- Ho, T.T.; Tran, Q.T.N.; Chai, C.L.L. The polypharmacology of natural products. Future Med. Chem. 2018, 10, 1361–1368. [Google Scholar] [CrossRef]
- Olgac, A.; Orhan, I.E.; Banoglu, E. The potential role of in silico approaches to identify novel bioactive molecules from natural resources. Future Med. Chem. 2017, 9, 1663–1684. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.M.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [Green Version]
- Nishinami, S.; Ikeda, K.; Nagao, T.; Koyama, A.H.; Arakawa, T.; Shiraki, K. Aromatic interaction of hydantoin compounds leads to virucidal activities. Biophys. Chem. 2021, 275, 106621. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Chen, A.N.; Lan, J.Y.; Ren, L.; Wei, Y.F.; Gao, L.N. Protective mechanism of 1-methylhydantoin against lung injury induced by paraquat poisoning. PLoS ONE 2019, 14, e0222521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Wang, F.; Guo, H.; Wang, S.; Ni, S.; Zhou, Y.; Wang, Z.; Bao, H.; Wang, Y. Antitussive and Anti-inflammatory Dual-active Agents Developed from Natural Product Lead Compound 1-Methylhydantoin. Molecules 2019, 24, 2355. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.B.; Kong, D.J.; Wu, B.; Wang, S.H.; Wang, Y.S. Synthesis and Evaluation of Anti-Inflammatory and Antitussive Activity of Hydantion Derivatives. Lett. Drug Des. Discov. 2012, 9, 638–642. [Google Scholar] [CrossRef]
- Ruwizhi, N.; Aderibigbe, B.A. Cinnamic Acid Derivatives and Their Biological Efficacy. Int. J. Mol. Sci. 2020, 21, 5712. [Google Scholar] [CrossRef] [PubMed]
- Belsito, D.; Bickers, D.; Bruze, M.; Calow, P.; Greim, H.; Hanifin, J.M.; Rogers, A.E.; Saurat, J.H.; Sipes, I.G.; Tagami, H.; et al. A toxicologic and dermatologic assessment of related esters and alcohols of cinnamic acid and cinnamyl alcohol when used as fragrance ingredients. Food Chem. Toxicol. 2007, 45, S1–S23. [Google Scholar] [CrossRef] [PubMed]
- Sova, M. Antioxidant and Antimicrobial Activities of Cinnamic Acid Derivatives. Mini-Rev. Med. Chem. 2012, 12, 749–767. [Google Scholar] [CrossRef]
- De, P.; Baltas, M.; Bedos-Belval, F. Cinnamic Acid Derivatives as Anticancer Agents—A Review. Curr. Med. Chem. 2011, 18, 1672–1703. [Google Scholar] [CrossRef]
- Liao, J.C.; Deng, J.S.; Chiu, C.S.; Hou, W.C.; Huang, S.S.; Shie, P.H.; Huang, G.J. Anti-Inflammatory Activities of Cinnamomum cassia Constituents In Vitro and In Vivo. Evid. Based Complement. Altern. Med. 2012, 2012, 12. [Google Scholar] [CrossRef] [Green Version]
- Hosek, J.; Kos, J.; Strharsky, T.; Cerna, L.; Starha, P.; Vanco, J.; Travnicek, Z.; Devinsky, F.; Jampilek, J. Investigation of Anti-Inflammatory Potential of N-Arylcinnamamide Derivatives. Molecules 2019, 24, 15. [Google Scholar] [CrossRef] [Green Version]
- Dothager, R.S.; Putt, K.S.; Allen, B.J.; Leslie, B.J.; Nesterenko, V.; Hergenrother, P.J. Synthesis and identification of small molecules that potently induce apoptosis in melanoma cells through G1 cell cycle arrest. J. Am. Chem. Soc. 2005, 127, 8686–8696. [Google Scholar] [CrossRef]
- Narasimhan, B.; Belsare, D.; Pharande, D.; Mourya, V.; Dhake, A. Esters, amides and substituted derivatives of cinnamic acid: Synthesis, antimicrobial activity and QSAR investigations. Eur. J. Med. Chem. 2004, 39, 827–834. [Google Scholar] [CrossRef]
- De, P.; Yoya, G.K.; Constant, P.; Bedos-Belval, F.; Duran, H.; Saffon, N.; Daffe, M.; Baltas, M. Design, Synthesis, and Biological Evaluation of New Cinnamic Derivatives as Antituberculosis Agents. J. Med. Chem. 2011, 54, 1449–1461. [Google Scholar] [CrossRef] [PubMed]
- Balsamo, A.; Crotti, P.; Lapucci, A.; Macchia, B.; Macchia, F.; Cuttica, A.; Passerini, N. Structure--activity relationship in cinnamamides. 3. Synthesis and anticonvulsant activity evaluation of some derivatives of (E)- and (Z)-m-(trifluoromethyl)cinnamamide. J. Med. Chem. 1981, 24, 525–532. [Google Scholar] [CrossRef]
- Abe, Y.; Kayakiri, H.; Satoh, S.; Inoue, T.; Sawada, Y.; Inamura, N.; Asano, M.; Hatori, C.; Sawai, H.; Oku, T.; et al. A novel class of orally active non-peptide bradykinin B-2 receptor antagonist. 2. Overcoming the species difference between guinea pig and man. J. Med. Chem. 1998, 41, 4053–4061. [Google Scholar] [CrossRef] [PubMed]
- Doherty, E.M.; Fotsch, C.; Bo, Y.X.; Chakrabarti, P.P.; Chen, N.; Gavva, N.; Han, N.H.; Kelly, M.G.; Kincaid, J.; Klionsky, L.; et al. Discovery of potent, orally available vanilloid receptor-1 antagonists. Structure-activity relationship of N-aryl cinnamides. J. Med. Chem. 2005, 48, 71–90. [Google Scholar] [CrossRef]
- Liu, G.; Huth, J.R.; Olejniczak, E.T.; Mendoza, R.; DeVries, P.; Leitza, S.; Reilly, E.B.; Okasinski, G.F.; Fesik, S.W.; von Geldern, T.W. Novel p-arylthio cinnamides as antagonists of leukocyte function-associated antigen-1/intracellular adhesion molecule-1 interaction. 2. Mechanism of inhibition and structure-based improvement of pharmaceutical properties. J. Med. Chem. 2001, 44, 1202–1210. [Google Scholar] [CrossRef]
- Gaikwad, N.; Nanduri, S.; Madhavi, Y.V. Cinnamamide: An insight into the pharmacological advances and structure-activity relationships. Eur. J. Med. Chem. 2019, 181, 24. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Rao, A.S.; Nandal, A.; Kumar, S.; Yadava, S.S.; Ganaie, S.A.; Narasimhan, B. Phytochemical and pharmacological review of Cinnamomum verum J. Presl-a versatile spice used in food and nutrition. Food Chem. 2021, 338, 24. [Google Scholar] [CrossRef] [PubMed]
- Zapata-Morales, J.R.; Alonso-Castro, A.J.; Munoz-Martinez, G.S.; Martinez-Rodriguez, M.M.; Nambo-Arcos, M.E.; Brennan-Bourdon, L.M.; Aragon-Martinez, O.H.; Martinez-Morales, J.F. In vitro and in vivo synergistic interactions between the flavonoid rutin with paracetamol and non-steroidal anti-inflammatory drugs. Arch. Med. Res. 2021, 4, 3. [Google Scholar]
- Apostolova, E.; Lukova, P.; Baldzhieva, A.; Katsarov, P.; Nikolova, M.; Iliev, I.; Peychev, L.; Trica, B.; Oancea, F.; Delattre, C.; et al. Immunomodulatory and Anti-Inflammatory Effects of Fucoidan: A Review. Polymers 2020, 12, 22. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. Immunological and Inflammatory Functions of the Interleukin-1 Family. Annu. Rev. Immunol. 2009, 27, 519–550. [Google Scholar] [CrossRef] [PubMed]
- Muniandy, K.; Gothai, S.; Badran, K.M.H.; Suresh Kumar, S.; Esa, N.M.; Arulselvan, P. Suppression of Proinflammatory Cytokines and Mediators in LPS-Induced RAW 264.7 Macrophages by Stem Extract of Alternanthera sessilis via the Inhibition of the NF-κB Pathway. J. Immunol. Res. 2018, 2018, 3430684. [Google Scholar] [CrossRef] [Green Version]
- He, M.M.; Smith, A.S.; Oslob, J.D.; Flanagan, W.M.; Braisted, A.C.; Whitty, A.; Cancilla, M.T.; Wang, J.; Lugovskoy, A.A.; Yoburn, J.C.; et al. Small-molecule inhibition of TNF-alpha. Science 2005, 310, 1022–1025. [Google Scholar] [CrossRef] [PubMed]
- Vigers, G.P.; Anderson, L.J.; Caffes, P.; Brandhuber, B.J. Crystal structure of the type-I interleukin-1 receptor complexed with interleukin-1beta. Nature 1997, 386, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Pu, J.S.; Liu, D.; Yu, W.S.; Shao, Y.Y.; Yang, G.W.; Xiang, Z.H.; He, N.J. Anti-Inflammatory and Antinociceptive Properties of Flavonoids from the Fruits of Black Mulberry (Morus nigra L.). PLoS ONE 2016, 11, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | Retention Time (min) | Plate Number | Purity (%) |
---|---|---|---|
1 | 3.586 | 10446 | 99.7 |
2 | 3.271 | 10189 | 99.0 |
3 | 3.397 | 9925 | 99.7 |
4 | 3.352 | 9201 | 95.5 |
5 | 3.368 | 9700 | 98.8 |
Compound | R | CC50 (μM) | Concentration (μM) | Survival Rate (%) |
---|---|---|---|---|
1 | 264 | ≤20 | ≥95 | |
2 | 329 | ≤80 | ||
3 | 184 | ≤20 | ||
4 | 302 | ≤80 | ||
5 | 232 | ≤20 |
Compound | COX-1 (kcal/mol) | COX-2 (kcal/mol) | iNOS (kcal/mol) | nNOS (kcal/mol) | eNOS (kcal/mol) | TNF-α (kcal/mol) | IL-1β (kcal/mol) |
---|---|---|---|---|---|---|---|
MHD | −4.8 | −4.6 | −4.8 | −4.9 | −4.5 | −3.6 | −4.4 |
1 | −7.3 | −7.3 | −7.6 | −8.6 | −9.5 | −5.6 | −7.5 |
2 | −6.9 | −7.3 | −8.2 | −7.6 | −7.9 | −5.3 | −6.8 |
3 | −7.3 | −7.5 | −8.1 | −8.1 | −8.9 | −6.1 | −8.0 |
4 | −6.9 | −6.7 | −7.1 | −8.3 | −8.8 | −6.4 | −7.5 |
5 | −7.2 | −6.7 | −7.7 | −8.2 | −8.5 | −6.3 | −7.4 |
Group | Dose (mg/kg) | Degree of Edema (mg) | Inhibition (%) |
---|---|---|---|
Control | / | 12.25 ± 1.48 | / |
1 | 100 | 6.84 ± 0.61 ** | 44.16 |
50 | 8.47 ± 0.64 ** | 30.86 | |
25 | 9.84 ± 0.72 ** | 19.67 | |
2 | 100 | 6.19 ± 1.13 ** | 49.47 |
50 | 7.96 ± 0.23 ** | 35.02 | |
25 | 8.68 ± 0.79 ** | 29.14 | |
3 | 100 | 8.20 ± 0.27 ** | 33.06 |
50 | 9.05 ± 0.84 ** | 26.12 | |
25 | 9.41 ± 1.37 ** | 23.18 | |
4 | 100 | 7.33 ± 0.51 ** | 40.16 |
50 | 8.79 ± 0.76 ** | 28.24 | |
25 | 11.03 ± 0.32 | 9.96 | |
5 | 100 | 5.87 ± 0.75 ** | 52.08 |
50 | 7.95 ± 0.71 ** | 35.10 | |
25 | 10.46 ± 0.64 * | 14.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Ji, L.; Zhang, D.; Guo, H.; Wang, Y.; Li, W. Synthesis and Anti-Inflammatory Activity of 1-Methylhydantoin Cinnamoyl Imides. Molecules 2022, 27, 8481. https://doi.org/10.3390/molecules27238481
Wang S, Ji L, Zhang D, Guo H, Wang Y, Li W. Synthesis and Anti-Inflammatory Activity of 1-Methylhydantoin Cinnamoyl Imides. Molecules. 2022; 27(23):8481. https://doi.org/10.3390/molecules27238481
Chicago/Turabian StyleWang, Shihan, Li Ji, Dongxue Zhang, Hongye Guo, Yongsheng Wang, and Wei Li. 2022. "Synthesis and Anti-Inflammatory Activity of 1-Methylhydantoin Cinnamoyl Imides" Molecules 27, no. 23: 8481. https://doi.org/10.3390/molecules27238481
APA StyleWang, S., Ji, L., Zhang, D., Guo, H., Wang, Y., & Li, W. (2022). Synthesis and Anti-Inflammatory Activity of 1-Methylhydantoin Cinnamoyl Imides. Molecules, 27(23), 8481. https://doi.org/10.3390/molecules27238481