Polyethylenimine as a Non-Innocent Ligand for Hexacyanoferrates Immobilization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Polyethyleneimine-Hexacyanoferrate (PEI–HCF) Hybrids with Cross-Linked Polymer Matrix
2.1.1. Fabrication, Composition and Sorption Properties
2.1.2. Mössbauer Spectroscopy
2.1.3. FT-IR Spectroscopy
2.1.4. Magnetic Properties
2.2. Cyano-Bridged PEI–HCF Complexes in Solution
3. Materials and Methods
3.1. Materials
3.2. Fabrication of the Hybrids
3.3. Characterization of HCFs and PEI–HCF Hybrids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szuwarzyński, M.; Mazur, Ł.; Borkowski, M.; Maćkosz, K.; Giżyński, K.; Mazur, T. Enhanced Assembly of Ag Nanoparticles for Surface-Independent Fabrication of Conductive Patterns. ACS Appl. Nano Mater. 2022, 5, 12711–12719. [Google Scholar] [CrossRef]
- Duan, Z.; Wu, W.; Lei, Q.; Chen, H. Highly dispersed palladium nanoparticles anchored on polyethylenimine-modified carbon nanotubes for dehydrogenation of formic acid. Int. J. Hydrog. Energy 2022, 47, 32050–32059. [Google Scholar] [CrossRef]
- Calamak, S.; Ulubayram, K. Polyethylenimine-mediated gold nanoparticle arrays with tunable electric field enhancment for plasmonic applications. J. Mater. Sci. Mater. Electron. 2019, 30, 10013–10023. [Google Scholar] [CrossRef]
- Wang, L.; Jia, Y.; Wang, Y.; Zang, S.; Wei, S.; Li, J.; Zhang, X. Defect Passivation of Low-Temperature Processed ZnO Electron Transport Layer with Polyethylenimine for PbS Quantum Dot Photovoltaics. ACS Appl. Energy Mater. 2019, 2, 1695–1701. [Google Scholar] [CrossRef]
- Liu, S.; Yue, H.; Ho, S.L.; Kim, S.; Park, J.A.; Tegafaw, T.; Ahmad, M.Y.; Kim, S.; Saidi, A.K.A.; Zhao, D.; et al. Polyethylenimine-Coated Ultrasmall Holmium Oxide Nanoparticles: Synthesis, Characterization, Cytotoxicities, and Water Proton Spin Relaxivities. Nanomaterials 2022, 12, 1588. [Google Scholar] [CrossRef]
- Zhai, J.; Zhai, Y.; Wang, L.; Dong, S. Rapid synthesis of polyethylenimine-protected prussian blue nanocubes through a thermal process. Inorg. Chem. 2008, 47, 7071–7073. [Google Scholar] [CrossRef]
- Ding, Y.; Hu, Y.L.; Gu, G.; Xia, X.H. Controllable synthesis and formation mechanism investigation of prussian blue nanocrystals by using the polysaccharide hydrolysis method. J. Phys. Chem. C 2009, 113, 14838–14843. [Google Scholar] [CrossRef]
- Bratskaya, S.; Privar, Y.; Slobodyuk, A.; Shashura, D.; Marinin, D.; Mironenko, A.; Zheleznov, V.; Pestov, A. Cryogels of Carboxyalkylchitosans as a Universal Platform for the Fabrication of Composite Materials. Carbohydr. Polym. 2019, 209, 1–9. [Google Scholar] [CrossRef]
- Bratskaya, S.; Sergeeva, K.; Konovalova, M.; Modin, E.; Svirshchevskaya, E.; Sergeev, A.; Mironenko, A.; Pestov, A. Ligand-assisted synthesis and cytotoxicity of ZnSe quantum dots stabilized by N-(2-carboxyethyl)chitosans. Colloids Surf. B Biointerfaces 2019, 182, 110342. [Google Scholar] [CrossRef]
- Sun, X.; Dong, S.; Wang, E. One-step preparation and characterization of poly(propyleneimine) dendrimer-protected silver nanoclusters. Macromolecules 2004, 37, 7105–7108. [Google Scholar] [CrossRef]
- Nowicka, B.; Korzeniak, T.; Stefańczyk, O.; Pinkowicz, D.; Chorazy, S.; Podgajny, R.; Sieklucka, B. The impact of ligands upon topology and functionality of octacyanidometallate-based assemblies. Coord. Chem. Rev. 2012, 256, 1946–1971. [Google Scholar] [CrossRef]
- Catala, L.; Mallah, T. Nanoparticles of Prussian blue analogs and related coordination polymers: From information storage to biomedical applications. Coord. Chem. Rev. 2017, 346, 32–61. [Google Scholar] [CrossRef]
- Estelrich, J.; Busquets, M.A. Prussian blue: A nanozyme with versatile catalytic properties. Int. J. Mol. Sci. 2021, 22, 5993. [Google Scholar] [CrossRef]
- Vincent, T.; Vincent, C.; Guibal, E. Immobilization of Metal Hexacyanoferrate Ion-Exchangers for the Synthesis of Metal Ion Sorbents—A Mini-Review. Molecules 2015, 20, 20582–20613. [Google Scholar] [CrossRef] [Green Version]
- Uemura, T.; Kitagawa, S. Prussian Blue Nanoparticles Protected by Poly(vinylpyrrolidone). J. Am. Chem. Soc. 2003, 125, 7814–7815. [Google Scholar] [CrossRef]
- Uemura, T.; Ohba, M.; Kitagawa, S. Size and surface effects of prussian blue nanoparticles protected by organic polymers. Inorg. Chem. 2004, 43, 7339–7345. [Google Scholar] [CrossRef]
- Folch, B.; Larionova, J.; Guari, Y.; Molvinger, K.; Luna, C.; Sangregorio, C.; Innocenti, C.; Caneschi, A.; Guérin, C. Synthesis and studies of water-soluble Prussian Blue-Type nanoparticles into chitosan beads. Phys. Chem. Chem. Phys. 2010, 12, 12760–12770. [Google Scholar] [CrossRef]
- Tokarev, A.; Agulhon, P.; Long, J.; Quignard, F.; Robitzer, M.; Ferreira, R.A.S.; Carlos, L.D.; Larionova, J.; Guérin, C.; Guari, Y. Synthesis and study of Prussian blue type nanoparticles in an alginate matrix. J. Mater. Chem. 2012, 22, 20232–20242. [Google Scholar] [CrossRef]
- Pandey, P.C.; Panday, D.; Pandey, A.K. Polyethylenimine mediated synthesis of copper-iron and nickel-iron hexacyanoferrate nanoparticles and their electroanalytical applications. J. Electroanal. Chem. 2016, 780, 90–102. [Google Scholar] [CrossRef]
- Ayrault, S.; Jimenez, B.; Garnier, E.; Fedoroff, M.; Jones, D.J.; Loos-Neskovic, C. Sorption mechanisms of cesium on CuII2FeII(CN)6and CuII3[FeIII(CN)6]2 Hexacyanoferrates and Their Relation to the Crystalline Structure. J. Solid State Chem. 1998, 141, 475–485. [Google Scholar] [CrossRef]
- Clarke, T.D.; Wai, C.M. Selective Removal of Cesium from Acid Solutions with Immobilized Copper Ferrocyanide. Anal. Chem. 1998, 70, 3708–3711. [Google Scholar] [CrossRef] [PubMed]
- Zemskova, L.; Egorin, A.; Tokar, E.; Ivanov, V. Chitosan-based biosorbents: Immobilization of metal hexacyanoferrates and application for removal of cesium radionuclide from aqueous solutions. J. Sol-Gel Sci. Technol. 2019, 92, 459–466. [Google Scholar] [CrossRef]
- Malakhova, I.; Privar, Y.; Parotkina, Y.; Mironenko, A.; Eliseikina, M.; Balatskiy, D.; Golikov, A.; Bratskaya, S. Rational design of polyamine-based cryogels for metal ion sorption. Molecules 2020, 25, 4801. [Google Scholar] [CrossRef] [PubMed]
- Malakhova, I.; Parotkina, Y.; Palamarchuk, M.; Eliseikina, M.; Mironenko, A.; Golikov, A.; Bratskaya, S. Composite Zn(II) Ferrocyanide/Polyethylenimine Cryogels for Point-of-Use Selective Removal of Cs-137 Radionuclides. Molecules 2021, 26, 4604. [Google Scholar] [CrossRef] [PubMed]
- Malakhova, I.; Privar, Y.; Azarova, Y.; Eliseikina, M.; Golikov, A.; Skatova, A.; Bratskaya, S. Supermacroporous monoliths based on polyethyleneimine: Fabrication and sorption properties under static and dynamic conditions. J. Environ. Chem. Eng. 2020, 8, 104395. [Google Scholar] [CrossRef]
- Malakhova, I.; Parotkina, Y.; Eliseikina, M.; Mironenko, A.; Privar, Y.; Elovskiy, E.; Bratskaya, S. Flow-Through Polyethylenimine/ZnS Supermacroporous Composite for Hg(II) Uptake at ppb Concentrations. Ind. Eng. Chem. Res. 2022, 61, 12754–12763. [Google Scholar] [CrossRef]
- Takagishi, T.; Okuda, S.; Kuroki, N.; Kozuka, H. Binding of metal ions by polyethylenimine and its derivatives. J. Polym. Sci. Polym. Chem. Ed. 1985, 23, 2109–2116. [Google Scholar] [CrossRef]
- Martínez-Garcia, R.; Knobel, M.; Reguera, E. Thermal-induced changes in molecular magnets based on Prussian blue analogues. J. Phys. Chem. B 2006, 110, 7296–7303. [Google Scholar] [CrossRef]
- Reguera, E.; Fernández-Bertrán, J. Effect of the water of crystallization on the Mössbauer spectra of hexacyanoferrates (II and III). Hyperfine Interact. 1994, 88, 49–58. [Google Scholar] [CrossRef]
- Do Carmo, D.R.; Franco, D.W.; Rodrigues Filho, U.P.; Gushikem, Y.; Stadler, E.; Drago, V. The cyanide photoisomerization in zinc hexacyanoferrate (II) supported on titanium dioxide-silica gel composite: A matrix effect. J. Coord. Chem. 2011, 54, 455–468. [Google Scholar] [CrossRef]
- Ng, C.; Ding, J.; Shi, Y.; Gan, L. Structure and magnetic properties of copper(II) hexacyanoferrate(III) compound. J. Phys. Chem. Solids 2001, 62, 767–775. [Google Scholar] [CrossRef]
- Ding, J.; Ng, C.W.; Shi, Y. Structure and magnetic properties of iron-based cyanide compounds. IEEE Trans. Magn. 2001, 37, 2938–2940. [Google Scholar] [CrossRef]
- Shyu, H.L.; Lin, S.N.; Wei, H.H. Magnetic Properties of M3[Fe(Cn)6]2Xh2O (M = Co (II), Ni(II), Cu(II), Zn(II)). J. Chin. Chem. Soc. 1995, 42, 791–795. [Google Scholar] [CrossRef]
- Ojwang, D.O.; Grins, J.; Wardecki, D.; Valvo, M.; Renman, V.; Häggström, L.; Ericsson, T.; Gustafsson, T.; Mahmoud, A.; Hermann, R.P.; et al. Structure Characterization and Properties of K-Containing Copper Hexacyanoferrate. Inorg. Chem. 2016, 55, 5924–5934. [Google Scholar] [CrossRef]
- Childs, C.W.; Goodman, B.A.; Paterson, E.; Woodhams, F.W.D. The nature of iron in Akaganéite (β-FeOOH). Aust. J. Chem. 1980, 33, 15–26. [Google Scholar] [CrossRef]
- Ghosh, S.N. Infrared spectra of the Prussian blue analogs. J. Inorg. Nucl. Chem. 1974, 36, 2465–2466. [Google Scholar] [CrossRef]
- De Wet, J.F.; Rolle, R. On the existence and Autoreduction of Iron(III)-hexacyanoferrate(III). Z. Anorg. Allg. Chem. 1965, 336, 96–103. [Google Scholar] [CrossRef]
- Ahmad, S.; Tahir, M.N.; Javaid, H.M.; Monim-ul-Mehboob, M.; Shaheen, M.A.; Mahmood, R. Synthesis and Crystal Structure of a Cyanido-Bridged Bimetallic Copper(II)–Silver(I) Complex of Imidazole and [Ag(CN)2]−: [Cu(Imidazole)4{Ag(CN)2}2]. J. Chem. Crystallogr. 2012, 42, 401–404. [Google Scholar] [CrossRef]
- Reguera, E.; Rodríguez-Hernández, J.; Champi, A.; Duque, J.G.; Granado, E.; Rettori, C. Unique Coordination of Copper in Hexacyanometallates. Z. Phys. Chem. 2006, 220, 1609–1619. [Google Scholar] [CrossRef]
- Bozorth, R.M.; Williams, H.J.; Walsh, D.E. Magnetic Properties of Some Orthoferrites and Cyanides at Low Temperatures. Phys. Rev. 1956, 103, 572–578. [Google Scholar] [CrossRef]
- Kumar, A.; Yusuf, S.M.; Keller, L. Structural and magnetic properties of Fe[Fe(CN)6]·4H2O. Phys. Rev. B 2005, 71, 054414. [Google Scholar] [CrossRef] [Green Version]
- Mayoh, B.; Day, P. Charge transfer in mixed-valence solids. Part VIII. Contribution of valence delocalisation to the ferromagnetism of Prussian Blue. J. Chem. Soc. Dalt. Trans. 1976, 1483–1486. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, J.; Reguera, E.; Lima, E.; Balmaseda, J.; Martínez-García, R.; Yee-Madeira, H. An atypical coordination in hexacyanometallates: Structure and properties of hexagonal zinc phases. J. Phys. Chem. Solids 2007, 68, 1630–1642. [Google Scholar] [CrossRef]
- Shigematsu, T.; Bando, Y.; Takada, T. Magnetic properties of amorphous iron (III) oxide thin films. J. Phys. Colloq. 1979, 40, C2-153–C2-154. [Google Scholar] [CrossRef]
- Pardasani, R.T.; Pardasani, P. Magnetic properties of heterometallic ion-pair complex containing ethylenediamine copper(II) complex cation and hexacyanoferrate anion. Magn. Prop. Paramagn. Compd. Magn. Susceptibility Data 2021, 4, 762–765. [Google Scholar] [CrossRef]
- Miyasaka, H.; Matsumoto, N.; Ōkawa, H.; Re, N.; Gallo, E.; Floriani, C. Complexes Derived from the Reaction of Manganese(III) Schiff Base Complexes and Hexacyanoferrate(III): Syntheses, Multidimensional Network Structures, and Magnetic Properties. J. Am. Chem. Soc. 1996, 118, 981–994. [Google Scholar] [CrossRef]
- Hathaway, B.J. Comprehensive Coordination Chemistry; Wilkinson, G., Gillard, R.D., McCleverty, J.A., Eds.; Pergamon Press: Oxford, UK, 1987; p. 533. [Google Scholar]
- Bratskaya, S.; Voit, A.; Privar, Y.; Ziatdinov, A.; Ustinov, A.; Marinin, D.; Pestov, A. Metal ion binding by pyridylethyl-containing polymers: Experimental and theoretical study. Dalton Trans. 2016, 45, 12372–12383. [Google Scholar] [CrossRef]
- Parker, R.J.; Spiccia, L.; Batten, S.R.; Cashion, J.D.; Fallon, G.D. The encapsulation of ferrocyanide by copper(II) complexes of tripodal tetradentate ligands. Novel H-bonding networks incorporating heptanuclear and pentanuclear heterometallic assemblies. Inorg. Chem. 2001, 40, 4696–4704. [Google Scholar] [CrossRef]
- Haas, P.A. A Review of Information on Ferrocyanide Solids for Removal of Cesium from Solutions. Sep. Sci. Technol. 1993, 28, 2479–2506. [Google Scholar] [CrossRef]
- Egorin, A.; Tokar, E.; Zemskova, L. Chitosan-ferrocyanide sorbent for Cs-137 removal from mineralized alkaline media. Radiochim. Acta 2016, 104, 657–661. [Google Scholar] [CrossRef]
Sample | Molar Ratios of Reagents M:Fe | Atomic Ratios in Product M:K:Fe | M 1, mg/g | Cu/Zn, at % | Fe, at % | K, at % | Efficiency of Cs+ Uptake 2, % |
---|---|---|---|---|---|---|---|
Cu(II)HCF(II) | 2:1 | 1.79:0.42:1 | 55.76 | 31.15 | 13.08 | 99 | |
PEI–Cu(II)HCF(II) | 1:1 | 3.23:0.19:1 | 140 | 75.01 | 21.01 | 3.98 | 2 |
Zn(II)HCF(II) | 2:1 | 1.59:0.82:1 | 50.62 | 27.33 | 22.06 | 99 | |
PEI–Zn(III)HCF(II) | 2:1.5 | 2:1 | 120 | 68.78 | 31.22 | - | 44 |
PEI–Zn(III)HCF(II) monolith [24] | 1:1 | 1.86:0.33:1 | 114 | 58.21 | 31.35 | 10.44 | 84 |
Cu(II)HCF(III) | 3:2 | 2.95:0.09:2 | 62.43 | 35.89 | 1.68 | 88 | |
PEI–Cu(II)HCF(III) | 1:1 | 2.2:1 | 69.19 | 30.81 | - | 3 | |
Zn(II)HCF(III) | 3:2 | 2.85:0.3:2 | 55.34 | 38.83 | 5.83 | 99 | |
PEI–Zn(II)HCF(III) | 1:1 | 3:2 | 120 | 60.72 | 39.28 | - | 40 |
Fe(III)HCF(III) | 1:1 | - | 99.85 | 0.15 | 84 | ||
PEI–Fe(III)HCF(III) | 33 | - | 99.75 | 0.25 | 6 |
Sample | δ, mm/s | Δ, mm/s | Γ, mm/s | Relative Area, % | Assignment |
---|---|---|---|---|---|
Cu(II)HCF(II) | −0.10 | - | 0.36 | 100 | LS FeII–CN–CuII |
PEI–Cu(II)HCF(II) | −0.09 | - | 0.38 | 100 | LS FeII–CN–CuII–PEI |
Zn(II)HCF(II) | −0.12 | - | 0.26 | 100 | LS FeII–CN–ZnII |
PEI–Zn(II)HCF(II) | −0.09 | - | 0.36 | 100 | LS FeII–CN–ZnII–PEI |
K4[Fe(CN)6] | −0.05 | - | 0.31 | 100 | LS FeII–CN–KI |
Cu(II)HCF(III) | −0.07 | - | 0.38 | 7 | LS FeII–CN–CuII |
−0.16 | 0.55 | 0.35 | 93 | LS FeIII–CN–CuII | |
PEI–Cu(II)HCF(III) | −0.08 | - | 0.36 | 100 | LS FeII–CN–CuII–PEI |
Zn(II)HCF(III) | −0.17 | - | 0.39 | 100 | LS FeIII–CN–ZnII |
PEI–Zn(II)HCF(III) | −0.09 | - | 0.38 | 100 | LS FeII–CN–ZnII–PEI |
Fe(III)HCF(III) | −0.15 | - | 0.59 | 54 | LS FeIII–CN |
0.39 | 0.34 | 0.39 | 46 | HS FeIII–NC | |
PEI–Fe(III)HCF(III) | −0.07 | - | 0.37 | 35 | LS FeII–CN |
0.36 | 0.53 | 0.33 | 37 | PEI–HS FeIII–NC | |
0.35 | 0.83 | 0.44 | 28 | HS Fe(III) | |
K3[Fe(CN)6] | −0.13 | 0.28 | 0.27 | 100 | LS FeIII–CN–KI |
PEI–Fe(III) complex | 0.35 | 0.59 | 0.34 | 53 | HS Fe(III) |
0.35 | 0.97 | 0.39 | 47 | HS Fe(III) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balatskiy, D.; Tkachenko, I.; Malakhova, I.; Polyakova, N.; Bratskaya, S. Polyethylenimine as a Non-Innocent Ligand for Hexacyanoferrates Immobilization. Molecules 2022, 27, 8489. https://doi.org/10.3390/molecules27238489
Balatskiy D, Tkachenko I, Malakhova I, Polyakova N, Bratskaya S. Polyethylenimine as a Non-Innocent Ligand for Hexacyanoferrates Immobilization. Molecules. 2022; 27(23):8489. https://doi.org/10.3390/molecules27238489
Chicago/Turabian StyleBalatskiy, Denis, Ivan Tkachenko, Irina Malakhova, Natalia Polyakova, and Svetlana Bratskaya. 2022. "Polyethylenimine as a Non-Innocent Ligand for Hexacyanoferrates Immobilization" Molecules 27, no. 23: 8489. https://doi.org/10.3390/molecules27238489
APA StyleBalatskiy, D., Tkachenko, I., Malakhova, I., Polyakova, N., & Bratskaya, S. (2022). Polyethylenimine as a Non-Innocent Ligand for Hexacyanoferrates Immobilization. Molecules, 27(23), 8489. https://doi.org/10.3390/molecules27238489