Electrochemical Sensors Based on Au Nanoparticles Decorated Pyrene-Reduced Graphene Oxide for Hydrazine, 4-Nitrophenol and Hg2+ Detection in Water
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of the AuNPs/PCA-rGO Hybrid Nanocomposite
2.2. Electrochemical Characterization of the AuNPs/PCA-rGO Modified SPCEs
2.3. Electroanalytical Application of the AuNPs/PCA-rGO/SPCEs
2.3.1. Electrochemical Detection of N2H4 and 4-NP by the AuNPs/PCA-rGO/SPCEs
Calibration Procedure, Repeatability, Reproducibility, and Storage Stability of AuNPs/PCA-rGO/SPCEs
Interference Measurements
Analysis of N2H4 and 4-NP in Real Water Samples
2.3.2. Electroanalytical Investigation of Hg2+ at the IIP/AuNPs/PCA-rGO/SPCEs
3. Materials and Methods
3.1. Reagents and Instrumentation
3.2. Synthesis of the Au NPs/PCA-rGO Hybrid Nanocomposite
3.3. Preparation of the AuNPs/PCA-rGO Modified SPCEs (AuNPs/PCA-rGO/SPCEs)
3.3.1. AuNPs/PCA-rGO/SPCEs for Electrocatalytic Detection of N2H4 and 4-NP
3.3.2. Hg2+ Imprinted Polycurcumin Modified AuNPs/PCA-rGO/SPCEs for the Electroanalytical Detection of Hg2+
3.4. Electrochemical Characterization of the Nanostructured Platforms
3.5. Electroanalytical Application of the Sensing Platforms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Wang, W.D.; Hu, Y.; Li, Q. A carbazole-based turn-on fluorescent probe for the detection of hydrazine in aqueous solution. Inorg. Chim. Acta 2018, 477, 206–211. [Google Scholar] [CrossRef]
- Kovacs, D.; Woeling, J.; Szabo, N.; Szecsi, M.; Minorics, R.; Zupko, I.; Frank, E. Efficient access to novel androsteno-17-(1′,3′,4′)-oxadiazoles and 17β-(1′,3′,4′)-thiadiazoles via N-substituted hydrazone and N,N′-disubstituted hydrazine intermediates, and their pharmacological evaluation in vitro. Eur. J. Med. Chem. 2015, 98, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Das, U.K.; Ben-David, Y.; Diskin-Posner, Y. N-Substituted Hydrazones by Manganese-Catalyzed Coupling of Alcohols with Hydrazine: Borrowing Hydrogen and Acceptorless Dehydrogenation in One System. Angew. Chem. Int. Ed. 2018, 57, 2179–2182. [Google Scholar] [CrossRef] [PubMed]
- Beitollahi, H.; Khalilzadeh, M.A.; Tajik, S.; Safaei, M.; Zhang, K.; Jang, H.W.; Shokouhimehr, M. Recent Advances in Applications of Voltammetric Sensors Modified with Ferrocene and Its Derivatives. ACS Omega 2020, 5, 2049–2059. [Google Scholar] [CrossRef] [Green Version]
- Ngoc Anh, N.T.; Chang, P.Y.; Doong, R.A. Sulfur-doped graphene quantum dot based paper sensor for highly sensitive and selective detection of 4-nitrophenol in contaminated water and wastewater. RSC Adv. 2019, 9, 26588–26597. [Google Scholar] [CrossRef] [Green Version]
- Gao, D.; Li, S.; Wang, X.; Xi, L.; Lange, K.M.; Ma, X.; Lv, Y.; Yang, S.; Zhao, K.; Loussala, H.M.; et al. Ultrafine PtRu nanoparticles confined in hierarchically porous carbon derived from micro-mesoporous zeolite for enhanced nitroarenes reduction performance. J. Catal. 2019, 370, 385–403. [Google Scholar] [CrossRef]
- Yang, Y.; Jiang, K.; Guo, J.; Li, J.; Peng, X.; Hong, B.; Wang, X.; Ge, H. Facile fabrication of Au/Fe3O4 nanocomposites as excellent nanocatalyst for ultrafast recyclable reduction of 4-nitropheol. Chem. Eng. J. 2019, 381, 122596–122606. [Google Scholar] [CrossRef]
- Gandhi, N.; Bhavsar, S.P.; Tang, R.W.K.; Arhonditsis, G.B. Projecting fish mercury levels in the Province of Ontario, Canada and the implications for fish and human health. Environ. Sci. Technol. 2015, 49, 14494–14502. [Google Scholar] [CrossRef]
- Ahmad, W.; Alharthy, R.; Zubair, M.; Ahmed, M.; Hameed, A.; Rafique, S. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci. Rep. 2021, 11, 17006–17018. [Google Scholar] [CrossRef]
- Wang, N.; Lin, M.; Dai, H.X.; Ma, H.Y. Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine-mercury-thymine structure. Biosens. Bioelectron. 2016, 79, 320–326. [Google Scholar] [CrossRef]
- Mercury Update, EPA Fact Sheet EPA-823-F-01-011; U.S. Environmental Protection Agency, Office of Water: Washington, DC, USA, 2001.
- Mukherjee, S.; Bhattacharyya, S.; Ghosh, K.; Pal, S.; Halder, A.; Naseri, M.; Mohammadniaei, M.; Sarkar, S.; Ghosh, A.; Sun, Y.; et al. Sensory development for heavy metal detection: A review on translation from conventional analysis to field-portable sensor. Trends Food Sci. Technol. 2021, 109, 674–689. [Google Scholar] [CrossRef]
- Ding, Q.; Li, C.; Wang, H.; Xu, C.; Kuang, H. Electrochemical detection of heavy metal ions in water. Chem. Commun. 2021, 57, 7215–7231. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kim, K.H.; Bansal, V.; Lazarides, T.; Kumar, N. Progress in the Sensing Techniques for Heavy Metal Ions Using Nanomaterials. J. Ind. Eng. Chem. 2017, 54, 30–43. [Google Scholar] [CrossRef]
- Ingrosso, C.; Petrella, A.; Curri, M.L.; Striccoli, M.; Cosma, P.; Cozzoli, P.D.; Agostiano, A. Photoelectrochemical properties of Zn(II) phthalocyanine/ZnO nanocrystals heterojunctions: Nanocrystal surface chemistry effect. Appl. Surf. Sci. 2005, 246, 367–371. [Google Scholar] [CrossRef]
- Morales-Narváez, E.; Baptista, P.; Luis, M.; Zamora, G.A.; Merkoçi, A. Graphene-based biosensors: Going simple. Adv. Mater. 2017, 29, 1604905–1604912. [Google Scholar] [CrossRef] [Green Version]
- Rasheed, P.A.; Sandhyarani, N. Electrochemical DNA sensors based on the use of gold nanoparticles: A review on recent developments. Microchim. Acta 2017, 184, 981–1000. [Google Scholar] [CrossRef]
- Ingrosso, C.; Corricelli, M.; Bettazzi, F.; Konstantinidou, E.; Bianco, G.V.; Depalo, N.; Striccoli, M.; Agostiano, A.; Curri, M.L.; Palchetti, I. Au nanoparticle in situ decorated RGO nanocomposites for highly sensitive electrochemical genosensors. J. Mater. Chem. B. 2019, 7, 768–777. [Google Scholar] [CrossRef]
- Bettazzi, F.; Ingrosso, C.; Pifferi, V.; Falciola, L.; Curri, M.L.; Palchetti, I. Gold Nanoparticles Modified Graphene Platforms for Highly Sensitive Electrochemical Detection of Vitamin C in infant Food and Formulae. Food Chem. 2021, 334, 128692–128700. [Google Scholar] [CrossRef]
- Pifferi, V.; Testolin, A.; Ingrosso, C.; Curri, M.L.; Palchetti, I.; Falciola, L. Au Nanoparticles Decorated Graphene-Based Hybrid Nanocomposite for As(III) Electroanalytical Detection. Chemosensors 2022, 10, 67. [Google Scholar] [CrossRef]
- Huang, H.; Li, T.; Sun, Y.; Yu, L.; Wang, C.; Shen, R.; Ye, W.; Wang, D. Amperometric sensing of hydrazine in environmental and biological samples by using CeO2-encapsulated gold nanoparticles on reduced graphene oxide. Microchim. Acta 2019, 186, 46–56. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Zhang, D.; Ding, L.; Sida, J.; Jiang, S.C.; Su, Y. Confinement preparation of Au nanoparticles embedded in ZIF-67-derived N-doped porous carbon for high-performance detection of hydrazine in liquid/gas phase. Sens. Actuators B: Chem. 2019, 285, 607–616. [Google Scholar] [CrossRef]
- Dutta, S.; Ray, C.; Mallick, S.; Sarkar, S.; Roy, A.; Pal, T. Au@Pd core–shell nanoparticles-decorated reduced graphene oxide: A highly sensitive and selective platform for electrochemical detection of hydrazine. RSC Adv. 2015, 5, 51690–51700. [Google Scholar] [CrossRef]
- Yang, Y.J.; Weikun, L. Self-Assembly of Gold Nanoparticles and Multiwalled Carbon Nanotubes on Graphene Oxide Nanosheets for Electrochemical Sensing Applications. Fuller. Nanotub. Carbon Nanostruct. 2018, 12, 837–845. [Google Scholar] [CrossRef]
- Saengsookwaow, C.; Rangkupan, R.; Chailapakul, O.; Rodthongkum, N. Nitrogen-Doped Graphene-Polyvinylpyrrolidone/Gold Nanoparticles Modified Electrode as a Novel Hydrazine Sensor. Sens. Actuators B: Chem. 2016, 227, 524–532. [Google Scholar] [CrossRef]
- Nde, D.T.; Hye, H.J.; Lee, J. Electrocatalytic determination of hydrazine concentrations with polyelectrolyte supported AuCo nanoparticles on carbon electrodes. Catal. Today 2022, 403, 11–18. [Google Scholar] [CrossRef]
- Jiao, X.X.; Luo, H.Q.; Li, N.B. Fabrication of graphene–gold nanocomposites by electrochemical co-reduction and their electrocatalytic activity toward 4-nitrophenol oxidation. J. Electroanal. Chem. 2013, 691, 83–89. [Google Scholar] [CrossRef]
- Zhang, W.; Chang, J.; Chen, J.; Xu, F.; Wang, F.; Jiang, K.; Gao, Z. Graphene–Au composite sensor for electrochemical detection of para-nitrophenol. Res. Chem. Intermed. 2012, 38, 2443–2455. [Google Scholar] [CrossRef]
- Shi, D.; Wu, W.; Li, X. Ultrasensitive detection of mercury (II) ions on a hybrid film of a graphene and gold nanoparticle-modified electrode. Anal. Methods 2022, 14, 2161–2167. [Google Scholar] [CrossRef]
- Gong, J.; Zhou, T.; Song, D.; Zhang, L. Monodispersed Au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury(II). Sens. Actuators B: Chem. 2010, 150, 491–497. [Google Scholar] [CrossRef]
- Ramila, D.N.; Sasidharan, M.; Sundramoorthy, A.K.K. Gold Nanoparticles-Thiol-Functionalized Reduced Graphene Oxide Coated Electrochemical Sensor System for Selective Detection of Mercury Ion. J. Electrochem. Soc. 2018, 165, B3046. [Google Scholar]
- Saenchoopa, A.; Klangphukhiew, S.; Somsub, R.; Talodthaisong, C.; Patramanon, R.; Daduang, J.; Daduang, S.; Kulchat, S. A Disposable Electrochemical Biosensor Based on Screen-Printed Carbon Electrodes Modified with Silver Nanowires/HPMC/Chitosan/Urease for the Detection of Mercury (II) in Water. Biosensors 2021, 11, 351. [Google Scholar] [CrossRef] [PubMed]
- Somé, I.T.; Sakira, A.K.; Mertens Ronkart, S.N.D.; Kauffmann, J.M. Determination of groundwater mercury (II) content using a disposable gold modified screen printed carbon electrode. Talanta 2016, 152, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Ziyatdinova, G.; Guss, E.; Yakupova, E. Electrochemical Sensors Based on the Electropolymerized Natural Phenolic Antioxidants and Their Analytical Application. Sensors 2021, 21, 8385. [Google Scholar] [CrossRef] [PubMed]
- Mejri, A.; Mars, A.; Elfil, H.; Hamzaoui, A.H. Graphene nanosheets modified with curcumin-decorated manganese dioxide for ultrasensitive potentiometric sensing of mercury (II), fluoride and cyanide. Microchim. Acta 2018, 185, 529. [Google Scholar] [CrossRef]
- Kusumkar, V.V.; Galambo, M.; Viglašová, E.; Dano, M.; Šmelková, J. Ion-Imprinted Polymers: Synthesis, Characterization, and Adsorption of Radionuclides. Materials 2021, 14, 1083. [Google Scholar] [CrossRef]
- Ingrosso, C.; Corricelli, M.; Disha, A.; Fanizza, E.; Bianco, G.V.; Depalo, N.; Panniello, A.; Agostiano, A.; Striccoli, M.; Curri, M.L. Solvent dispersible nanocomposite based on Reduced Graphene Oxide in situ decorated with gold nanoparticles. Carbon 2019, 152, 777. [Google Scholar] [CrossRef]
- Li, C.; Tardajos, A.P.; Wang, D.; Choukroun, D.; Daele, K.V.; Breugelmans, T.; Bals, S. A simple method to clean ligand contamination on TEM grids. Ultramicroscopy 2021, 221, 113195. [Google Scholar] [CrossRef]
- Su, Q.; Pang, S.; Alijani, V.; Li, C.; Feng, X.; Mullen, K. Composites of Graphene with Large Aromatic Molecules. Adv. Mater. 2009, 21, 3191–3195. [Google Scholar] [CrossRef]
- Pifferi, V.; Barsan, M.M.; Ghica, M.E.; Falciola, L.; Brett, C.M.A. Synthesis, characterization and influence of poly(brilliant green) on the performance of different electrode architectures based on carbon nanotubes and poly(3,4-ethylenedioxythiophene). Electrochim. Acta 2013, 98, 199–207. [Google Scholar] [CrossRef]
- Ingrosso, C.; Bianco, G.V.; Pifferi, V.; Guffanti, P.; Petronella, F.; Comparelli, R.; Agostiano Striccoli, M.A.; Palchetti, L.; Falciola, L.; Curri, M.L.; et al. Enhanced photoactivity and conductivity in transparent TiO2 nanocrystals/graphene hybrid anodes. J. Mater. Chem. A 2017, 5, 9307–9315. [Google Scholar] [CrossRef]
- Mars, A.; Mejri, A.; Hamzaoui, A.H.; Elfil, H. Molecularly imprinted curcumin nanoparticles decorated paper for electrochemical and fluorescence dual-mode sensing of bisphenol A. Microchim. Acta 2021, 188, 94. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Rastogi, P.K.; Ganesan, V.; Yadav, D.K.; Sonkar, P.K. Gold nanoparticles decorated mesoporous silica microspheres: A proficient electrochemical sensing scaffold for hydrazine and nitrobenzene. Sens. Actuators B Chem. 2017, 239, 970–978. [Google Scholar] [CrossRef]
- Miao, R.; Compton, R.G. The Electro-Oxidation of Hydrazine: A Self-Inhibiting Reaction. J. Phys. Chem. Lett. 2021, 12, 1601–1605. [Google Scholar] [CrossRef] [PubMed]
- Barman, K.; Changmai, B.; Jasimuddin, S. Electrochemical Detection of Para-nitrophenol using Copper Metal Nanoparticles Modified Gold Electrode. Electroanalysis 2017, 29, 2780–2787. [Google Scholar] [CrossRef]
- Mejri, A.; Mars, A.; Elfil, H.; Hamzaoui, A.H. Reduced graphene oxide nanosheets modified with nickel disulfide and curcumin nanoparticles for non-enzymatic electrochemical sensing of methyl parathion and 4-nitrophenol. Microchim. Acta 2019, 186, 704. [Google Scholar] [CrossRef] [PubMed]
- Soni, R.; Soni, M.; Shukla, D.P. Emerging Techniques and Materials for Water Pollutants Detection. In Sensors in Water Pollutants Monitoring: Role of Material, 1st ed.; Pooja, D., Kumar, P., Singh, P., Patil, S., Eds.; Springer: Singapore, 2020. [Google Scholar]
- Elbialy, N.S.; Abdelfatah, E.A.; Khalil, W.A. Antitumor Activity of Curcumin-Green Synthesized Gold Nanoparticles: In Vitro Study. BioNanoScience 2019, 9, 813–820. [Google Scholar] [CrossRef]
- Devasena, T.; Balasubramanian, N.; Muninathan, N.; Baskaran, K.; John, S.T. Curcumin Is an Iconic Ligand for Detecting Environmental Pollutants. Bioinorg. Chem. Appl. 2022, 2022, 12. [Google Scholar] [CrossRef]
- Pitchumani, C.; Vijayakumar, S.; Shankar, R. Metal chelating ability and antioxidant properties of Curcumin-metal complexes—A DFT approach. J. Mol. Graph. 2018, 79, 1–14. [Google Scholar]
- Hill, H.H.; Martin, S.J. Conventional analytical methods for chemical warfare agents. Pure Appl. Chem. 2002, 74, 2281–2291. [Google Scholar] [CrossRef] [Green Version]
- Mejri, A.; Mars, A.; Elfil, H.; Hamzaoui, A.H. Voltammetric simultaneous quantification of p-nitrophenol and hydrazine by using magnetic spinel FeCo2O4 nanosheets on reduced graphene oxide layers modified with curcumin-stabilized silver nanoparticles. Microchim. Acta 2019, 186, 561. [Google Scholar] [CrossRef]
- Brunetti, B.; Desimoni, E. Voltammetric determination of vitamin B6 in food samples and dietary supplements. J. Food Compost. Anal. 2014, 33, 155–160. [Google Scholar] [CrossRef]
N2H4 | 4-NP | |
---|---|---|
Sensitivity/µA µM−1 | 0.13 | 0.12 |
LOD/nM | 12.4 | 19.5 |
LOQ/ppm | 1.3 | 8.9 |
%RSD of repeatability | 3.1 | 3.4 |
%RSD of reproducibility | 3.7 | 3.3 |
Storage stability | Decrease by 7.2% | Decrease by 7.1% |
Samples | Analytes | Standard Concentration (mM) | Concentration Determined by Chronoamperometry (mM) | %RSD | Apparent Recovery% | Concentration Determined by Conventional Techniques * (mM) |
---|---|---|---|---|---|---|
RIVER WATER | 4-NP | 500 | 512.7 ± 3.4 | 2.9 | 102.5 | 504.2 |
600 | 619.2 ± 2.4 | 3.4 | 103.2 | 600.3 | ||
700 | 718.5 ± 3.7 | 3.2 | 102.6 | 701.3 | ||
N2H4 | 500 | 521.3 ± 2.7 | 3.4 | 104.2 | 505.9 | |
600 | 624.7 ± 3.1 | 3.7 | 104.1 | 601.3 | ||
700 | 713.6 ± 3.4 | 3.1 | 101.9 | 702.5 | ||
TAP WATER | 4-NP | 600 | 609.6 ± 2.9 | 3.7 | 101.6 | 604.7 |
700 | 713.1 ± 3.2 | 3.6 | 101.8 | 703.9 | ||
800 | 821.4 ± 3.4 | 3.9 | 102.6 | 797.3 | ||
N2H4 | 600 | 591.0 ± 3.8 | 3.1 | 98.5 | 596.7 | |
700 | 709.3 ± 4.1 | 3.8 | 101.3 | 697.3 | ||
800 | 819.1 ± 3.7 | 4.1 | 102.3 | 792.6 |
Samples | Analytes | Standard Concentration (Mm) | Concentration Determined by Chronoamperometry (Mm) | %RSD | Apparent Recovery% | Concentration Determined by Conventional Techniques * (Mm) |
---|---|---|---|---|---|---|
RIVER WATER | Hg (II) | 0.3 | 0.3 ± 0.2 | 3.7 | 93.3 | 0.3 |
0.4 | 0.4 ± 0.4 | 3.5 | 105.0 | 0.4 | ||
0.5 | 0.5 ± 0.7 | 3.9 | 102.0 | 0.5 | ||
TAP WATER | 0.5 | 0.4 ± 0.3 | 3.9 | 84.0 | 0.5 | |
0.6 | 0.6 ± 0.2 | 4.2 | 105.0 | 0.6 | ||
0.7 | 0.7 ± 0.4 | 3.7 | 102.8 | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mejri, A.; Mandriota, G.; Elfil, H.; Curri, M.L.; Ingrosso, C.; Mars, A. Electrochemical Sensors Based on Au Nanoparticles Decorated Pyrene-Reduced Graphene Oxide for Hydrazine, 4-Nitrophenol and Hg2+ Detection in Water. Molecules 2022, 27, 8490. https://doi.org/10.3390/molecules27238490
Mejri A, Mandriota G, Elfil H, Curri ML, Ingrosso C, Mars A. Electrochemical Sensors Based on Au Nanoparticles Decorated Pyrene-Reduced Graphene Oxide for Hydrazine, 4-Nitrophenol and Hg2+ Detection in Water. Molecules. 2022; 27(23):8490. https://doi.org/10.3390/molecules27238490
Chicago/Turabian StyleMejri, Alma, Giacomo Mandriota, Hamza Elfil, Maria Lucia Curri, Chiara Ingrosso, and Abdelmoneim Mars. 2022. "Electrochemical Sensors Based on Au Nanoparticles Decorated Pyrene-Reduced Graphene Oxide for Hydrazine, 4-Nitrophenol and Hg2+ Detection in Water" Molecules 27, no. 23: 8490. https://doi.org/10.3390/molecules27238490
APA StyleMejri, A., Mandriota, G., Elfil, H., Curri, M. L., Ingrosso, C., & Mars, A. (2022). Electrochemical Sensors Based on Au Nanoparticles Decorated Pyrene-Reduced Graphene Oxide for Hydrazine, 4-Nitrophenol and Hg2+ Detection in Water. Molecules, 27(23), 8490. https://doi.org/10.3390/molecules27238490