Magnetic Polyethyleneimine Nanoparticles Fabricated via Ionic Liquid as Bridging Agents for Laccase Immobilization and Its Application in Phenolic Pollutants Removal
Abstract
:1. Introduction
2. Results and Discussions
2.1. Analysis of Characterizations
2.2. Results of Laccase Immobilization
2.3. Stability Test
2.4. DCP Removal Test
2.5. Reusability Test
2.6. Expanding Applications Test
3. Materials and Methods
3.1. Materials
3.2. Characterizations
3.3. Preparation of Fe3O4 Magnetic Nanoparticles
3.4. Modification of Magnetic Fe3O4 Nanoparticles by Carboxylated Ionic Liquid
3.5. Preparation of Magnetic Polyethyleneimine Nanoparticles
3.6. Laccase Activity Assay
3.7. Laccase Immobilization
3.8. Stability Test
3.9. Phenolics Removal Test
3.10. Reusability Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olaniran, A.O.; Igbinosa, E.O. Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes. Chemosphere 2011, 83, 1297–1306. [Google Scholar] [CrossRef] [PubMed]
- Torres, E.; Bustos-Jaimes, I.; Le Borgne, S. Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl. Catal. B-Environ. 2003, 46, 1–15. [Google Scholar] [CrossRef]
- Das, T.K.; Das, N.C. Advances on catalytic reduction of 4-nitrophenol by nanostructured materials as benchmark reaction. Int. Nano Lett. 2022, 12, 223–242. [Google Scholar] [CrossRef]
- Furukawa, K. Oxygenases and dehalogenases: Molecular approaches to efficient degradation of chlorinated environmental pollutants. Biosci. Biotechnol. Biochem. 2006, 70, 2335–2348. [Google Scholar] [CrossRef] [PubMed]
- Das, T.K.; Remanan, S.; Ghosh, S.; Das, N.C. An environment friendly free-standing cellulose membrane derived for catalytic reduction of 4-nitrophenol: A sustainable approach. J. Environ. Chem. Eng. 2021, 9, 104596. [Google Scholar] [CrossRef]
- Couto, S.R.; Herrera, J.L.T. Industrial and biotechnological applications of laccases: A review. Biotechnol. Adv. 2006, 24, 500–513. [Google Scholar] [CrossRef]
- Kim, K.H.; Ihm, S.K. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review. J. Hazard. Mater. 2011, 186, 16–34. [Google Scholar] [CrossRef]
- Alcalde, M.; Ferrer, M.; Plou, F.J. Environmental biocatalysis: From remediation with enzymes to novel green processes. Biocatal. Biotransformation 2007, 25, 113. [Google Scholar] [CrossRef]
- Khalid, N.; Kalsoom, U.; Ahsan, Z.; Bilal, M. Non-magnetic and magnetically responsive support materials immobilized peroxidases for biocatalytic degradation of emerging dye pollutants-A review. Int. J. Biol. Macromol. 2022, 207, 387–401. [Google Scholar] [CrossRef]
- Riva, S. Laccases: Blue enzymes for green chemistry. FEBS J. 2013, 280, 590. [Google Scholar] [CrossRef]
- Duran, N.; Rosa, M.A.; D’Annibale, A.; Gianfreda, L. Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: A review. Enzym. Microb. Technol. 2002, 31, 907–931. [Google Scholar] [CrossRef]
- Lu, J.W.; Nie, M.F.; Li, Y.R.; Zhu, H.L.; Shi, G.Y. Design of composite nanosupports and applications thereof in enzyme immobilization: A review. Colloids Surf. B-Biointerfaces 2022, 217, 112602. [Google Scholar] [CrossRef]
- Hou, J.W.; Dong, G.X.; Ye, Y.; Chen, V. Enzymatic degradation of bisphenol-A with immobilized laccase on TiO2 sol-gel coated PVDF membrane. J. Membr. Sci. 2014, 469, 19–30. [Google Scholar] [CrossRef]
- Xu, R.; Si, Y.F.; Wu, X.T.; Li, F.T.; Zhang, B.R. Triclosan removal by laccase immobilized on mesoporous nanofibers: Strong adsorption and efficient degradation. Chem. Eng. J. 2014, 255, 63–70. [Google Scholar] [CrossRef]
- Sheldon, R.A.; van Pelt, S. Enzyme immobilisation in biocatalysis: Why, what and how. Chem. Soc. Rev. 2013, 42, 6223–6235. [Google Scholar] [CrossRef] [Green Version]
- Rossi, L.M.; Costa, N.J.S.; Silva, F.P.; Wojcieszak, R. Magnetic nanomaterials in catalysis: Advanced catalysts for magnetic separation and beyond. Green Chem. 2014, 16, 2906–2933. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, W.Z.; Liu, Y.; Zhang, K.G.; Chen, Y.; Yin, X.S. Laccase immobilized on chitosan-coated Fe3O4 nanoparticles as reusable biocatalyst for degradation of chlorophenol. J. Mol. Struct. 2020, 1220, 128769. [Google Scholar] [CrossRef]
- Wang, X.Y.; Jiang, X.P.; Li, Y.; Zeng, S.; Zhang, Y.W. Preparation Fe3O4@chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus. Int. J. Biol. Macromol. 2015, 75, 44–50. [Google Scholar] [CrossRef]
- Ran, F.P.; Zou, Y.L.; Xu, Y.X.; Liu, X.Y.; Zhang, H.X. Fe3O4@MoS2@PEI-facilitated enzyme tethering for efficient removal of persistent organic pollutants in water. Chem. Eng. J. 2019, 375, 121947. [Google Scholar] [CrossRef]
- Xia, T.T.; Liu, C.Z.; Hu, J.H.; Guo, C. Improved performance of immobilized laccase on amine-functioned magnetic Fe3O4 nanoparticles modified with polyethylenimine. Chem. Eng. J. 2016, 295, 201–206. [Google Scholar] [CrossRef]
- Su, J.; Fu, J.J.; Wang, Q.; Silva, C.; Cavaco-Paulo, A. Laccase: A green catalyst for the biosynthesis of poly-phenols. Crit. Rev. Biotechnol. 2018, 38, 294–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Zhao, X.S.; Liu, Y.; Xu, B.G.; Pan, X.J. Highly stable and covalently functionalized magnetic nanoparticles by polyethyleneimine for Cr(VI) adsorption in aqueous solution. RSC Adv. 2015, 5, 1398–1405. [Google Scholar] [CrossRef]
- Xiang, X.R.; Ding, S.; Suo, H.B.; Xu, C.; Gao, Z.; Hu, Y. Fabrication of chitosan-mesoporous silica SBA-15 nanocomposites via functional ionic liquid as the bridging agent for PPL immobilization. Carbohydr. Polym. 2018, 182, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Qin, J.; Xu, M.; Kang, L.F.; Hu, Y. Organic-inorganic nanocomposites fabricated via functional ionic liquid as the bridging agent for Laccase immobilization and its application in 2,4-dichlorophenol removal. Colloids Surf. B-Biointerfaces 2019, 179, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Wang, Y.; Xue, Y.; Li, W.X.; Hu, Y. Laccase immobilized on magnetic nanoparticles modified by amino-functionalized ionic liquid via dialdehyde starch for phenolic compounds biodegradation. Chem. Eng. J. 2020, 391, 123564. [Google Scholar] [CrossRef]
- Nguyen, X.S.; Zhang, G.K.; Yang, X.F. Mesocrystalline Zn-Doped Fe3O4 Hollow Submicrospheres: Formation Mechanism and Enhanced Photo-Fenton Catalytic Performance. ACS Appl. Mater. Interfaces 2017, 9, 8900–8909. [Google Scholar] [CrossRef]
- Suo, H.B.; Xu, L.L.; Xu, C.; Qu, X.; Chen, H.Y.; Huang, H.; Hu, Y. Graphene Oxide Nanosheets Shielding of Lipase Immobilized on Magnetic Composites for the Improvement of Enzyme Stability. ACS Sustain. Chem. Eng. 2019, 7, 4486–4494. [Google Scholar] [CrossRef]
- Zou, B.; Hu, Y.; Cui, F.J.; Jiang, L.; Yu, D.H.; Huang, H. Effect of surface modification of low cost mesoporous SiO2 carriers on the properties of immobilized lipase. J. Colloid Interface Sci. 2014, 417, 210–216. [Google Scholar] [CrossRef]
- Esmaeilnejad-Ahranjani, P.; Kazemeini, M.; Singh, G.; Arpanaei, A. Amine-functionalized magnetic nanocomposite particles for efficient immobilization of lipase: Effects of functional molecule size on properties of the immobilized lipase. RSC Adv. 2015, 5, 33313–33327. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.L.; Kwon, J.T.; Kim, E.M.; Kim, Y.K.; Arote, R.; Jere, D.; Jeong, H.J.; Jang, M.K.; Nah, J.W.; Xu, C.X.; et al. Galactosylated poly(ethylene glycol)-chitosan-graft-polyethylenimine as a gene carrier for hepatocyte-targeting. J. Control. Release 2008, 131, 150–157. [Google Scholar] [CrossRef]
- Chen, M.; Xu, P.; Zeng, G.M.; Yang, C.P.; Huang, D.L.; Zhang, J.C. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnol. Adv. 2015, 33, 745–755. [Google Scholar] [CrossRef]
- Motevalizadeh, S.F.; Khoobi, M.; Sadighi, A.; Khalilvand-Sedagheh, M.; Pazhouhandeh, M.; Ramazani, A.; Faramarzi, M.A.; Shafiee, A. Lipase immobilization onto polyethylenimine coated magnetic nanoparticles assisted by divalent metal chelated ions. J. Mol. Catal. B-Enzym. 2015, 120, 75–83. [Google Scholar] [CrossRef]
- Chen, C.T.; Wang, L.Y.; Ho, Y.P. Use of polyethylenimine-modified magnetic nanoparticles for highly specific enrichment of phosphopeptides for mass spectrometric analysis. Anal. Bioanal. Chem. 2011, 399, 2795–2806. [Google Scholar] [CrossRef]
- Chen, Y.L.; Pan, B.C.; Zhang, S.J.; Li, H.Y.; Lv, L.; Zhang, W.M. Immobilization of polyethylenimine nanoclusters onto a cation exchange resin through self-crosslinking for selective Cu(II) removal. J. Hazard. Mater. 2011, 190, 1037–1044. [Google Scholar] [CrossRef]
- Sadeghzadeh, S.; Nejad, Z.G.; Ghasemi, S.; Khafaji, M.; Borghei, S.M. Removal of bisphenol A in aqueous solution using magnetic cross -linked laccase aggregates from Trametes hirsuta. Bioresour. Technol. 2020, 306, 123169. [Google Scholar] [CrossRef]
- Chen, C.; Sun, W.; Lv, H.Y.; Li, H.; Wang, Y.B.; Wang, P. Spacer arm-facilitated tethering of laccase on magnetic polydopamine nanoparticles for efficient biocatalytic water treatment. Chem. Eng. J. 2018, 350, 949–959. [Google Scholar] [CrossRef]
- Qiu, X.; Wang, S.S.; Miao, S.S.; Suo, H.B.; Xu, H.J.; Hu, Y. Co-immobilization of laccase and ABTS onto amino-functionalized ionic liquid-modified magnetic chitosan nanoparticles for pollutants removal. J. Hazard. Mater. 2021, 401, 123564. [Google Scholar] [CrossRef]
- Wu, D.S.; Lv, P.F.; Feng, Q.; Jiang, Y.; Yang, H.R.; Alfred, M.; Wei, Q.F. Biomass-derived nanocellulose aerogel enable highly efficient immobilization of laccase for the degradation of organic pollutants. Bioresour. Technol. 2022, 356, 127311. [Google Scholar] [CrossRef]
- Taghizadeh, T.; Talebian-Kiakalaieh, A.; Jahandar, H.; Amin, M.; Tarighi, S.; Faramarzi, M.A. Biodegradation of bisphenol A by the immobilized laccase on some synthesized and modified forms of zeolite Y. J. Hazard. Mater. 2020, 386, 121950. [Google Scholar] [CrossRef]
- Chen, T.T.; Yang, W.J.; Guo, Y.L.; Yuan, R.J.; Xu, L.; Yan, Y.J. Enhancing catalytic performance of beta-glucosidase via immobilization on metal ions chelated magnetic nanoparticles. Enzym. Microb. Technol. 2014, 63, 50–57. [Google Scholar] [CrossRef]
- Gaitan, I.J.; Medina, S.C.; Gonzalez, J.C.; Rodriguez, A.; Espejo, A.J.; Osma, J.F.; Sarria, V.; Almeciga-Diaz, C.J.; Sanchez, O.F. Evaluation of toxicity and degradation of a chlorophenol mixture by the laccase produced by Trametes pubescens. Bioresour. Technol. 2011, 102, 3632–3635. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Y.; Huang, Y.; Yang, Y.X.; Yuan, H.M.; Liu, X.N. Cagelike mesoporous silica encapsulated with microcapsules for immobilized laccase and 2, 4-DCP degradation. J. Environ. Sci. 2015, 38, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Alver, E.; Metin, A.U. Chitosan based metal-chelated copolymer nanoparticles: Laccase immobilization and phenol degradation studies. Int. Biodeterior. Biodegrad. 2017, 125, 235–242. [Google Scholar] [CrossRef]
- Lin, J.; Liu, Y.J.; Chen, S.; Le, X.Y.; Zhou, X.H.; Zhao, Z.Y.; Ou, Y.Y.; Yang, J.H. Reversible immobilization of laccase onto metal-ion-chelated magnetic microspheres for bisphenol A removal. Int. J. Biol. Macromol. 2016, 84, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; As’habi, M.A.; Salehi, P.; Yousefi, M.; Nazari, M.; Brask, J. Immobilization of laccase on epoxy-functionalized silica and its application in biodegradation of phenolic compounds. Int. J. Biol. Macromol. 2018, 109, 443–447. [Google Scholar] [CrossRef]
- Suo, H.B.; Xu, L.L.; Xu, C.; Chen, H.Y.; Yu, D.H.; Gao, Z.; Huang, H.; Hu, Y. Enhancement of catalytic performance of porcine pancreatic lipase immobilized on functional ionic liquid modified Fe3O(4)-Chitosan nanocomposites. Int. J. Biol. Macromol. 2018, 119, 624–632. [Google Scholar] [CrossRef]
- Chao, C.; Liu, J.D.; Wang, J.T.; Zhang, Y.W.; Zhang, B.; Zhang, Y.T.; Xiang, X.; Chen, R.F. Surface Modification of Halloysite Nanotubes with Dopamine for Enzyme Immobilization. ACS Appl. Mater. Interfaces 2013, 5, 10559–10564. [Google Scholar] [CrossRef]
- Suo, H.B.; Gao, Z.; Xu, L.L.; Xu, C.; Yu, D.H.; Xiang, X.R.; Huang, H.; Hu, Y. Synthesis of functional ionic liquid modified magnetic chitosan nanoparticles for porcine pancreatic lipase immobilization. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 96, 356–364. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Chen, Z.H.; Yao, J.; Ma, B.; Liu, B.; Kim, J.; Li, H.; Zhu, X.Z.; Zhao, C.C.; Amde, M. A robust biocatalyst based on laccase immobilized superparamagnetic Fe3O4@SiO2-NH2 nanoparticles and its application for degradation of chlorophenols. Chemosphere 2022, 291, 132727. [Google Scholar] [CrossRef]
Carriers | Laccase Immobilization | Laccase Activity Assay | |||
---|---|---|---|---|---|
Immobilization Efficiency (%) | Enzyme Loading (mg g−1) | Expressed Activity (U g−1 Biocatalyst) | Specific Activity (U g−1 Protein) | Activity Retention (%) | |
MPEI | 32.04 ± 0.07 | 30.21 ± 0.08 | 42.76 ± 0.15 | 1415.36 ± 3.48 | 47.69 ± 0.14 |
MCIL–PEI | 36.26 ± 0.11 | 34.17 ± 0.09 | 58.67 ± 0.13 | 1717.01 ± 3.14 | 57.85 ± 0.12 |
MCIL–PEI–Cu | 55.34 ± 0.13 | 52.19 ± 0.12 | 141.97 ± 0.16 | 2720.03 ± 3.65 | 91.65 ± 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Zhang, W.; Wang, S.; Xu, H.; Hu, Y. Magnetic Polyethyleneimine Nanoparticles Fabricated via Ionic Liquid as Bridging Agents for Laccase Immobilization and Its Application in Phenolic Pollutants Removal. Molecules 2022, 27, 8522. https://doi.org/10.3390/molecules27238522
Liu R, Zhang W, Wang S, Xu H, Hu Y. Magnetic Polyethyleneimine Nanoparticles Fabricated via Ionic Liquid as Bridging Agents for Laccase Immobilization and Its Application in Phenolic Pollutants Removal. Molecules. 2022; 27(23):8522. https://doi.org/10.3390/molecules27238522
Chicago/Turabian StyleLiu, Runtang, Wei Zhang, Shushu Wang, Huajin Xu, and Yi Hu. 2022. "Magnetic Polyethyleneimine Nanoparticles Fabricated via Ionic Liquid as Bridging Agents for Laccase Immobilization and Its Application in Phenolic Pollutants Removal" Molecules 27, no. 23: 8522. https://doi.org/10.3390/molecules27238522
APA StyleLiu, R., Zhang, W., Wang, S., Xu, H., & Hu, Y. (2022). Magnetic Polyethyleneimine Nanoparticles Fabricated via Ionic Liquid as Bridging Agents for Laccase Immobilization and Its Application in Phenolic Pollutants Removal. Molecules, 27(23), 8522. https://doi.org/10.3390/molecules27238522