Preparation of Coupling Catalyst HamZIF-90@Pd@CALB with Tunable Hollow Structure for Efficient Dynamic Kinetic Resolution of 1-Phenylethylamine
Abstract
:1. Introduction
2. Results and Discussions
2.1. Characterization of the As-Prepared Materials
2.2. DKR Reaction of 1-Phenylethylamine
3. Materials and Methods
3.1. Materials
3.2. Characterization
3.3. Preparation of HamZIF-90
3.4. Preparation of HamZIF-90@Pd
3.5. Preparation of HamZIF-90@Pd@CALB
3.6. Dynamic Kinetic Resolution Reaction of 1-Phenylethylamine Catalyzed by HamZIF-90@Pd@ CALB
3.7. Quantitative Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bartoszewicz, A.; Ahlsten, N.; Martin-Matute, B. Enantioselective Synthesis of Alcohols and Amines by Iridium-Catalyzed Hydrogenation, Transfer Hydrogenation, and Related Processes. Chem.-Eur. J. 2013, 19, 7274–7302. [Google Scholar] [CrossRef] [Green Version]
- Paetzold, J.; Backvall, J.E. Chemoenzymatic dynamic kinetic resolution of primary amines. J. Am. Chem. Soc. 2005, 127, 17620–17621. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.W.; Li, Y.; Nie, W.; Chang, Z.; Yu, Z.A.; Zhao, Y.F.; Lu, X.; Fu, Y. Catalytic asymmetric reductive hydroalkylation of enamides and enecarbamates to chiral aliphatic amines. Nat. Commun. 2021, 12, 10. [Google Scholar] [CrossRef]
- Zhang, X.M.; Jing, L.Y.; Chang, F.F.; Chen, S.; Yang, H.Q.; Yang, Q.H. Positional immobilization of Pd nanoparticles and enzymes in hierarchical yolk-shell@shell nanoreactors for tandem catalysis. Chem. Commun. 2017, 53, 7780–7783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verho, O.; Bäckvall, J.-E. Chemoenzymatic Dynamic Kinetic Resolution: A Powerful Tool for the Preparation of Enantiomerically Pure Alcohols and Amines. J. Am. Chem. Soc. 2015, 137, 3996–4009. [Google Scholar] [CrossRef]
- Martín-Matute, B.; Bäckvall, J.-E. Dynamic kinetic resolution catalyzed by enzymes and metals. Curr. Opin. Chem. Biol. 2007, 11, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.X.; Wang, L.; Meng, X.J.; Xiao, F.S. New Strategies for the Preparation of Sinter-Resistant Metal-Nanoparticle-Based Catalysts. Adv. Mater. 2019, 31, 18. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Wang, L.; Wang, L.; Xiao, F.-S. Zeolite Fixed Metal Nanoparticles: New Perspective in Catalysis. Acc. Chem. Res. 2021, 54, 2579–2590. [Google Scholar] [CrossRef]
- Yang, L.-C.; Deng, H.; Renata, H. Recent Progress and Developments in Chemoenzymatic and Biocatalytic Dynamic Kinetic Resolution. Org. Process Res. Dev. 2022, 26, 1925–1943. [Google Scholar] [CrossRef]
- Hermanová, S.; Zarevúcká, M.; Bouša, D.; Pumera, M.; Sofer, Z. Graphene oxide immobilized enzymes show high thermal and solvent stability. Nanoscale 2015, 7, 5852–5858. [Google Scholar] [CrossRef]
- Li, P.; Moon, S.-Y.; Guelta, M.A.; Harvey, S.P.; Hupp, J.T.; Farha, O.K. Encapsulation of a Nerve Agent Detoxifying Enzyme by a Mesoporous Zirconium Metal–Organic Framework Engenders Thermal and Long-Term Stability. J. Am. Chem. Soc. 2016, 138, 8052–8055. [Google Scholar] [CrossRef] [PubMed]
- Aghababaie, M.; Beheshti, M.; Razmjou, A.; Bordbar, A.-K. Covalent immobilization of Candida rugosa lipase on a novel functionalized Fe3O4@SiO2 dip-coated nanocomposite membrane. Food Bioprod. Process. 2016, 100, 351–360. [Google Scholar] [CrossRef]
- Ferraz, C.A.; do Nascimento, M.A.; Almeida, R.F.O.; Sergio, G.G.; Junior, A.A.T.; Dalmonico, G.; Caraballo, R.; Finotelli, P.V.; Leao, R.A.C.; Wojcieszak, R.; et al. Synthesis and characterization of a magnetic hybrid catalyst containing lipase and palladium and its application on the dynamic kinetic resolution of amines. Mol. Catal. 2020, 493, 11. [Google Scholar] [CrossRef]
- Engstrom, K.; Johnston, E.V.; Verho, O.; Gustafson, K.P.J.; Shakeri, M.; Tai, C.-W.; Backvall, J.-E. Co-immobilization of an enzyme and a metal into the compartments of mesoporous silica for cooperative tandem catalysis: An artificial metalloenzyme. Angew. Chem. 2013, 52, 14006–14010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustafson, K.P.J.; Lihammar, R.; Verho, O.; Engström, K.; Bäckvall, J.-E. Chemoenzymatic Dynamic Kinetic Resolution of Primary Amines Using a Recyclable Palladium Nanoparticle Catalyst Together with Lipases. J. Org. Chem. 2014, 79, 3747–3751. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Wang, M.; Feng, B.; Han, X.; Lan, Z.; Gu, H.; Li, H.; Li, H. Dynamic kinetic resolution of amines by using palladium nanoparticles confined inside the cages of amine-modified MIL-101 and lipase. J. Catal. 2018, 363, 9–17. [Google Scholar] [CrossRef]
- Burtch, N.C.; Jasuja, H.; Walton, K.S. Water Stability and Adsorption in Metal–Organic Frameworks. Chem. Rev. 2014, 114, 10575–10612. [Google Scholar] [CrossRef]
- Benoit, V.; Chanut, N.; Pillai, R.S.; Benzaqui, M.; Beurroies, I.; Devautour-Vinot, S.; Serre, C.; Steunou, N.; Maurin, G.; Llewellyn, P.L. A promising metal-organic framework (MOF), MIL-96(Al), for CO2 separation under humid conditions. J. Mater. Chem. A 2018, 6, 2081–2090. [Google Scholar] [CrossRef]
- Ding, N.; Li, H.W.; Feng, X.; Wang, Q.Y.; Wang, S.; Ma, L.; Zhou, J.W.; Wang, B. Partitioning MOF-5 into Confined and Hydrophobic Compartments for Carbon Capture under Humid Conditions. J. Am. Chem. Soc. 2016, 138, 10100–10103. [Google Scholar] [CrossRef]
- Qin, L.; Li, Y.; Liang, F.; Li, L.; Lan, Y.; Li, Z.; Lu, X.; Yang, M.; Ma, D. A microporous 2D cobalt-based MOF with pyridyl sites and open metal sites for selective adsorption of CO2. Microporous Mesoporous Mater. 2022, 341, 112098. [Google Scholar] [CrossRef]
- Wang, X.; Li, M.; Cao, C.; Liu, C.; Liu, J.; Zhu, Y.; Zhang, S.; Song, W. Surfactant-Free Palladium Nanoparticles Encapsulated in ZIF-8 Hollow Nanospheres for Size-Selective Catalysis in Liquid-Phase Solution. ChemCatChem 2016, 8, 3224–3228. [Google Scholar] [CrossRef]
- Ricco, R.; Wied, P.; Nidetzky, B.; Amenitsch, H.; Falcaro, P. Magnetically responsive horseradish peroxidase@ZIF-8 for biocatalysis. Chem. Commun. 2020, 56, 5775–5778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, W.B.; Xu, H.S.; Carraro, F.; Maddigan, N.K.; Li, Q.W.; Bell, S.G.; Huang, D.M.; Tarzia, A.; Solomon, M.B.; Amenitsch, H.; et al. Enhanced Activity of Enzymes Encapsulated in Hydrophilic Metal-Organic Frameworks. J. Am. Chem. Soc. 2019, 141, 2348–2355. [Google Scholar] [CrossRef]
- Qiu, Y.; Tan, G.; Fang, Y.; Liu, S.; Zhou, Y.; Kumar, A.; Trivedi, M.; Liu, D.; Liu, J. Biomedical applications of metal–organic framework (MOF)-based nano-enzymes. New J. Chem. 2021, 45, 20987–21000. [Google Scholar] [CrossRef]
- Qin, L.; Liang, F.; Li, Y.; Wu, J.; Guan, S.; Wu, M.; Xie, S.; Luo, M.; Ma, D. A 2D Porous Zinc-Organic Framework Platform for Loading of 5-Fluorouracil. Inorganics 2022, 10, 202. [Google Scholar] [CrossRef]
- Nadar, S.S.; Vaidya, L.; Rathod, V.K. Enzyme embedded metal organic framework (enzyme–MOF): De novo approaches for immobilization. Int. J. Biol. Macromol. 2020, 149, 861–876. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.W.; Lv, D.F.; Wu, J.L.; Xiao, J.; Xi, H.X.; Xia, Q.B.; Li, Z. A new MOF-505@GO composite with high selectivity for CO2/CH4 and CO2/N-2 separation. Chem. Eng. J. 2017, 308, 1065–1072. [Google Scholar] [CrossRef]
- Wang, M.; Wang, X.; Feng, B.; Li, Y.; Han, X.; Lan, Z.; Gu, H.; Sun, H.; Shi, M.; Li, H.; et al. Combining Pd nanoparticles on MOFs with cross-linked enzyme aggregates of lipase as powerful chemoenzymatic platform for one-pot dynamic kinetic resolution of amines. J. Catal. 2019, 378, 153–163. [Google Scholar] [CrossRef]
- Stauch, B.; Fisher, S.J.; Cianci, M. Open and closed states of Candida antarctica lipase B: Protonation and the mechanism of interfacial activation1. J. Lipid Res. 2015, 56, 2348–2358. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, C.; Ferreira, M.L.; Barbosa, O.; dos Santos, J.C.S.; Rodrigues, R.C.; Berenguer-Murcia, Á.; Briand, L.E.; Fernandez-Lafuente, R. Novozym 435: The “perfect” lipase immobilized biocatalyst? Catal. Sci. Technol. 2019, 9, 2380–2420. [Google Scholar] [CrossRef]
- Park, S.-C.; Chang, W.-J.; Lee, S.-M.; Kim, Y.-J.; Koo, Y.-M. Lipase-catalyzed transesterification in several reaction systems: An application of room temperature lonic liquids for bi-phasic production ofn-butyl acetate. Biotechnol. Bioprocess Eng. 2005, 10, 99. [Google Scholar] [CrossRef]
- Cheng, K.P.; Svec, F.; Lv, Y.Q.; Tan, T.W. Hierarchical Micro- and Mesoporous Zn-Based Metal-Organic Frameworks Templated by Hydrogels: Their Use for Enzyme Immobilization and Catalysis of Knoevenagel Reaction. Small 2019, 15, 1902927. [Google Scholar] [CrossRef]
- Zhan, G.W.; Zeng, H.C. A Synthetic Protocol for Preparation of Binary Multi-shelled Hollow Spheres and Their Enhanced Oxidation Application. Chem. Mat. 2017, 29, 10104–10112. [Google Scholar] [CrossRef]
- Cao, S.; Bennett, T.D.; Keen, D.A.; Goodwin, A.L.; Cheetham, A.K. Amorphization of the prototypical zeolitic imidazolate framework ZIF-8 by ball-milling. Chem. Commun. 2012, 48, 7805–7807. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Liu, Y.; Zeng, G.; Zhao, L.; Lai, Z. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 2011, 47, 2071–2073. [Google Scholar] [CrossRef] [PubMed]
- Gholipoor, O.; Hosseini, S.A. Phenol removal from wastewater by CWPO process over the Cu-MOF nanocatalyst: Process modeling by response surface methodology (RSM) and kinetic and isothermal studies. New J. Chem. 2021, 45, 2536–2549. [Google Scholar] [CrossRef]
- Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J.V.; Hu, P.; Hsu, M.-H.; Wu, K.C.W.; et al. Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals. J. Am. Chem. Soc. 2015, 137, 4276–4279. [Google Scholar] [CrossRef]
Entry | Catalyst | Conversion (%) | eeamine (%) |
---|---|---|---|
1 | HamZIF-90(0.05)@Pd | 33 | 12 |
2 | HamZIF-90(0.06)@Pd | 42 | 12 |
3 | HamZIF-90(0.07)@Pd | 38 | 17 |
4 | HamZIF-90(0.08)@Pd | 35 | 13 |
5 | HamZIF-90(0.05) | / | / |
6 | HamZIF-90(0.06) | / | / |
7 | HamZIF-90(0.07) | / | / |
8 | HamZIF-90(0.08) | / | / |
Entry | Catalyst | Conversion (%) | eeamine (%) | Sel.R-amide (%) |
---|---|---|---|---|
1 | ZIF-90@Pd, Novozym 435 | 83 | 99 | 81 |
2 | HamZIF-90(0.05)@Pd, Novozym 435 | 78 | 99 | 74 |
3 | HamZIF-90(0.06)@Pd, Novozym 435 | 85 | 96 | 88 |
4 | HamZIF-90(0.07)@Pd, Novozym 435 | 86 | 97 | 84 |
5 | HamZIF-90(0.08)@Pd, Novozym 435 | 87 | 98 | 83 |
6 | ZIF-90@Pd@CalB | 75 | 99 | 73 |
7 | HamZIF-90(0.05)@Pd@CalB | 82 | 99 | 78 |
8 | HamZIF-90(0.06)@Pd@CalB | 98 | 99 | 93 |
9 | HamZIF-90(0.07)@Pd@CalB | 91 | 99 | 76 |
10 | HamZIF-90(0.08)@Pd@CalB | 89 | 99 | 80 |
Entry | Catalyst | PH2(MPa) | Conversion (%) | eep (%) | Sel.R-amide (%) |
---|---|---|---|---|---|
1 | HamZIF-90(0.06)@Pd@CalB | 0.03 | 98 | 99 | 93 |
2 | HamZIF-90(0.06)@Pd@CalB | 0.015 | 84 | 97 | 76 |
3 | HamZIF-90(0.06)@Pd@CalB | 0.05 | 93 | 98 | 85 |
Entry | Catalyst | Solvent | Conversion (%) | eeamine (%) | Sel.R-amide (%) |
---|---|---|---|---|---|
1 | HamZIF-90(0.06)@Pd@CalB | toluene | 98 | 99 | 93 |
2 | HamZIF-90(0.06)@Pd@CalB | DMF | 85 | 99 | 82 |
3 | HamZIF-90(0.06)@Pd@CalB | EA | 81 | 99 | 69 |
4 | HamZIF-90(0.06)@Pd@CalB | EAC | 89 | 99 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Zhu, J.; Zhang, H.; Wang, L.; Wang, S.; Zhang, M.; Wu, J.; Yang, L.; Xu, G. Preparation of Coupling Catalyst HamZIF-90@Pd@CALB with Tunable Hollow Structure for Efficient Dynamic Kinetic Resolution of 1-Phenylethylamine. Molecules 2023, 28, 922. https://doi.org/10.3390/molecules28030922
Li P, Zhu J, Zhang H, Wang L, Wang S, Zhang M, Wu J, Yang L, Xu G. Preparation of Coupling Catalyst HamZIF-90@Pd@CALB with Tunable Hollow Structure for Efficient Dynamic Kinetic Resolution of 1-Phenylethylamine. Molecules. 2023; 28(3):922. https://doi.org/10.3390/molecules28030922
Chicago/Turabian StyleLi, Pengcheng, Jingjing Zhu, Hongyu Zhang, Lan Wang, Shulin Wang, Mengting Zhang, Jianping Wu, Lirong Yang, and Gang Xu. 2023. "Preparation of Coupling Catalyst HamZIF-90@Pd@CALB with Tunable Hollow Structure for Efficient Dynamic Kinetic Resolution of 1-Phenylethylamine" Molecules 28, no. 3: 922. https://doi.org/10.3390/molecules28030922
APA StyleLi, P., Zhu, J., Zhang, H., Wang, L., Wang, S., Zhang, M., Wu, J., Yang, L., & Xu, G. (2023). Preparation of Coupling Catalyst HamZIF-90@Pd@CALB with Tunable Hollow Structure for Efficient Dynamic Kinetic Resolution of 1-Phenylethylamine. Molecules, 28(3), 922. https://doi.org/10.3390/molecules28030922