Dual-Enzyme Cascade Composed of Chitosan Coated FeS2 Nanozyme and Glucose Oxidase for Sensitive Glucose Detection
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of FeS2/CS@Gox
2.2. Immobilization Ratio and Immobilized Enzyme Activity
2.3. The POD-like Activity of FeS2
2.4. Sensitivity and Selectivity of Glucose Detection
2.5. Glucose Detection in Actual Samples
3. Materials and Methods
3.1. Materials
3.2. Synthesis and Characterization of FeS2
3.3. Immobilization of Gox
3.4. Materials Characterization
3.5. The Effect of pH on the Activity of Immobilized Enzyme
3.6. The Effect of Temperature on the Activity of Immobilized Enzyme
3.7. POD-Like Activity and Kinetic Assay of FeS2 Nanozyme
3.8. Enzyme Activity Assay of Gox
3.9. Immobilized Enzyme Cycle Assay
3.10. Construction of the System for Glucose Detection
3.11. The Selectivity of FeS2 for H2O2 Detection and Glucose Detection
3.12. Preparation of Urine Simulant
3.13. Shelf Life of the Glucose Detection System Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, D.-M.; Chen, J.; Shi, Y.-P. Advances on methods and easy separated support materials for enzymes immobilization. TrAC Trends Anal. Chem. 2018, 102, 332–342. [Google Scholar] [CrossRef]
- Qiao, F.; Chen, L.; Li, X.; Li, L.; Ai, S. Peroxidase-like activity of manganese selenide nanoparticles and its analytical application for visual detection of hydrogen peroxide and glucose. Sens. Actuators B Chem. 2014, 193, 255–262. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized Enzymes in Biosensor Applications. Materials 2019, 12, 121. [Google Scholar] [CrossRef] [Green Version]
- Metkar, S.K.; Girigoswami, K. Diagnostic biosensors in medicine—A review. Biocatal. Agric. Biotechnol. 2019, 17, 271–283. [Google Scholar] [CrossRef]
- Wen, L.; Edmunds, G.; Gibbons, C.; Zhang, J.; Gadi, M.R.; Zhu, H.; Fang, J.; Liu, X.; Kong, Y.; Wang, P.G. Toward Automated Enzymatic Synthesis of Oligosaccharides. Chem. Rev. 2018, 118, 8151–8187. [Google Scholar] [CrossRef]
- Hartmann, M.; Kostrov, X. Immobilization of enzymes on porous silicas–benefits and challenges. Chem. Soc. Rev. 2013, 42, 6277–6289. [Google Scholar] [CrossRef]
- Ren, S.; Li, C.; Jiao, X.; Jia, S.; Jiang, Y.; Bilal, M.; Cui, J. Recent progress in multienzymes co-immobilization and multienzyme system applications. Chem. Eng. J. 2019, 373, 1254–1278. [Google Scholar] [CrossRef]
- Liang, S.; Wu, X.-L.; Xiong, J.; Zong, M.-H.; Lou, W.-Y. Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coord. Chem. Rev. 2020, 406, 213194. [Google Scholar] [CrossRef]
- Chapman, J.; Ismail, A.; Dinu, C. Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks. Catalysts 2018, 8, 238. [Google Scholar] [CrossRef] [Green Version]
- Yushkova, E.D.; Nazarova, E.A.; Matyuhina, A.V.; Noskova, A.O.; Shavronskaya, D.O.; Vinogradov, V.V.; Skvortsova, N.N.; Krivoshapkina, E.F. Application of Immobilized Enzymes in Food Industry. J. Agric. Food Chem. 2019, 67, 11553–11567. [Google Scholar] [CrossRef]
- Xiong, W.; Liu, B.; Shen, Y.; Jing, K.; Savage, T.R. Protein engineering design from directed evolution to de novo synthesis. Biochem. Eng. J. 2021, 174, 108096. [Google Scholar] [CrossRef]
- Basso, A.; Serban, S. Industrial applications of immobilized enzymes—A review. Mol. Catal. 2019, 479, 110607. [Google Scholar] [CrossRef]
- Hu, Y.; Dai, L.; Liu, D.; Du, W.; Wang, Y. Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs). Renew. Sustain. Energy Rev. 2018, 91, 793–801. [Google Scholar]
- Liu, D.-M.; Dong, C. Recent advances in nano-carrier immobilized enzymes and their applications. Process Biochem. 2020, 92, 464–475. [Google Scholar] [CrossRef]
- Reis, C.; Sousa, E.; Serpa, J.; Oliveira, R.; Oliveira, R.; Santos, J. Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities. Química Nova 2019, 42, 768–783. [Google Scholar] [CrossRef]
- Ashkan, Z.; Hemmati, R.; Homaei, A.; Dinari, A.; Jamlidoost, M.; Tashakor, A. Immobilization of enzymes on nanoinorganic support materials: An update. Int. J. Biol. Macromol. 2021, 168, 708–721. [Google Scholar] [CrossRef]
- Zhu, L.; Shen, B.; Song, Z.; Jiang, L. Permeabilized TreS-Expressing Bacillus subtilis Cells Decorated with Glucose Isomerase and a Shell of ZIF-8 as a Reusable Biocatalyst for the Coproduction of Trehalose and Fructose. J. Agric. Food Chem. 2020, 68, 4464–4472. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Basso, A.; Brady, D. New frontiers in enzyme immobilisation: Robust biocatalysts for a circular bio-based economy. Chem. Soc. Rev. 2021, 50, 5850–5862. [Google Scholar] [CrossRef]
- Cheng, K.; Svec, F.; Lv, Y.; Tan, T. Hierarchical Micro- and Mesoporous Zn-Based Metal-Organic Frameworks Templated by Hydrogels: Their Use for Enzyme Immobilization and Catalysis of Knoevenagel Reaction. Small 2019, 15, e1902927. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, Y.; Simpson, B. Food enzymes immobilization: Novel carriers, techniques and applications. Curr. Opin. Food Sci. 2022, 43, 27–35. [Google Scholar] [CrossRef]
- Cui, J.; Feng, Y.; Lin, T.; Tan, Z.; Zhong, C.; Jia, S. Mesoporous Metal-Organic Framework with Well-Defined Cruciate Flower-Like Morphology for Enzyme Immobilization. ACS Appl. Mater. Interfaces 2017, 9, 10587–10594. [Google Scholar] [CrossRef] [PubMed]
- Prlainovic, N.; Bezbradica, D.; Knezevic-Jugovic, Z.; Marinkovic, A.; Mijin, D. Immobilization of enzymes onto carbon nanotubes. Hem. Ind. 2011, 65, 423–430. [Google Scholar] [CrossRef]
- Li, J.J.; Yin, L.; Wang, Z.F.; Jing, Y.C.; Jiang, Z.L.; Ding, Y.; Wang, H.S. Enzyme-Immobilized Metal-Organic Frameworks: From Preparation to Application. Chem. Asian J. 2022, 17, e202200751. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Wang, B.; Zhu, L.; Jiang, L.J.N. Properties of cobalt-and nickel-doped ZIF-8 framework materials and their application in heavy-metal removal from wastewater. Nanomaterials 2020, 10, 1636. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, S.; Chakravarty, A.; Ikram, S. A comprehensive review on incredible renewable carriers as promising platforms for enzyme immobilization & thereof strategies. Int. J. Biol. Macromol. 2021, 167, 962–986. [Google Scholar]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [CrossRef]
- Wei, H.; Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef]
- Wang, H.; Wan, K.; Shi, X. Recent Advances in Nanozyme Research. Adv. Mater. 2019, 31, e1805368. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, H.; Zhang, Z.; Wang, E.; Dong, S. Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal. Chem. 2018, 105, 218–224. [Google Scholar] [CrossRef]
- Jiang, D.; Ni, D.; Rosenkrans, Z.T.; Huang, P.; Yan, X.; Cai, W. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683–3704. [Google Scholar] [CrossRef]
- Meng, X.; Li, D.; Chen, L.; He, H.; Wang, Q.; Hong, C.; He, J.; Gao, X.; Yang, Y.; Jiang, B.; et al. High-Performance Self-Cascade Pyrite Nanozymes for Apoptosis-Ferroptosis Synergistic Tumor Therapy. ACS Nano 2021, 15, 5735–5751. [Google Scholar] [CrossRef]
- Xi, J.; An, L.; Huang, Y.; Jiang, J.; Wang, Y.; Wei, G.; Xu, Z.; Fan, L.; Gao, L. Ultrasmall FeS2 Nanoparticles-Decorated Carbon Spheres with Laser-Mediated Ferrous Ion Release for Antibacterial Therapy. Small 2021, 17, e2005473. [Google Scholar] [CrossRef]
- Huang, X.; Nan, Z. Porous 2D FeS2 nanosheets as a peroxidase mimic for rapid determination of H2O2. Talanta 2020, 216, 120995. [Google Scholar] [CrossRef]
- Ding, W.; Liu, H.; Zhao, W.; Wang, J.; Zhang, L.; Yao, Y.; Yao, C.; Song, C. A Hybrid of FeS2 Nanoparticles Encapsulated by Two-Dimensional Carbon Sheets as Excellent Nanozymes for Colorimetric Glucose Detection. ACS Appl. Bio. Mater. 2020, 3, 5905–5912. [Google Scholar] [CrossRef]
- Li, X.; Zhu, H.; Liu, P.; Wang, M.; Pan, J.; Qiu, F.; Ni, L.; Niu, X. Realizing selective detection with nanozymes: Strategies and trends. TrAC Trends Anal. Chem. 2021, 143, 116379. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, C.; Zhao, D.; Kang, G.; Liu, F.; Yang, F.; Lu, Y.; Sun, J. Multienzyme Cascades Based on Highly Efficient Metal-Nitrogen-Carbon Nanozymes for Construction of Versatile Bioassays. Anal. Chem. 2022, 94, 3485–3493. [Google Scholar] [CrossRef]
- Shen, B.; Li, W.; Wang, Y.; Cheng, S.; Wang, X.; Zhu, L.; Zhang, Y.; Gao, L.; Jiang, L. Rapid capture and killing of bacteria by lyophilized nFeS-Hydrogel for improved healing of infected wounds. Biomater. Adv. 2022, 144, 213207. [Google Scholar] [CrossRef]
- Tai, H.; Nishikawa, K.; Higuchi, Y.; Mao, Z.W.; Hirota, S. Cysteine SH and Glutamate COOH Contributions to [NiFe] Hydrogenase Proton Transfer Revealed by Highly Sensitive FTIR Spectroscopy. Angew. Chem. Int. Ed. Engl. 2019, 58, 13285–13290. [Google Scholar] [CrossRef]
- Pandey, P.; Singh, S.P.; Arya, S.K.; Gupta, V.; Datta, M.; Singh, S.; Malhotra, B. Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity. Langmuir 2007, 23, 3333–3337. [Google Scholar] [CrossRef]
- Sigurdardóttir, S.B.; Lehmann, J.; Ovtar, S.; Grivel, J.C.; Negra, M.D.; Kaiser, A.; Pinelo, M. Enzyme Immobilization on Inorganic Surfaces for Membrane Reactor Applications: Mass Transfer Challenges, Enzyme Leakage and Reuse of Materials. Adv. Synth. Catal. 2018, 360, 2578–2607. [Google Scholar] [CrossRef]
- Fan, R.; Tian, J.; Wang, H.; Wang, X.; Zhou, P. Sensitive colorimetric assay of hydrogen peroxide and glucose in humoral samples based on the enhanced peroxidase-mimetic activity of NH2-MIL-88-derived FeS2@ CN nanocomposites compared to its precursors. Microchim. Acta 2022, 189, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Wang, Y.; Wang, X.; Amal, F.E.; Zhu, L.; Jiang, L. A Cruciform Petal-like (ZIF-8) with Bactericidal Activity against Foodborne Gram-Positive Bacteria for Antibacterial Food Packaging. Int. J. Mol. Sci. 2022, 23, 7510. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhou, H.; Liu, X.; Yuan, T.; Wang, W.; Zhao, C.; Zhao, Y.; Zhou, F.; Wang, X.; Xue, Z.; et al. Single iron site nanozyme for ultrasensitive glucose detection. Small 2020, 16, 2002343. [Google Scholar] [CrossRef]
- Vallabani, N.; Karakoti, A.; Singh, S. ATP-mediated intrinsic peroxidase-like activity of Fe3O4-based nanozyme: One step detection of blood glucose at physiological pH. Colloids Surf. B Biointerfaces 2017, 153, 52–60. [Google Scholar] [CrossRef]
- Guo, Y.; Yan, L.; Zhang, R.; Ren, H.; Liu, A. CoO-supported ordered mesoporous carbon nanocomposite based nanozyme with peroxidase-like activity for colorimetric detection of glucose. Process Biochem. 2019, 81, 92–98. [Google Scholar] [CrossRef]
- Lee, G.; Kim, C.; Kim, D.; Hong, C.; Kim, T.; Lee, M.; Lee, K. Multibranched Au–Ag–Pt Nanoparticle as a Nanozyme for the Colorimetric Assay of Hydrogen Peroxide and Glucose. ACS Omega 2022, 7, 40973–40982. [Google Scholar] [CrossRef]
- Kalasin, S.; Sangnuang, P.; Khownarumit, P.; Tang, I.M.; Surareungchai, W. Evidence of Cu(I) Coupling with Creatinine Using Cuprous Nanoparticles Encapsulated with Polyacrylic Acid Gel-Cu(II) in Facilitating the Determination of Advanced Kidney Dysfunctions. ACS Biomater. Sci. Eng. 2020, 6, 1247–1258. [Google Scholar] [CrossRef]
- Robinson, S.; Dhanlaksmi, N. Photonic crystal based biosensor for the detection of glucose concentration in urine. Photonic Sens. 2016, 7, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-H.; Vázquez-González, M.; Zoabi, A.; Abu-Reziq, R.; Willner, I. Biocatalytic cascades driven by enzymes encapsulated in metal–organic framework nanoparticles. Nat. Catal. 2018, 1, 689–695. [Google Scholar] [CrossRef]
Material | Bioassay Type | Linear Range | LOD(μM) | Ref. |
---|---|---|---|---|
FeS2 | Solution | 0–60 μM | 1.9 μM | This work |
Fe SSN | Solution | 0–60 μM | 2.1 μM | [44] |
Fe3O4 | Solution | 62.5–500 μM | 50 μM | [45] |
CoO-OMC | Solution | 0–500 mM | 68 μM | [46] |
Au-Ag-Pt | Solution | 0–10 mM | 289.6 μM | [47] |
Sample | Abs | Con (μM) | Actual Con (μM) | Error (%) |
---|---|---|---|---|
Sample 1 | 0.06669 | 10.263 | 10 | 2.63 |
Sample 2 | 0.12885 | 30.445 | 30 | 1.48 |
Sample 3 | 0.19211 | 50.984 | 50 | 1.97 |
Sample 4 | 0.24967 | 69.672 | 70 | 0.05 |
Sample 5 | 0.30984 | 89.208 | 90 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, B.; Qing, M.; Zhu, L.; Wang, Y.; Jiang, L. Dual-Enzyme Cascade Composed of Chitosan Coated FeS2 Nanozyme and Glucose Oxidase for Sensitive Glucose Detection. Molecules 2023, 28, 1357. https://doi.org/10.3390/molecules28031357
Shen B, Qing M, Zhu L, Wang Y, Jiang L. Dual-Enzyme Cascade Composed of Chitosan Coated FeS2 Nanozyme and Glucose Oxidase for Sensitive Glucose Detection. Molecules. 2023; 28(3):1357. https://doi.org/10.3390/molecules28031357
Chicago/Turabian StyleShen, Bowen, Molan Qing, Liying Zhu, Yuxian Wang, and Ling Jiang. 2023. "Dual-Enzyme Cascade Composed of Chitosan Coated FeS2 Nanozyme and Glucose Oxidase for Sensitive Glucose Detection" Molecules 28, no. 3: 1357. https://doi.org/10.3390/molecules28031357
APA StyleShen, B., Qing, M., Zhu, L., Wang, Y., & Jiang, L. (2023). Dual-Enzyme Cascade Composed of Chitosan Coated FeS2 Nanozyme and Glucose Oxidase for Sensitive Glucose Detection. Molecules, 28(3), 1357. https://doi.org/10.3390/molecules28031357