New Anti-Prelog Stereospecific Whole-Cell Biocatalyst for Asymmetric Reduction of Prochiral Ketones
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening of Strains with Ketone Reduction Activity
2.2. Identification of TQ-2 Strain
2.3. The Effect of Reaction Temperature and Reaction Time on Microbial Selective Reduction by B. cereus TQ-2
2.4. The Cofactor Preference and Optimum Reaction pH of TQ-2 Whole Cells
2.5. The Effect of Co-Substrate on Microbial Reduction of Acetophenone by B. cereus TQ-2
2.6. The Effect of Metal Ions on Selective Reduction by TQ-2 Whole Cell Biocatalyst
2.7. Bioreduction of Structurally Diverse Carbonyl Compounds by B. cereus TQ-2
3. Materials and Methods
3.1. Chemicals and Microorganisms
3.2. Screening and Cultivation of Bacillus cereus TQ-2 Strain
3.3. Identification of Bacillus cereus TQ-2
3.4. General Procedure for the Biocatalytic Reduction of Substrates with the Resting Cells of B. cereus TQ-2
3.5. Analytical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Hollmann, F.; Opperman, D.J.; Paul, C.E. Biocatalytic Reduction Reactions from a Chemist’s Perspective. Angew. Chem. Int. Ed. 2021, 60, 5644–5665. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.N. Biocatalysis for synthesis of pharmaceuticals. Bioorg. Med. Chem. 2018, 26, 1252–1274. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.W.; Xu, J.H. New opportunities for biocatalysis: Driving the synthesis of chiral chemicals. Curr. Opin. Biotechnol. 2011, 22, 784–792. [Google Scholar] [CrossRef]
- Huisman, G.W.; Liang, J.; Krebber, A. Practical chiral alcohols manufacture using ketoreductases. Curr. Opin. Chem. Biol. 2010, 14, 122–129. [Google Scholar] [CrossRef]
- Dong, F.; Yang, Z.; Baldermann, S.; Kajitani, Y.; Ota, S.; Kasuga, H.; Imazeki, Y.; Ohnishi, T.; Watanabe, N. Characterization of l-phenylalanine metabolism to acetophenone and 1-phenylethanol in the flowers of Camellia sinensis using stable isotope labeling. J. Plant Physiol. 2012, 169, 217–225. [Google Scholar] [CrossRef]
- Chua, L.S.; Sarmidi, M.R. Immobilised lipase-catalysed resolution of (R,S)-1-phenylethanol in recirculated packed bed reactor. J. Mol. Catal. B: Enzym. 2004, 28, 111–119. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, T.X.; Pei, X.Q.; Zhang, C.; Wu, Z.L. Identification of ketone reductase ChKRED20 from the genome of Chryseobacterium sp. CA49 for highly efficient anti-Prelog reduction of 3,5-bis(trifluoromethyl)acetophenone. J. Mol. Catal. B Enzym. 2014, 102, 1–8. [Google Scholar] [CrossRef]
- Hansen, K.B.; Chilenski, J.R.; Desmond, R.; Devine, P.N.; Grabowski, E.J.J.; Heid, R.; Kubryk, M.; Mathre, D.J.; Varsolona, R. Scalable, efficient process for the synthesis of (R)-3,5-bistrifluoromethylphenyl ethanol via catalytic asymmetric transfer hydrogenation and isolation as a DABCO inclusion complex. Tetrahedron Asymmetry 2003, 14, 3581–3587. [Google Scholar] [CrossRef]
- You, Z.Y.; Liu, Z.Q.; Zheng, Y.G. Chemical and enzymatic approaches to the synthesis of optically pure ethyl (R)-4-cyano-3-hydroxybutanoate. Appl. Microbiol. Biotechnol. 2014, 98, 11–21. [Google Scholar] [CrossRef]
- Chakrabortty, S.; Almasalma, A.A.; de Vries, J.G. Recent developments in asymmetric hydroformylation. Catal. Sci. Technol. 2021, 11, 5388–5411. [Google Scholar] [CrossRef]
- Seliger, J.; Oestreich, M. Making the Silylation of Alcohols Chiral: Asymmetric Protection of Hydroxy Groups. Chem.-Eur. J. 2019, 25, 9358–9365. [Google Scholar] [CrossRef]
- Chen, Q.A.; Ye, Z.S.; Duan, Y.; Zhou, Y.G. Homogeneous palladium-catalyzed asymmetric hydrogenation. Chem. Soc. Rev. 2013, 42, 497–511. [Google Scholar] [CrossRef] [PubMed]
- Pellissier, H. Recent developments in non-enzymatic catalytic oxidative kinetic resolution of secondary alcohols. Tetrahedron 2018, 74, 3459–3468. [Google Scholar] [CrossRef]
- Bell, E.L.; Finnigan, W.; France, S.P.; Green, A.P.; Hayes, M.A.; Hepworth, L.J.; Lovelock, S.L.; Niikura, H.; Osuna, S.; Romero, E.; et al. Biocatalysis. Nat. Rev. Methods Primers 2021, 1, 46. [Google Scholar] [CrossRef]
- Reetz, M.T. Biocatalysis in Organic Chemistry and Biotechnology: Past, Present, and Future. J. Am. Chem. Soc. 2013, 135, 12480–12496. [Google Scholar] [CrossRef]
- de Carvalho, C.C.C.R. Whole cell biocatalysts: Essential workers from Nature to the industry. Microb. Biotechnol. 2017, 10, 250–263. [Google Scholar] [CrossRef]
- Lin, B.; Tao, Y. Whole-cell biocatalysts by design. Microb. Cell Fact. 2017, 16, 106. [Google Scholar] [CrossRef]
- Torrelo, G.; Hanefeld, U.; Hollmann, F. Biocatalysis. Catal. Lett. 2015, 145, 309–345. [Google Scholar] [CrossRef]
- Mordhorst, S.; Andexer, J.N. Round, round we go—Strategies for enzymatic cofactor regeneration. Nat. Prod. Rep. 2020, 37, 1316–1333. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, P. Cofactor regeneration for sustainable enzymatic biosynthesis. Biotechnol. Adv. 2007, 25, 369–384. [Google Scholar] [CrossRef]
- Wu, S.; Li, Z. Whole-Cell Cascade Biotransformations for One-Pot Multistep Organic Synthesis. ChemCatChem 2018, 10, 2164–2178. [Google Scholar] [CrossRef]
- Goldberg, K.; Schroer, K.; Lütz, S.; Liese, A. Biocatalytic ketone reduction—A powerful tool for the production of chiral alcohols—Part II: Whole-cell reductions. Appl. Microbiol. Biotechnol. 2007, 76, 249–255. [Google Scholar] [CrossRef]
- Kisukuri, C.M.; Andrade, L.H. Production of chiral compounds using immobilized cells as a source of biocatalysts. Org. Biomol. Chem. 2015, 13, 10086–10107. [Google Scholar] [CrossRef]
- de Gonzalo, G.; Paul, C.E. Recent trends in synthetic enzymatic cascades promoted by alcohol dehydrogenases. Curr. Opin. Green Sustain. Chem. 2021, 32, 100548. [Google Scholar] [CrossRef]
- Yang, W.; Xu, J.H.; Xie, Y.; Xu, Y.; Zhao, G.; Lin, G.Q. Asymmetric reduction of ketones by employing Rhodotorula sp. AS2.2241 and synthesis of the β-blocker (R)-nifenalol. Tetrahedron Asymmetry 2006, 17, 1769–1774. [Google Scholar] [CrossRef]
- Lou, W.Y.; Wang, W.; Li, R.F.; Zong, M.H. Efficient enantioselective reduction of 4′-methoxyacetophenone with immobilized Rhodotorula sp. AS2.2241 cells in a hydrophilic ionic liquid-containing co-solvent system. J. Biotechnol. 2009, 143, 190–197. [Google Scholar] [CrossRef]
- Liu, H.; de Souza, F.Z.R.; Liu, L.; Chen, B.S. The use of marine-derived fungi for preparation of enantiomerically pure alcohols. Appl. Microbiol. Biotechnol. 2018, 102, 1317–1330. [Google Scholar] [CrossRef]
- Koesoema, A.A.; Standley, D.M.; Senda, T.; Matsuda, T. Impact and relevance of alcohol dehydrogenase enantioselectivities on biotechnological applications. Appl. Microbiol. Biotechnol. 2020, 104, 2897–2909. [Google Scholar] [CrossRef]
- An, J.; Nie, Y.; Xu, Y. Structural insights into alcohol dehydrogenases catalyzing asymmetric reductions. Crit. Rev. Biotechnol. 2019, 39, 366–379. [Google Scholar] [CrossRef]
- Ni, Y.; Xu, J.H. Biocatalytic ketone reduction: A green and efficient access to enantiopure alcohols. Biotechnol. Adv. 2012, 30, 1279–1288. [Google Scholar] [CrossRef] [PubMed]
- Musa, M.M. Alcohol Dehydrogenases with anti-Prelog Stereopreference in Synthesis of Enantiopure Alcohols. ChemistryOpen 2022, 11, e202100251. [Google Scholar] [CrossRef]
- Klemetsen, T.; Karlsen, C.R.; Willassen, N.P. Phylogenetic Revision of the Genus Aliivibrio: Intra- and Inter-Species Variance Among Clusters Suggest a Wider Diversity of Species. Front. Microbiol. 2021, 12, 626759. [Google Scholar] [CrossRef]
- Watanabe, K.; Nelson, J.; Harayama, S.; Kasai, H. ICB database: The gyrB database for identification and classification of bacteria. Nucleic Acids Res. 2001, 29, 344–345. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Ye, L.; Guo, F.; Yang, X.; Yu, H. Biocatalytic anti-Prelog reduction of prochiral ketones with whole cells of a newly isolated strain Empedobacter brevis ZJUY-1401. J. Mol. Catal. B Enzym. 2015, 117, 31–37. [Google Scholar] [CrossRef]
- Du, P.X.; Wei, P.; Lou, W.Y.; Zong, M.H. Biocatalytic anti-Prelog reduction of prochiral ketones with whole cells of Acetobacter pasteurianus GIM1.158. Microb. Cell Fact. 2014, 13, 84. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.J.; Zong, M.H.; Lou, W.Y. Highly enantioselective reduction of 4-(trimethylsilyl)-3-butyn-2-one to enantiopure (R)-4-(trimethylsilyl)-3-butyn-2-ol using a novel strain Acetobacter sp. CCTCC M209061. Bioresour. Technol. 2009, 100, 5560–5565. [Google Scholar] [CrossRef] [PubMed]
- Homann, M.J.; Vail, R.B.; Previte, E.; Tamarez, M.; Morgan, B.; Dodds, D.R.; Zaks, A. Rapid identification of enantioselective ketone reductions using targeted microbial libraries. Tetrahedron 2004, 60, 789–797. [Google Scholar] [CrossRef]
- Li, J.; Wang, P.; He, J.Y.; Huang, J.; Tang, J. Efficient biocatalytic synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol by a newly isolated Trichoderma asperellum ZJPH0810 using dual cosubstrate: Ethanol and glycerol. Appl. Microbiol. Biotechnol. 2013, 97, 6685–6692. [Google Scholar] [CrossRef] [PubMed]
- Gelo-Pujic, M.; Le Guyader, F.; Schlama, T. Microbial and homogenous asymmetric catalysis in the reduction of 1-[3,5-bis(trifluoromethyl)phenyl]ethanone. Tetrahedron Asymmetry 2006, 17, 2000–2005. [Google Scholar] [CrossRef]
- Wei, Z.L.; Lin, G.Q.; Li, Z.Y. Microbial transformation of 2-hydroxy and 2-acetoxy ketones with Geotrichum sp. Bioorg. Med. Chem. 2000, 8, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Fantin, G.; Fogagnolo, M.; Giovannini, P.P.; Medici, A.; Pedrini, P.; Gardini, F.; Lanciotti, R. Anti-Prelog microbial reduction of prochiral carbonyl compounds. Tetrahedron 1996, 52, 3547–3552. [Google Scholar] [CrossRef]
- Ernst, M.; Kaup, B.; Müller, M.; Bringer-Meyer, S.; Sahm, H. Enantioselective reduction of carbonyl compounds by whole-cell biotransformation, combining a formate dehydrogenase and a (R)-specific alcohol dehydrogenase. Appl. Microbiol. Biotechnol. 2005, 66, 629–634. [Google Scholar] [CrossRef]
- Hu, J.; Xu, Y. Anti-Prelog Reduction of Prochiral Carbonyl Compounds by Oenococcus oeni in a Biphasic System. Biotechnol. Lett. 2006, 28, 1115–1119. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Liu, W.; Huang, L.; Cheng, L.; Xu, Z. Efficient biotransformation of vitamin D3 to 25-hydroxyvitamin D3 by a newly isolated Bacillus cereus strain. Appl. Microbiol. Biotechnol. 2020, 104, 765–774. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Cheng, F.; Xia, Y.; Zheng, J.; Wang, Z. Whole-cell biocatalytic of Bacillus cereus WZZ006 strain to synthesis of indoxacarb intermediate: (S)-5-Chloro-1-oxo-2,3-dihydro-2-hydroxy-1H-indene-2-carboxylic acid methyl ester. Chirality 2019, 31, 958–967. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, G.; Boll, M.; Heider, J. Microbial degradation of aromatic compounds—From one strategy to four. Nat. Rev. Microbiol. 2011, 9, 803–816. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Ghoshal, A.K. Phenol degradation by Bacillus cereus: Pathway and kinetic modeling. Bioresour. Technol. 2010, 101, 5501–5507. [Google Scholar] [CrossRef] [PubMed]
- Kurbanoglu, E.B.; Zilbeyaz, K.; Taskin, M.; Kurbanoglu, N.I. Total production of (R)-3,5-bistrifluoromethylphenyl ethanol by asymmetric reduction of 3,5-bis(trifluoromethyl)-acetophenone in the submerged culture of Penicillium expansum isolate. Tetrahedron Asymmetry 2009, 20, 2759–2763. [Google Scholar] [CrossRef]
- Riordan, J. The role of metals in enzyme activity. Ann. Clin. Lab. Sci. 1977, 7, 119–129. [Google Scholar]
Characteristics | TQ-2 | Characteristics | TQ-2 |
---|---|---|---|
β-galactosidase | - | H2S production | - |
Arginine dihydrolase | + | Urease | - |
Lysine decarboxylase | - | Tryptophan deaminase | - |
Ornithine decarboxylase | - | Indole production | - |
Citric acid utilization | W | 3-hydroxy butanone | + |
Gelatinase | + | Esculin | + |
Glycerine | - | Salicyl alcohol | + |
Erythritol | - | Cellose | - |
d-arabinose | - | Maltose | + |
l-arabinose | - | Lactose | - |
Ribose | + | Melibiose | - |
d-xylose | - | Saccharose | - |
l-xylose | - | Trehalose | + |
Adonitol | - | Inulin | - |
β-methyl-d-xylitoside | - | Melezitose | - |
Galactose | - | Raffinose | - |
Glucose | + | Starch | - |
Fructose | + | Glycogen | - |
Mannose | - | xylitol | - |
Sorbose | - | Geraniol | - |
Rhamnose | - | d-turanose | - |
Dulcitol | - | d-lyxose | - |
Inositol | - | d-tagatose | - |
Mannitol | - | d-fucose | - |
Sorbitol | - | l-fucose | - |
Methyl α-d-mannopyranoside | - | d-arabinitol | - |
Methyl α-d-Glucopyranoside | - | l-arabinitol | - |
N-acetylglucosamine | + | Gluconate | - |
Amygdalin | - | 2-keto-gluconate | - |
Arbutin | + | 5-keto-gluconate | - |
Entry | Substrates | Products | Conversion (%) | ee (%) | Selectivity |
---|---|---|---|---|---|
1a | 70 | 99 | R | ||
1b | 55 | 99 | R | ||
1c | 65 | 75 | R | ||
1d | 60 | 66 | R | ||
1e | 35 | 99 | R | ||
1f | 60 | 60 | R | ||
1g | 100 | 40 | S | ||
1h | 87 | 99 | R | ||
1i | 90 | 99 | R | ||
1j | 30 | 80 | S | ||
1k | 80 | 50 | S | ||
1l | 66 | - | - | ||
1m | 100 | - | - | ||
1n | 98 | - | - | ||
1o | 100 | - | - | ||
1p | 100 | - | - | ||
1q | Nr a | - | - | ||
1r | Nr a | - | - | ||
1s | Nr a | - | - | ||
1t | Nr a | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.-Y.; Cai, S.-J.; Lin, J.-C.; Ji, X.-J.; Zhang, Z.-G. New Anti-Prelog Stereospecific Whole-Cell Biocatalyst for Asymmetric Reduction of Prochiral Ketones. Molecules 2023, 28, 1422. https://doi.org/10.3390/molecules28031422
Wang M-Y, Cai S-J, Lin J-C, Ji X-J, Zhang Z-G. New Anti-Prelog Stereospecific Whole-Cell Biocatalyst for Asymmetric Reduction of Prochiral Ketones. Molecules. 2023; 28(3):1422. https://doi.org/10.3390/molecules28031422
Chicago/Turabian StyleWang, Min-Yu, Shun-Ju Cai, Jia-Chun Lin, Xiao-Jun Ji, and Zhi-Gang Zhang. 2023. "New Anti-Prelog Stereospecific Whole-Cell Biocatalyst for Asymmetric Reduction of Prochiral Ketones" Molecules 28, no. 3: 1422. https://doi.org/10.3390/molecules28031422
APA StyleWang, M. -Y., Cai, S. -J., Lin, J. -C., Ji, X. -J., & Zhang, Z. -G. (2023). New Anti-Prelog Stereospecific Whole-Cell Biocatalyst for Asymmetric Reduction of Prochiral Ketones. Molecules, 28(3), 1422. https://doi.org/10.3390/molecules28031422