Essential Oils Encapsulated in Zeolite Structures as Delivery Systems (EODS): An Overview
Abstract
:1. Introduction
2. Essential Oils (EO)
2.1. Biologic Activity and Mechanisms of Action of EO as Antimicrobial Agents
2.2. Economic Viability of Essential Oils
3. Zeolites as Carriers for the Encapsulation of Essential Oils
Advantages of the Encapsulation of Essential Oils in Porous Materials
4. Essential Oils Encapsulated in Zeolites
4.1. Food Industry
4.2. Textile Applications
4.3. Healthcare
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils–A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Alonso-Gato, M.; Astray, G.; Mejuto, J.C.; Simal-Gandara, J. Essential Oils as Antimicrobials in Crop Protection. Antibiotics 2021, 10, 34. [Google Scholar] [CrossRef] [PubMed]
- Dreger, M.; Wielgus, K. Application of Essential Oils as Natural Cosmetic Preservatives. Herba Pol. 2014, 59, 142–156. [Google Scholar] [CrossRef] [Green Version]
- Can Başer, K.H.; Buchbauer, G. Handbook of Essential Oils: Science, Technology, and Applications, 2nd ed.; Taylor and Francis Group: New York, NY, USA, 2015; ISBN 9781466590472. [Google Scholar]
- Bassolé, I.H.N.; Juliani, H.R. Essential Oils in Combination and Their Antimicrobial Properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, S. Essential Chemistry for Aromatherapy, 2nd ed.; Livingstone, C., Ed.; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Tian, Q.; Zhou, W.; Cai, Q.; Ma, G.; Lian, G. Concepts, Processing, and Recent Developments in Encapsulating Essential Oils. Chin. J. Chem. Eng. 2021, 30, 255–271. [Google Scholar] [CrossRef]
- Oliveira, M.; Araújo, A.; Azevedo, G.; Pereira, M.F.R.; Neves, I.C.; Machado, A.V. Kinetic and Equilibrium Studies of Phosphorous Adsorption: Effect of Physical and Chemical Properties of Adsorption Agent. Ecol. Eng. 2015, 82, 527–530. [Google Scholar] [CrossRef]
- Sels, B.; Kustov, L. Zeolites and Zeolite-like Materials, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780444635068. [Google Scholar]
- Silva, B.; Neves, I.C.; Tavares, T. A Sustained Approach to Environmental Catalysis: Reutilization of Chromium from Wastewater. Crit. Rev. Environ. Sci. Technol. 2016, 46, 1622–1657. [Google Scholar] [CrossRef] [Green Version]
- Soares, O.S.G.P.; Fonseca, A.M.; Parpot, P.; Órfão, J.J.M.; Pereira, M.F.R.; Neves, I.C. Oxidation of Volatile Organic Compounds by Highly Efficient Metal Zeolite Catalysts. ChemCatChem 2018, 10, 3754–3760. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.; Almeida-Aguiar, C.; Parpot, P.; Fonseca, A.M.; Neves, I.C. Preparation and Assessment of Antimicrobial Properties of Bimetallic Materials Based on NaY Zeolite. R. Soc. Chem. 2015, 5, 37188–37195. [Google Scholar] [CrossRef]
- Ferreira, L.; Guedes, J.F.; Almeida-Aguiar, C.; Fonseca, A.M.; Neves, I.C. Microbial Growth Inhibition Caused by Zn/Ag-Y Zeolite Materials with Different Amounts of Silver. Colloids Surf. B Biointerfaces 2016, 142, 141–147. [Google Scholar] [CrossRef]
- Vilaça, N.; Bertão, A.R.; Prasetyanto, E.A.; Granja, S.; Costa, M.; Fernandes, R.; Figueiredo, F.; Fonseca, A.M.; De Cola, L.; Baltazar, F.; et al. Surface Functionalization of Zeolite-Based Drug Delivery Systems Enhances Their Antitumoral Activity in Vivo. Mater. Sci. Eng. C 2021, 120, 111721. [Google Scholar] [CrossRef]
- Yazdi, M.K.; Zarrintaj, P.; Hosseiniamoli, H.; Mashhadzadeh, A.H.; Saeb, M.R.; Ramsey, J.D.; Ganjali, M.R.; Mozafari, M. Zeolites for Theranostic Applications. J. Mater. Chem. B 2020, 8, 5992–6012. [Google Scholar] [CrossRef]
- Miguel, M.G. Antioxidant and Anti-Inflammatory Activities of Essential Oils: A Short Review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef] [Green Version]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Butnariu, M.; Sarac, I. Essential Oils from Plants. J. Biotechnol. Biomed. Sci. 2018, 1, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An Overview on the Role of Dietary Phenolics for the Treatment of Cancers. Nutr. J. 2016, 15, 99. [Google Scholar] [CrossRef] [Green Version]
- Guenther, E. The Essential Oils Vol 1: History—Origin in Plants—Production—Analysis; Jepson Press: Berkeley, CA, USA, 2007; ISBN 9781406703658. [Google Scholar]
- Preedy, V. Essential Oils in Food Preservation, Flavor and Safety; Academic Press: Cambridge, MA, USA, 2016; ISBN 9780124166417. [Google Scholar]
- Klaschka, U. Naturally Toxic: Natural Substances Used in Personal Care Products. Environ. Sci. Eur. 2015, 27, 1. [Google Scholar] [CrossRef]
- Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods–A Review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Harris, R. Synergism in the Essential Oil World. Int. J. Aromather. 2002, 12, 179–186. [Google Scholar] [CrossRef]
- Azzouz, M.A.; Bullerman, L.R. Comparative Antimycotic Effects of Selected Herbs and Spices, Plant Components and Commercial Antifungal Agents. J. Food Prot. 1982, 45, 1248–1301. [Google Scholar] [CrossRef]
- Carson, C.F.; Riley, T.V. Antimicrobial Activity of the Essential Oil of Melaleuca Alternifolia. Lett. Appl. Microbiol. 1993, 16, 49–55. [Google Scholar] [CrossRef]
- Idris, M.; Huzaifa, U.; Hamisu, H.S.Z. Nanoencapsulation of Essential Oils with Enhanced Antimicrobial Activity: A New Way of Combating Antimicrobial Resistance Nanoencapsulation of Essential Oils with Enhanced Antimicrobial Activity: A New Way of Combating Antimicrobial Resistance. J. Pharmacogn. Phytochem. 2015, 4, 165–170. [Google Scholar]
- Hartmans, K.; Diepenhorst, P.; Bakker, W.; Gorris, L.G.M. The Use of Carvone in Agriculture: Sprout Suppression of Potatoes and Antifungal Activity against Potato Tubers and Other Plant Diseases. Ind. Crops Prod. 1995, 4, 3–13. [Google Scholar] [CrossRef]
- Bouyahya, A.; Zengin, G.; Belmehdi, O.; Bourais, I.; Chamkhi, I.; Taha, D.; Benali, T.; Dakka, N.; Bakri, Y. Origanum Compactum Benth., from Traditional Use to Biotechnological Applications. J. Food Biochem. 2020, 44, E13251. [Google Scholar] [CrossRef] [PubMed]
- Patra, J.K.; Das, G.; Bose, S.; Bennerjee, B.; Vishnuprasad, C.N.; Rodriguez-Torres, M.d.P.; Shin, H.-S. Star Anise (Illicium Verum): Chemical Compounds, Antiviral Properties, and Clinical Relevance. Phyther. Res. 2020, 34, 1248–1267. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [Green Version]
- Nair, A.; Mallya, R.; Suvarna, V.; Khan, T.A.; Momin, M.; Omri, A. Nanoparticles—Attractive Carriers of Antimicrobial Essential Oils. Antibiotics 2022, 11, 108. [Google Scholar] [CrossRef]
- Samber, N.; Khan, A.; Varma, A.; Manzoor, N. Synergistic Anti-Candidal Activity and Mode of Action of Mentha Piperita Essential Oil and Its Major Components. Pharm. Biol. 2015, 53, 1496–1504. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.K.; Kumar, P.; Singh, P.; Tripathi, N.N.; Bajpai, V.K. Essential Oils: Sources of Antimicrobials and Food Preservatives. Front. Microbiol. 2017, 7, 2161. [Google Scholar] [CrossRef] [Green Version]
- Raveau, R.; Fontaine, J.; Lounès-Hadj Sahraoui, A. Essential Oils as Potential Alternative Biocontrol Products against Plant Pathogens and Weeds: A Review. Foods 2020, 9, 365. [Google Scholar] [CrossRef] [Green Version]
- Langeveld, W.T.; Veldhuizen, E.J.A.; Burt, S.A. Synergy between Essential Oil Components and Antibiotics: A Review. Crit. Rev. Microbiol. 2014, 40, 76–94. [Google Scholar] [CrossRef] [PubMed]
- Becerril, R.; Nerín, C.; Gómez-Lus, R. Evaluation of Bacterial Resistance to Essential Oils and Antibiotics after Exposure to Oregano and Cinnamon Essential Oils. Foodborne Pathog. Dis. 2012, 9, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Cho, T.J.; Park, S.M.; Yu, H.; Seo, G.H.; Kim, H.W.; Kim, S.A.; Rhee, M.S. Recent Advances in the Application of Antibacterial Complexes Using Essential Oils. Molecules 2020, 25, 1752. [Google Scholar] [CrossRef] [PubMed]
- Razzouk, S.; Mazri, M.A.; Jeldi, L.; Mnasri, B.; Ouahmane, L.; Alfeddy, M.N. Chemical Composition and Antimicrobial Activity of Essential Oils from Three Mediterranean Plants against Eighteen Pathogenic Bacteria and Fungi. Pharmaceutics 2022, 14, 1608. [Google Scholar] [CrossRef]
- Kosman, E.; Cohen, Y. Procedures for Calculating and Differentiating Synergism and Antagonism in Action of Fungicide Mixtures. Am. Phytopathol. Soc. 1996, 86, 1263–1272. [Google Scholar]
- Cokol-cakmak, M.; Bakan, F.; Cetiner, S.; Cokol, M. Diagonal Method to Measure Synergy among Any Number of Drugs. J. Vis. Exp. 2018, 136, 57713. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, R.; Rolta, R.; Dev, K.; Sourirajan, A. Synergistic Potential of Essential Oils with Antibiotics to Combat Fungal Pathogens: Present Status and Future Perspectives. Phyther. Res. 2021, 35, 6089–6100. [Google Scholar] [CrossRef]
- Bassolé, I.H.N.; Lamien-Meda, A.; Bayala, B.; Tirogo, S.; Franz, C.; Novak, J.; Nebié, R.C.; Dicko, M.H. Composition and Antimicrobial Activities of Lippia Multiflora Moldenke, Mentha x Piperita L. and Ocimum Basilicum L. Essential Oils and Their Major Monoterpene Alcohols Alone and in Combination. Molecules 2010, 15, 7825–7839. [Google Scholar] [CrossRef]
- García-García, R.; López-Malo, A.; Palou, E. Bactericidal Action of Binary and Ternary Mixtures of Carvacrol, Thymol, and Eugenol against Listeria innocua. J. Food Sci. 2011, 76, 95–100. [Google Scholar] [CrossRef]
- Chang, H.N.; Seong, G.H.; Yoo, I.K.; Park, J.K.; Seo, J.H. Microencapsulation of Recombinant Saccharomyces Cerevisiae Cells with Invertase Activity in Liquid-Core Alginate Capsules. Biotechnol. Bioeng. 1996, 51, 157–162. [Google Scholar] [CrossRef]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents—Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maccioni, A.M.; Anchisi, C.; Sanna, A.; Sardu, C.; Dessì, S. Preservative Systems Containing Essential Oils in Cosmetic Products. Int. J. Cosmet. Sci. 2002, 24, 53–59. [Google Scholar] [CrossRef]
- Purkait, S.; Bhattacharya, A.; Bag, A.; Chattopadhyay, R.R. Synergistic Antibacterial, Antifungal and Antioxidant Efficacy of Cinnamon and Clove Essential Oils in Combination. Arch. Microbiol. 2020, 202, 1439–1448. [Google Scholar] [CrossRef] [PubMed]
- Hossain, F.; Follett, P.; Vu, K.D.; Harich, M.; Salmieri, S.; Lacroix, M. Evidence for Synergistic Activity of Plant-Derived Essential Oils against Fungal Pathogens of Food. Food Microbiol. 2015, 53, 24–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikkhah, M.; Hashemi, M.; Habibi Najafi, M.B.; Farhoosh, R. Synergistic Effects of Some Essential Oils against Fungal Spoilage on Pear Fruit. Int. J. Food Microbiol. 2017, 257, 285–294. [Google Scholar] [CrossRef]
- Pereira, N.L.F.; Aquino, P.E.A.; Júnior, J.G.A.S.; Cristo, J.S.; Vieira Filho, M.A.; Moura, F.F.; Ferreira, N.M.N.; Silva, M.K.N.; Nascimento, E.M.; Correia, F.M.A.; et al. Antibacterial Activity and Antibiotic Modulating Potential of the Essential Oil Obtained from Eugenia jambolana in Association with Led Lights. J. Photochem. Photobiol. B Biol. 2017, 174, 144–149. [Google Scholar] [CrossRef]
- Halla, N.; Fernandes, I.P.; Heleno, S.A.; Costa, P.; Boucherit-Otmani, Z.; Boucherit, K.; Rodrigues, A.E.; Ferreira, I.C.F.R.; Barreiro, M.F. Cosmetics Preservation: A Review on Present Strategies. Molecules 2018, 23, 1571. [Google Scholar] [CrossRef] [Green Version]
- Herman, A.; Herman, A.P.; Domagalska, B.W.; Młynarczyk, A. Essential Oils and Herbal Extracts as Antimicrobial Agents in Cosmetic Emulsion. Indian J. Microbiol. 2013, 53, 232–237. [Google Scholar] [CrossRef] [Green Version]
- Sarkic, A.; Stappen, I. Essential Oils and Their Single Compounds in Cosmetics—A Critical Review. Cosmetics 2018, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.-T.; Lin, C.-Y.; Hsu, L.-S.; Chang, S.-T. Thermal Degradation of Linalool-Chemotype Cinnamomum osmophloeum Leaf Essential Oil and Its Stabilization by Microencapsulation with β-Cyclodextrin. Molecules 2021, 26, 409. [Google Scholar] [CrossRef]
- Kasperkowiak, M.; Strzemiecka, B.; Voelkel, A. Characteristics of Natural and Synthetic Molecular Sieves and Study of Their Interactions with Fragrance Compounds. Physicochem. Probl. Miner. Process. 2016, 52, 789–802. [Google Scholar]
- McCusker, L.B.; Baerlocher, C. Zeolite Structures. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 2001; Volume 137, pp. 37–67. [Google Scholar]
- Demirci, S.; Ustaoǧlu, Z.; Yilmazer, G.A.; Sahin, F.; Baç, N. Antimicrobial Properties of Zeolite-X and Zeolite-A Ion-Exchanged with Silver, Copper, and Zinc against a Broad Range of Microorganisms. Appl. Biochem. Biotechnol. 2014, 172, 1652–1662. [Google Scholar] [CrossRef]
- Zaarour, M.; Dong, B.; Naydenova, I.; Retoux, R.; Mintova, S. Progress in Zeolite Synthesis Promotes Advanced Applications. Microporous Mesoporous Mater. 2014, 189, 11–21. [Google Scholar] [CrossRef]
- Vinaches, P.; Bernardo-Gusmão, K.; Pergher, S.B.C. An Introduction to Zeolite Synthesis Using Imidazolium-Based Cations as Organic Structure-Directing Agents. Molecules 2017, 22, 1307. [Google Scholar] [CrossRef]
- Hao, J.; Milašin, I.S.; Eken, Z.B.; Mravak-Stipetic, M.; Pavelić, K.; Ozer, F. Effects of Zeolite as a Drug Delivery System on Cancer Therapy: A Systematic Review. Molecules 2021, 26, 6196. [Google Scholar] [CrossRef]
- Zarrintaj, P.; Mahmodi, G.; Manouchehri, S.; Mashhadzadeh, A.H.; Khodadadi, M.; Servatan, M.; Ganjali, M.R.; Azambre, B.; Kim, S.J.; Ramsey, J.D.; et al. Zeolite in Tissue Engineering: Opportunities and Challenges. MedComm 2020, 1, 5–34. [Google Scholar] [CrossRef]
- Eroglu, N.; Emekci, M.; Athanassiou, C.G. Applications of Natural Zeolites on Agriculture and Food Production. J. Sci. Food Agric. 2017, 97, 3487–3499. [Google Scholar] [CrossRef]
- Derakhshankhah, H.; Jafari, S.; Sarvari, S.; Barzegari, E.; Moakedi, F.; Ghorbani, M.; Varnamkhasti, B.S.; Jaymand, M.; Izadi, Z.; Tayebi, L. Biomedical Applications of Zeolitic Nanoparticles, with an Emphasis on Medical Interventions. Int. J. Nanomed. 2020, 15, 363–386. [Google Scholar] [CrossRef] [Green Version]
- Mastinu, A.; Kumar, A.; Maccarinelli, G.; Bonini, S.A.; Premoli, M.; Aria, F.; Gianoncelli, A.; Memo, M. Zeolite Clinoptilolite: Therapeutic Virtues of an Ancient Mineral. Molecules 2019, 24, 1517. [Google Scholar] [CrossRef] [Green Version]
- Bohinc, T.; Horvat, A.; Andrić, G.; Golić, M.P.; Kljajić, P.; Trdan, S. Natural versus Synthetic Zeolites for Controlling the Maize Weevil (Sitophilus zeamais)—like Messi versus Ronaldo? J. Stored Prod. Res. 2020, 88, 101639. [Google Scholar] [CrossRef]
- Mumpton, F.A. La Roca Magica: Uses of Natural Zeolites in Agriculture and Industry. Proc. Natl. Acad. Sci. USA 1999, 96, 3463–3470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strzemiecka, B.; Kasperkowiak, M.; Łozyński, M.; Paukszta, D.; Voelkel, A. Examination of Zeolites as Fragrance Carriers. Microporous Mesoporous Mater. 2012, 161, 106–114. [Google Scholar] [CrossRef]
- Tekin, R.; Bac, N.; Warzywoda, J.; Sacco, A. Encapsulation of a Fragrance Molecule in Zeolite X. Microporous Mesoporous Mater. 2015, 215, 51–57. [Google Scholar] [CrossRef]
- Valtchev, V.; Majano, G.; Mintova, S.; Pérez-Ramírez, J. Tailored Crystalline Microporous Materials by Post-Synthesis Modification. Chem. Soc. Rev. 2013, 42, 263–290. [Google Scholar] [CrossRef] [PubMed]
- Schulman, E.; Wu, W.; Liu, D. Two-Dimensional Zeolite Materials: Structural and Acidity Properties. Materials 2020, 13, 1822. [Google Scholar] [CrossRef]
- Dutta, P.; Wang, B. Zeolite-Supported Silver as Antimicrobial Agents. Coord. Chem. Rev. 2019, 383, 1–29. [Google Scholar] [CrossRef]
- Kaya, D.Ş.A.; Vuluga, Z.; Nicolae, C.A.; Radovici, C.; Albu, M.Ă.D.Ă.L.G. The Properties of Two Natural Zeolites Modified with Oregano Essential Oil. Rom. J. Mater. 2013, 43, 48–54. [Google Scholar]
- Bacakova, L.; Vandrovcova, M.; Kopova, I.; Jirka, I. Applications of Zeolites in Biotechnology and Medicine—A Review. Biomater. Sci. 2018, 6, 974–989. [Google Scholar] [CrossRef]
- Khojaewa, V.; Lopatin, O.; Zelenikhin, P.; Ilinskaya, O. Zeolites as Carriers of Antitumor Ribonuclease Binase. Front. Pharmacol. 2019, 10, 442. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhong, S.; Zhang, M.; Lin, Y. Antibacterial Activity of Silver-Loaded Zeolite A Prepared by a Fast Microwave-Loading Method. J. Mater. Sci. 2009, 44, 457–462. [Google Scholar] [CrossRef]
- Beyene, Z.; Ghosh, R. Effect of Zinc Oxide Addition on Antimicrobial and Antibiofilm Activity of Hydroxyapatite: A Potential Nanocomposite for Biomedical Applications. Mater. Today Commun. 2019, 21, 100612. [Google Scholar] [CrossRef]
- Ghosh, I.N.; Patil, S.D.; Sharma, T.K.; Srivastava, S.K.; Pathania, R.; Navani, N.K. Synergistic Action of Cinnamaldehyde with Silver Nanoparticles against Spore-Forming Bacteria: A Case for Judicious Use of Silver Nanoparticles for Antibacterial Applications. Int. J. Nanomed. 2013, 8, 4721–4731. [Google Scholar]
- Ahmad, A.; Viljoen, A. The in Vitro Antimicrobial Activity of Cymbopogon Essential Oil (Lemon grass) and Its Interaction with Silver Ions. Phytomedicine 2015, 22, 657–665. [Google Scholar] [CrossRef]
- Hajizadeh, M.; Maleki, H.; Barani, M.; Fahmidehkar, M.; Mahmoodi, M.; Torkzadeh-Mahani, M. In Vitro Cytotoxicity Assay of D-Limonene Niosomes: An Efficient Nano-Carrier for Enhancing Solubility of Plant-Extracted Agents. Res. Pharm. Sci. 2019, 14, 448–458. [Google Scholar]
- Barani, M.; Mirzaei, M.; Torkzadeh-Mahani, M.; Adeli-sardou, M. Evaluation of Carum-Loaded Niosomes on Breast Cancer Cells:Physicochemical Properties, In Vitro Cytotoxicity, Flow Cytometric, DNA Fragmentation and Cell Migration Assay. Sci. Rep. 2019, 9, 7139. [Google Scholar] [CrossRef] [Green Version]
- Maes, C.; Bouquillon, S.; Fauconnier, M.L. Encapsulation of Essential Oils for the Development of Biosourced Pesticides with Controlled Release: A Review. Molecules 2019, 24, 2539. [Google Scholar] [CrossRef]
- Varona, S.; Kareth, S.; Martín, Á.; Cocero, M.J. Formulation of Lavandin Essential Oil with Biopolymers by PGSS for Application as Biocide in Ecological Agriculture. J. Supercrit. Fluids 2010, 54, 369–377. [Google Scholar] [CrossRef]
- Lai, F.; Wissing, S.A.; Müller, R.H.; Fadda, A.M. Artemisia arborescens L. Essential Oil-Loaded Solid Lipid Nanoparticles for Potential Agricultural Application: Preparation and Characterization. AAPS PharmSciTech 2006, 7, E10. [Google Scholar] [CrossRef] [Green Version]
- Herculano, E.D.; de Paula, H.C.B.; de Figueiredo, E.A.T.; Dias, F.G.B.; Pereira, V.d.A. Physicochemical and Antimicrobial Properties of Nanoencapsulated Eucalyptus Staigeriana Essential Oil. LWT-Food Sci. Technol. 2015, 61, 484–491. [Google Scholar] [CrossRef]
- Khalili, S.T.; Mohsenifar, A.; Beyki, M.; Zhaveh, S.; Rahmani-Cherati, T.; Abdollahi, A.; Bayat, M.; Tabatabaei, M. Encapsulation of Thyme Essential Oils in Chitosan-Benzoic Acid Nanogel with Enhanced Antimicrobial Activity against Aspergillus Flavus. LWT-Food Sci. Technol. 2015, 60, 502–508. [Google Scholar] [CrossRef]
- Beyki, M.; Zhaveh, S.; Khalili, S.T.; Rahmani-Cherati, T.; Abollahi, A.; Bayat, M.; Tabatabaei, M.; Mohsenifar, A. Encapsulation of Mentha Piperita Essential Oils in Chitosan-Cinnamic Acid Nanogel with Enhanced Antimicrobial Activity against Aspergillus Flavus. Ind. Crops Prod. 2014, 54, 310–319. [Google Scholar] [CrossRef]
- Mohammadi, A.; Hashemi, M.; Hosseini, S.M. Nanoencapsulation of Zataria Multiflora Essential Oil Preparation and Characterization with Enhanced Antifungal Activity for Controlling Botrytis Cinerea, the Causal Agent of Gray Mould Disease. Innov. Food Sci. Emerg. Technol. 2015, 28, 73–80. [Google Scholar] [CrossRef]
- Atef, M.; Rezaei, M.; Behrooz, R. Characterization of Physical, Mechanical, and Antibacterial Properties of Agar-Cellulose Bionanocomposite Films Incorporated with Savory Essential Oil. Food Hydrocoll. 2015, 45, 150–157. [Google Scholar] [CrossRef]
- Yoshida, P.A.; Yokota, D.; Foglio, M.A.; Rodrigues, R.A.F.; Pinho, S.C. Liposomes Incorporating Essential Oil of Brazilian Cherry (Eugenia Uniflora L.): Characterization of Aqueous Dispersions and Lyophilized Formulations. J. Microencapsul. 2010, 27, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Girardi, N.S.; García, D.; Robledo, S.N.; Passone, M.A.; Nesci, A.; Etcheverry, M. Microencapsulation of Peumus Boldus Oil by Complex Coacervation to Provide Peanut Seeds Protection against Fungal Pathogens. Ind. Crops Prod. 2016, 92, 93–101. [Google Scholar] [CrossRef]
- Girardi, N.S.; García, D.; Passone, M.A.; Nesci, A.; Etcheverry, M. Microencapsulation of Lippia Turbinata Essential Oil and Its Impact on Peanut Seed Quality Preservation. Int. Biodeterior. Biodegrad. 2017, 116, 227–233. [Google Scholar] [CrossRef]
- Gonçalves, N.D.; Pena, F.d.L.; Sartoratto, A.; Derlamelina, C.; Duarte, M.C.T.; Antunes, A.E.C.; Prata, A.S. Encapsulated Thyme (Thymus vulgaris) Essential Oil Used as a Natural Preservative in Bakery Product. Food Res. Int. 2017, 96, 154–160. [Google Scholar] [CrossRef]
- Rakmai, J.; Cheirsilp, B.; Mejuto, J.C.; Torrado-Agrasar, A.; Simal-Gándara, J. Physico-Chemical Characterization and Evaluation of Bio-Efficacies of Black Pepper Essential Oil Encapsulated in Hydroxypropyl-Beta-Cyclodextrin. Food Hydrocoll. 2017, 65, 157–164. [Google Scholar] [CrossRef]
- Ocak, B.; Gülümser, G.; Baloğlu, E. Microencapsulation of Melaleuca Alternifolia (Tea Tree) Oil by Using Simple Coacervation Method). J. Essent. Oil Res. 2011, 23, 58–65. [Google Scholar] [CrossRef]
- Ciobanu, A.; Mallard, I.; Landy, D.; Brabie, G.; Nistor, D.; Fourmentin, S. Retention of Aroma Compounds from Mentha Piperita Essential Oil by Cyclodextrins and Crosslinked Cyclodextrin Polymers. Food Chem. 2013, 138, 291–297. [Google Scholar] [CrossRef]
- Guney, O.; Gonçalves, M.S.T.; Fonseca, A.M.; Soares, O.S.G.P.; Pereira, M.F.R.; Neves, I.C. Encapsulation and Characterisation of Cationic Benzo[a]Phenoxazines in Zeolite HY. New J. Chem. 2019, 43, 15785–15792. [Google Scholar] [CrossRef]
- Mijailovic, N.R.; Vasiljevic, B.N.; Rankovic, M.; Milanovic, V.; Uskokovic-Markovic, S. Environmental and Pharmacokinetic Aspects of Zeolite/Pharmaceuticals Systems—Two Facets of Adsorption Ability. Catalysts 2022, 12, 837. [Google Scholar] [CrossRef]
- Li, Z.; Huang, J.; Ye, L.; Lv, Y.; Zhou, Z.; Shen, Y.; He, Y.; Jiang, L. Encapsulation of Highly Volatile Fragrances in y Zeolites for Sustained Release: Experimental and Theoretical Studies. ACS Omega 2020, 5, 31925–31935. [Google Scholar] [CrossRef]
- Wen, X.; Yang, F.; Ke, Q.-F.; Xie, X.-T.; Guo, Y.-P. Hollow Mesoporous ZSM-5 Zeolite/Chitosan Ellipsoids Loaded with Doxorubicin as PH-Responsive Drug Delivery Systems against Osteosarcoma. J. Mater. Chem. B 2017, 5, 7866–7875. [Google Scholar] [CrossRef]
- Karimi, M.; Habibizadeh, M.; Rostamizadeh, K.; Khatamian, M.; Divband, B. Preparation and Characterization of Nanocomposites Based on Different Zeolite Frameworks as Carriers for Anticancer Drug: Zeolite Y versus ZSM-5. Polym. Bull. 2019, 76, 2233–2252. [Google Scholar] [CrossRef]
- Murrieta-Rico, F.N.; Antúnez-García, J.; Yocupicio-Gaxiola, R.I.; Galván, D.H.; González, H.C.; Petranovskii, V. Zeolites as Initial Structures for the Preparation of Functional Materials. J. Appl. Res. Technol. 2022, 20, 92–116. [Google Scholar] [CrossRef]
- Serri, C.; de Gennaro, B.; Quagliariello, V.; Iaffaioli, R.V.; De Rosa, G.; Catalanotti, L.; Biondi, M.; Mayol, L. Surface Modified Zeolite-Based Granulates for the Sustained Release of Diclofenac Sodium. Eur. J. Pharm. Sci. 2017, 99, 202–208. [Google Scholar] [CrossRef]
- Pazarçeviren, E.; Erdemli, Ö.; Keskin, D.; Tezcaner, A. Clinoptilolite/PCL–PEG–PCL Composite Scaffolds for Bone Tissue Engineering Applications. J. Biomater. Appl. 2016, 31, 1148–1168. [Google Scholar] [CrossRef]
- Mallard, I.; Bourgeois, D.; Fourmentin, S. A Friendly Environmental Approach for the Controlled Release of Eucalyptus Essential Oil. Colloids Surf. A Physicochem. Eng. Asp. 2018, 549, 130–137. [Google Scholar] [CrossRef]
- Costa, S.P.G.; Soares, O.S.G.P.; Aguiar, C.A.; Neves, I.C. Fragrance Carriers Obtained by Encapsulation of Volatile Aromas into Zeolite Structures. Ind. Crops Prod. 2022, 187, 115397. [Google Scholar] [CrossRef]
- Rubiolo, P.; Sgorbini, B.; Liberto, E.; Cordero, C.; Bicchi, C. Essential Oils and Volatiles: Sample Preparation and Analysis. A Review. Flavour Fragr. J. 2010, 25, 282–290. [Google Scholar] [CrossRef]
- Bertão, A.R.; Pires, N.; Fonseca, A.M.; Soares, O.S.G.P.; Pereira, M.F.R.; Dong, T.; Neves, I.C. Modification of Microfluidic Paper-Based Devices with Dye Nanomaterials Obtained by Encapsulation of Compounds in Y and ZSM5 Zeolites. Sens. Actuators B Chem. 2018, 261, 66–74. [Google Scholar] [CrossRef]
- Li, S.; Lafon, O.; Wang, W.; Wang, Q.; Wang, X.; Li, Y.; Xu, J.; Deng, F. Recent Advances of Solid-State NMR Spectroscopy for Microporous Materials. Adv. Mater. 2020, 32, 2002879. [Google Scholar] [CrossRef] [PubMed]
- Vilaça, N.; Amorim, R.; Machado, A.F.; Parpot, P.; Pereira, M.F.R.; Sardo, M.; Rocha, J.; Fonseca, A.M.; Neves, I.C.; Baltazar, F. Potentiation of 5-Fluorouracil Encapsulated in Zeolites as Drug Delivery Systems for in Vitro Models of Colorectal Carcinoma. Colloids Surf. B Biointerfaces 2013, 112, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Demirpolat, A.; Akman, F.; Kazachenko, A.S. An Experimental and Theoretical Study on Essential Oil of Aethionema Sancakense: Characterization, Molecular Properties and RDG Analysis. Molecules 2022, 27, 6129. [Google Scholar] [CrossRef]
- Gul, M.; Yilmaz, E.; Yildirim, B.A.; Sezmis, G.; Kaya, A.; Timurkaan, S.; Onel, S.E.; Tekce, E. Effects of Oregano Essential Oil (Origanum syriacum L.) on Performance, Egg Quality, Intestinal Morphology and Oxidative Stress in Laying Hens. Eur. Poult. Sci. 2019, 83, 1–15. [Google Scholar]
- Hengl, B.; Đidara, M.; Pavić, M.; Lilić, S.; Šperanda, M. Antioxidative Status and Meat Sensory Quality of Broiler Chicken Fed with XTRACT® and Zeolite Dietary Supplementation. Pakistan J. Agric. Sci. 2017, 54, 897–902. [Google Scholar]
- Küçükyilmaz, K.; Kiyma, Z.; Akdağ, A.; Çetinkaya, M.; Atalay, H.; Ateş, A.; Gürsel, F.E.; Bozkurt, M. Effect of Lavender (Lavandula stoechas) Essential Oil on Growth Performance, Carcass Characteristics, Meat Quality and Antioxidant Status of Broilers. S. Afr. J. Anim. Sci. 2017, 47, 178. [Google Scholar] [CrossRef]
- Niu, B.; Yan, Z.; Shao, P.; Kang, J.; Chen, H. Encapsulation of Cinnamon Essential Oil for Active Food Packaging Film with Synergistic Antimicrobial Activity. Nanomaterials 2018, 8, 598. [Google Scholar] [CrossRef] [Green Version]
- Milićević, Z.; Krnjajić, S.; Stević, M.; Ćirković, J.; Jelušić, A.; Pucarević, M.; Popović, T. Encapsulated Clove Bud Essential Oil: A New Perspective as an Eco-Friendly Biopesticide. Agriculture 2022, 12, 338. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Jalali Sendi, J.; Setzer, W.N.; Changbunjong, T. Encapsulation of Eucalyptus Largiflorens Essential Oil by Mesoporous Silicates for Effective Control of the Cowpea weevil, Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae). Molecules 2022, 27, 3531. [Google Scholar] [CrossRef]
- Montazer, M.; Harifi, T. Antimicrobial Textile Nanofinishes. Nanofinishing Text. Mater. 2018, 23, 145–161. [Google Scholar]
- McQueen, R.H. Odour Control of Medical Textiles; Woodhead Publishing Limited: Sawston, UK, 2011; ISBN 9780857093691. [Google Scholar]
- Lin, L.; Haiying, C.; Abdel-Samie, M.A.-S.; Abdulla, G. Common, Existing and Future Applications of Antimicrobial Textile Materials. In Antimicrobial Textiles from Natural Resources; Mondal, M.I.H., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 119–163. ISBN 978-0-12-821485-5. [Google Scholar]
- Choudhury, R.; Kumar, A. Finishes for Protection against Microbial, Insect and UV Radiation. In Principles of Textile Finishing; Elsevier: Amsterdam, The Netherlands, 2017; pp. 319–382. ISBN 9780081006467. [Google Scholar]
- Wang, J.; Tang, B.; Bai, W.; Lu, X.; Liu, Y.; Wang, X. Deodorizing for Fiber and Fabric: Adsorption, Catalysis, Source Control and Masking. Adv. Colloid Interface Sci. 2020, 283, 102243. [Google Scholar] [CrossRef]
- Pricop, F.; Popescu, A.; Rascov, M.; Chirilã, L.; Scarlat, R.; Buzdugan, M.; Cerempei, A.; Muresan, E. Study on the Aroma-Therapeutic Effects of Textiles Functionalized by Herbal Extracts. In Proceedings of the 7th International Conference on Advanced Materials and Systems, Bucharest, Romania, 18–20 October 2018; pp. 147–152. [Google Scholar]
- Callewaert, C.; Kerckhof, F.M.; Granitsiotis, M.S.; Van Gele, M.; Van de Wiele, T.; Boon, N. Characterization of Staphylococcus and Corynebacterium Clusters in the Human Axillary Region. PLoS ONE 2013, 8, e70538. [Google Scholar] [CrossRef] [Green Version]
- Troccaz, M.; Gaïa, N.; Beccucci, S.; Schrenzel, J.; Cayeux, I.; Starkenmann, C.; Lazarevic, V. Mapping Axillary Microbiota Responsible for Body Odours Using a Culture-Independent Approach. Microbiome 2015, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Lam, T.H.; Verzotto, D.; Brahma, P.; Ng, A.H.Q.; Hu, P.; Schnell, D.; Tiesman, J.; Kong, R.; Ton, T.M.U.; Li, J.; et al. Understanding the Microbial Basis of Body Odor in Pre-Pubescent Children and Teenagers. Microbiome 2018, 6, 213. [Google Scholar] [CrossRef] [PubMed]
- Urban, J.; Fergus, D.J.; Savage, A.M.; Ehlers, M.; Menninger, H.L.; Dunn, R.R.; Horvath, J.E. The Effect of Habitual and Experimental Antiperspirant and Deodorant Product Use on the Armpit Microbiome. PeerJ 2016, 4, e1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grice, E.A.; Kong, H.H.; Conlan, S.; Deming, C.B.; Davis, J.; Young, A.C. Topographical and Temporal Diversity of the Human Skin Microbiome. Science 2009, 324, 1190–1192. [Google Scholar] [CrossRef] [Green Version]
- Cometa, S.; Bonifacio, M.A.; Bellissimo, A.; Pinto, L.; Petrella, A.; De Vietro, N.; Iannaccone, G.; Baruzzi, F.; De Giglio, E. A Green Approach to Develop Zeolite-Thymol Antimicrobial Composites: Analytical Characterization and Antimicrobial Activity Evaluation. Heliyon 2022, 8, e09551. [Google Scholar] [CrossRef] [PubMed]
- Tekin, R.; Bac, N. Antimicrobial Behavior of Ion-Exchanged Zeolite X Containing Fragrance. Microporous Mesoporous Mater. 2016, 234, 55–60. [Google Scholar] [CrossRef]
- Kihara, T.; Zhang, Y.; Hu, Y.; Mao, Q.; Tang, Y.; Miyake, J. Effect of Composition, Morphology and Size of Nanozeolite on Its in Vitro Cytotoxicity. J. Biosci. Bioeng. 2011, 111, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Vilaça, N.; Machado, A.F.; Morais-Santos, F.; Amorim, R.; Patrícia Neto, A.; Logodin, E.; Pereira, M.F.R.; Sardo, M.; Rocha, J.; Parpot, P.; et al. Comparison of different silica microporous structures as drug delivery systems for in vitro models of solid tumors. RSC Adv. 2017, 7, 13104–13111. [Google Scholar] [CrossRef] [Green Version]
- Martinho, O.; Vilaça, N.; Castro, P.J.G.; Amorim, R.; Fonseca, A.M.; Baltazar, F.; Reis, R.M.; Neves, I.C. In vitro and in vivo studies of temozolomide loading in zeolite structures as drug delivery systems for glioblastoma. RSC Adv. 2015, 5, 28219–28227. [Google Scholar] [CrossRef] [Green Version]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Leyden, J.J.; McGinley, K.J.; Holzle, E.; Labows, J.N.; Kligman, A.M. The Microbiology of the Human Axilla and Its Relationship to Axillary Odor. J. Investig. Dermatol. 1981, 77, 413–416. [Google Scholar] [CrossRef] [Green Version]
- Božik, M.; Císarová, M.; Tančinová, D.; Kouřimská, L.; Hleba, L.; Klouček, P. Selected Essential Oil Vapours Inhibit Growth of Aspergillus Spp. in Oats with Improved Consumer Acceptability. Ind. Crops Prod. 2017, 98, 146–152. [Google Scholar] [CrossRef]
- Martins, C.; Natal-da-Luz, T.; Sousa, J.P.; Gonçalves, M.J.; Salgueiro, L.; Canhoto, C. Effects of Essential Oils from Eucalyptus Globulus Leaves on Soil Organisms Involved in Leaf Degradation. PLoS One 2013, 8, e61233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevic, T.; Beric, T.; Savikin, K.; Sokovic, M.; Godevac, D.; Dimkic, I.; Stankovic, S. Antifungal Activity of Selected Essential Oils against Fungi Isolated from Medicinal Plant. Ind. Crops Prod. 2014, 55, 116–122. [Google Scholar] [CrossRef]
- Pastor, J.; García, M.; Steinbauer, S.; Setzer, W.N.; Scull, R.; Gille, L.; Monzote, L. Combinations of Ascaridole, Carvacrol, and Caryophyllene Oxide against Leishmania. Acta Trop. 2015, 145, 31–38. [Google Scholar] [CrossRef]
- Requena, R.; Vargas, M.; Chiralt, A. Study of the Potential Synergistic Antibacterial Activity of Essential Oil Components Using the Thiazolyl Blue Tetrazolium Bromide (MTT) Assay. Lwt—Food Sci. Technol. 2019, 101, 183–190. [Google Scholar] [CrossRef]
- Kwiatkowski, P.; Mnichowska-Polanowska, M.; Pruss, A.; Masiuk, H.; Dzięcioł, M.; Giedrys-Kalemba, S.; Sienkiewicz, M. The Effect of Fennel Essential Oil in Combination with Antibiotics on Staphylococcus Aureus Strains Isolated from Carriers. Burns 2017, 43, 1544–1551. [Google Scholar] [CrossRef] [PubMed]
- Gallucci, N.; Casero, C.; Oliva, M.; Zygadlo, J.; Demo, M. Interaction between Terpenes and Penicillin on Bacterial Strains Resistant to Beta- Lactam Antibiotics. J. Appl. Microbiol. 2006, 10, 30–32. [Google Scholar]
- Roana, J.; Mandras, N.; Scalas, D.; Campagna, P.; Tullio, V. Antifungal Activity of Melaleuca Alternifolia Essential Oil (TTO) and Its Synergy with Itraconazole or Ketoconazole against Trichophyton Rubrum. Molecules 2021, 26, 461. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.A.; Ahmad, I.; Cameotra, S.S. Carum Copticum and Thymus Vulgaris Oils Inhibit Virulence in Trichophyton Rubrum and Aspergillus Spp. Brazilian J. Microbiol. 2014, 45, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.S.A.; Ahmad, I. Antifungal Activity of Essential Oils and Their Synergy with Fluconazole against Drug-Resistant Strains of Aspergillus Fumigatus and Trichophyton Rubrum. Appl. Microbiol. Biotechnol. 2011, 90, 1083–1094. [Google Scholar] [CrossRef]
- Pyun, M.S.; Shin, S. Antifungal Effects of the Volatile Oils from Allium Plants against Trichophyton Species and Synergism of the Oils with Ketoconazole. Phytomedicine 2006, 13, 394–400. [Google Scholar] [CrossRef]
- Nafis, A.; Kasrati, A.; Jamali, C.A.; Custódio, L.; Vitalini, S.; Iriti, M.; Hassani, L. A Comparative Study of the in Vitro Antimicrobial and Synergistic Effect of Essential Oils from Laurus Nobilis l. and Prunus Armeniaca l. from Morocco with Antimicrobial Drugs: New Approach for Health Promoting Products. Antibiotics 2020, 9, 140. [Google Scholar] [CrossRef]
Plant from Which EO Was Derived | Biological Properties | Industrial Applications | References |
---|---|---|---|
Matricaria camomilla | Anti-inflammatory | Eczema, dermatitis, and pronounced topical irritation treatment | [16] |
Syzygium aromaticum | Antibacterial | Inhibition of Salmonella enterica growth in lactic products | [23] |
Elettaria cardamomum | |||
Cinnamomum verum | |||
Origanum vulgare | Inhibition and depletion of Escherichia coli population in food | ||
Citrus sinensis | Antifungal | Activity against pathogenic fungi in agriculture | [24] |
Syzygium aromaticum | Inhibition of Aspergillus flavus, A. parasiticus, and A. ochraceus growth in food | [25] | |
Cinnamomum verum | Retardation of mold growth in food and aflatoxin production | ||
Melaleuca alternifolia | Antibacterial | Soap application against Staphylococcus aureus | [26] |
Insect repellent | Fly and Tribolium castaneum repellent | [23] | |
Insecticide | Treatment of larvae and Solenopsis invicta infestations | [27] | |
Carum carvi | Budding suppressor | Extension of potato storage time | [28] |
Origanum compactum | Antimicrobial | Inhibition of Escherichia coli growth in salads | [29] |
Preservation of poultry meat against Escherichia coli resistant to antibiotics used in poultry | |||
Sausage preservation with natural casing | |||
Origanum compactum | Antiparasitic | Acaricidal activity against Tetranychus urticae | [29] |
Antimalarial | Inhibition of malaria’s causative agent, Plasmodium falciparum | ||
Antioxidant | Increased chemical stability of, and reduction in, olive oil lipolysis | ||
Illicium verum | Antiviral | Inactivation of herpes simplex virus | [30] |
Plant Source of EO | Target Bacteria | Mechanism of Action | |
---|---|---|---|
Scientific Name | Common Name | ||
Allium sativum | Garlic | Escherichia coli | Leakage induction |
Litsea cubeba | Mountain pepper | Escherichia coli | Membrane destruction |
Piper nigrum | Black pepper | Escherichia coli | Cell deformation, perforation, and loss of intracellular material |
Foeniculum vulgare | Fennel | Shigella dysenteriae | Membrane integrity loss |
Cuminum cyminum | Cumin | Bacillus cereus | Cytoplasm changes |
Bacillus subtilis | |||
Cinnamomum | Cinnamon | Escherichia coli | Cellular membrane disruption |
Staphylococcus aureus | |||
Dipterocarpus gracilis | Keruing | Bacillus cereus | Cellular membrane disruption |
Proteus mirabilis | |||
Ocimum gratissimum | Basil | Escherichia coli | Membrane permeabilization |
Pseudomonas aeruginosa | |||
Staphylococcus aureus | |||
Origanum vulgare | Oregano | Escherichia coli | Membrane permeabilization |
Staphylococcus aureus | |||
Pseudomonas aeruginosa | |||
Mentha longifolia | Wild mint | Escherichia coli | Cell wall damage |
EO Combinations | Target Organism | Method | Interaction | References |
---|---|---|---|---|
Origanum vulgare/ Ocimum basilicum | Bacillus cereus | Checkerboard | Additive | [5] |
Eschericia coli | ||||
Pseudomonas aeruginosa | ||||
Origanum vulgare/ Origanum majorana | Bacillus cereus | Checkerboard | Additive | |
Eschericia coli | ||||
Origanum vulgare/ Rosmarinus officinalis | Bacillus cereus | Checkerboard | Additive | |
Origanum vulgare/ Rosmarinus officinalis | Listeria monocytogenes | Mixture | Synergistic | |
Yersinia enterocolitica | ||||
Aeromonas hydrophila | ||||
Origanum vulgare/ Thymus vulgaris | Enterobacter cloacae | Checkerboard | Additive | |
Listeria Innocua | ||||
Pseudomonas fluorescens | ||||
Syzygium aromaticum/ Rosmarinus officinalis | Staphylococcus epidermis | Mixture | Additive | |
Staphylococcus aureus | ||||
Bacillus subtilis | ||||
Eschericia coli | ||||
Proteus vulgaris | ||||
Pseudomonas aeruginosa | ||||
Candida albicans | ||||
Aspergillus niger | ||||
Cinnamonum zeylancium/ Syzygium aromaticum | Staphylococcus aureus | Checkerboard | Synergistic | [48] |
Listeria monocytogenes | ||||
Pseudomonas aeruginosa | ||||
Salmonella typhimurium | ||||
Aspergillus niger | ||||
Oreganum vulgare/ Thymus vulgaris | Aspergilus flavus | Checkerboard | Synergistic | [49] |
Aspergillus parasiticus | ||||
Penicillium chysogenum | ||||
Aspergillus niger | Additive | |||
Mentha piperita/ Melaleuca alternifolila | Aspergillus niger | Checkerboard | Synergistic | |
Thymus vulgaris/ Cinnamomum verum | Aspergillus flavus | Checkerboard | Synergistic | |
Cinnamomum verum/ Salvia rosmarinus | Penicillium expansum | Checkerboard | Synergistic | [50] |
Cinnamonum zeylancium/ Syzygium aromaticum | Bacillus cereus | Checkerboard | Additive | [48] |
Plant Source of EO (Scientific Name) | Encapsulation System | Results | Notes | References |
---|---|---|---|---|
Lavandula hybrida | Polyethylene glycol | Narrow particle size and controlled release; higher encapsulation efficiency in polyethylene glycol capsules | Encapsulation through gas-saturated solutions | [82] |
n-Octenyl succinic- -modified starch | Encapsulation through gas saturation solutions and drying | |||
Artemisia arborescens | Solid liquid nanoparticles | Increased stability of the EO | Encapsulation through high-pressure homogenization | [83] |
Eucalyptus staigeriana F. | Cashew gum | Increased bactericidal activity against Listeria monocytogenes | [84] | |
Thymus vulgaris | Chitosan-benzoic acid nanogel | Increased stability, availability, and antifungal activity | Aspergillus flavus completely inhibited under sealed and non-sealed conditions | [85] |
Mentha piperita | Chitosan-cinnamic acid nanogel | Reduction in MIC against Aspergillus flavus | Study conducted under sealed and non-sealed conditions | [86] |
Zataria multiflora | Chitosan | Increased antifungal activity | [87] | |
Satureja montana | Cellulose nanoparticles reinforced with agar-based composites | Increased susceptibility of bacteria to the EO | Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus more susceptible than Escherichia coli to the nanocomposite film | [88] |
Eugenia uniflora L. | Liposomes | EO successfully incorporated | Encapsulation through dry film hydration; Required cryoprotectors | [89] |
Peumus boldus | Gelatin and gum arabic microcapsules | High encapsulation efficiency; increased storage time and antifungal activity | Microcapsules produced by complex coacervation | [90] |
Lippia turbinata | Gelatin/gum arabic microcapsules | Increased antifungal activity and inhibition of seed germination | [91] | |
Thymus vulgaris | Gelatin | Reduction of MIC value | Encapsulation through complex coacervation | [92] |
Piper nigrum L. | Hydroxypropyl-betacyclodextrin | Increased stability and antibacterial activity against Staphylococcus aureus and Escherichia coli increased by 4 times; reduction in antioxidant activity | Encapsulation through inclusion complex formation | [93] |
Melaleuca alternifolia | Glutaraldehyde crosslinked gelatin | EO release dependent on crosslinking density, polymer wall concentration, and oil content | Microcapsules produced by simple coacervation | [94] |
Mentha x piperita | Cyclodextrins and cross-linked cyclodextrins | Controlled release | [95] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, A.P.; Almeida-Aguiar, C.; Costa, S.P.G.; Neves, I.C. Essential Oils Encapsulated in Zeolite Structures as Delivery Systems (EODS): An Overview. Molecules 2022, 27, 8525. https://doi.org/10.3390/molecules27238525
Ferreira AP, Almeida-Aguiar C, Costa SPG, Neves IC. Essential Oils Encapsulated in Zeolite Structures as Delivery Systems (EODS): An Overview. Molecules. 2022; 27(23):8525. https://doi.org/10.3390/molecules27238525
Chicago/Turabian StyleFerreira, Alexandra P., Cristina Almeida-Aguiar, Susana P. G. Costa, and Isabel C. Neves. 2022. "Essential Oils Encapsulated in Zeolite Structures as Delivery Systems (EODS): An Overview" Molecules 27, no. 23: 8525. https://doi.org/10.3390/molecules27238525
APA StyleFerreira, A. P., Almeida-Aguiar, C., Costa, S. P. G., & Neves, I. C. (2022). Essential Oils Encapsulated in Zeolite Structures as Delivery Systems (EODS): An Overview. Molecules, 27(23), 8525. https://doi.org/10.3390/molecules27238525