Characterization of New Egyptian Linseed Varieties and the Effects of Roasting on Their Pigments, Tocochromanols, Phytosterols, Omega-3 Fatty Acids, and Stability
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Changes during Roasting
2.1.1. Proximate Chemical Analysis
2.1.2. Color Properties
2.1.3. Chloroplast Pigments
2.1.4. Total Phenolic Content
2.2. Effects of Roasting on Major Lipid Components
2.2.1. Fatty Acid Composition
2.2.2. Triacylglycerol
2.3. Effect of Roasting on Minor Lipid Components
2.3.1. Tocochromanols
2.3.2. Phytosterols
2.4. Effects of Roasting on Oxidative Stability
2.4.1. Antioxidant Activity
2.4.2. Induction Period
3. Materials and Methods
3.1. Plant Material
3.2. Standards and Reagents
3.3. Roasting Treatment and Extraction of Oil from Linseeds
3.4. Determination of Seed Moisture and Oil Percentage
3.5. Physicochemical Characteristics of the Extracted Oils
3.5.1. Oxidation Stability of Oils
3.5.2. Determination of Color Properties
- The color parameters under CIE Illuminant D65 and 1964 Standard Colorimetric Observer of oil samples were measured using a JASCO-V730 spectrophotometer (Jasco, Tokyo, Japan) with a 1.0 cm path-length quartz cell; the corresponding CIELAB coordinates were expressed as lightness (L), yellowness (b), and redness (a), in the cases of L (L = 0 = black, L = 100 = white), a (+a = red, −a = green), and b (+b = yellow, −b = blue) [59].
- Color measurements were carried out on a T80 UV/VIS spectrophotometer (PG Instruments, Lutterworth, United Kingdom) as follows:
3.5.3. Determination of Chloroplast Pigments
3.5.4. Determination of Phenolic Compounds
3.6. Determination of Major Lipid Components
3.6.1. Fatty Acid Composition and Calculated Oxidizability Value (COX)
3.6.2. Triacylglycerol (TAG) Determinations
3.7. Determination of Minor Lipid Components
3.7.1. Tocochromanol Determinations
3.7.2. Phytosterol Profile
3.8. Determination of Oxidative Stability Parameters
3.8.1. DPPH Free Radical Scavenging Assay
3.8.2. Rancimat Test
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. 2018. Available online: http://www.fao.org/faostat/en/#data (accessed on 20 September 2022).
- Shim, Y.Y.; Gui, B.; Arnison, P.G.; Wang, Y.; Reaney, M.J.T. Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: A review. Trends Food Sci. Technol. 2014, 38, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Choo, W.S.; Birch, J.; Dufour, J.P. Physicochemical and quality characteristics of cold-pressed flaxseed oils. J. Food Compos. Anal. 2007, 20, 202–211. [Google Scholar] [CrossRef]
- Czaplicki, S.; Ogrodowska, D.; Derewiaka, D.; Tańska, M.; Zadernowski, R. Bioactive compounds in unsaponifiable fraction of oils from unconventional sources. Eur. J. Lipid Sci. Technol. 2011, 113, 1456–1464. [Google Scholar] [CrossRef]
- Abdel-Razek, A.G.; Hassanein, M.M.; Ozçelik, B.; Baranenko, D.A.; El-Messery, T.M. Omega fatty acid-balanced oil formula and enhancing its oxidative stability by encapsulation with whey protein concentrate. Food Biosci. 2022, 50, 101975. [Google Scholar] [CrossRef]
- Chavali, S.R.; Zhong, W.W.; Forse, R.A. Dietary alpha-linolenic acid increases TNF-alpha, and decreases IL-6, IL-10 in response to LPS: Effects of sesamin on the delta-5 desaturation of omega-6 and omega-3 fatty acids in mice. Prostaglandins Leukot. Essent. Fatty Acids 1998, 8, 185–191. [Google Scholar] [CrossRef]
- Yang, L.; Leung, K.Y.; Cao, Y.; Huang, Y.U.; Ratnayake, W.M.N.; Chen, Z.Y. α-Linolenic acid but not conjugated linolenic acid is hypocholesterolaemic in hamsters. Br. J. Nutr. 2005, 93, 433–438. [Google Scholar] [CrossRef]
- David, P. Cancer chemotherapy: New recruits. Nature 1983, 304, 675. [Google Scholar] [CrossRef] [Green Version]
- Al-Amrousi, E.F.; Badr, A.; Abdel-Razek, A.G.; Gromadzka, K.; Drzewiecka, K.; Hassanein, M.M. A Comprehensive Study of Lupin Seed Oils and the Roasting Effect on Their Chemical and Biological Activity. Plants 2022, 11, 2301. [Google Scholar] [CrossRef]
- Hassanien, M.M.M.; Abdel-Razek, A.G. Improving the stability of edible oils by blending with roasted sesame seed oil as a source of natural antioxidants. J. Appl. Sci. Res. 2012, 8, 4074–4083. [Google Scholar]
- Suri, K.; Singh, B.; Kaur, A.; Yadav, M.P.; Singh, N. Influence of microwave roasting on chemical composition, oxidative stability and fatty acid composition of flaxseed (Linum usitatissimum L.) oil. Food Chem. 2020, 326, 126974. [Google Scholar] [CrossRef]
- Zhang, D.; Li, X.; Cao, Y.; Wang, C.; Xue, Y. Effect of roasting on the chemical components of peanut oil. LWT-Food Sci. Technol. 2020, 125, 109249. [Google Scholar] [CrossRef]
- Ahmed, I.A.M.; Uslu, N.; Özcan, M.M.; Juhaimi, F.A.; Ghafoor, K.; Babiker, E.E.; Osman, M.A.; Alqah, H.A.S. Effect of conventional oven roasting treatment on the physicochemical quality attributes of sesame seeds obtained from different locations. Food Chem. 2021, 338, 128109. [Google Scholar] [CrossRef] [PubMed]
- Hojjati, M.; Lipan, L.; Carbonell-Barrachina, A.A. Effect of Roasting on Physicochemical Properties of Wild Almonds (Amygdalus scoparia). J. Am. Oil Chem. Soc. 2016, 93, 1211–1220. [Google Scholar] [CrossRef]
- Yoshida, H.; Hirakawa, Y.; Abe, S.; Mizushina, Y. The Contents of Tocopherols and Oxidative Quality of Oils Prepared from Sunflower (Helianthus annuus L.) Seeds Roasted in a Microwave Oven. Eur. J. Lipid Sci. Technol. 2002, 104, 116–122. [Google Scholar] [CrossRef]
- Yoshida, H.; Hirakawa, Y.; Tomiyama, Y.; Nagamizu, T.; Mizushina, Y. Fatty acid distributions of triacylglycerols and phospholipids in peanut seeds (Arachis hypogaea L.) following microwave treatment. J. Food Compos. Anal. 2005, 18, 3–14. [Google Scholar] [CrossRef]
- Fukuda, Y. Food Chemical Studies on the Antioxidants in Sesame Seed. J. Jpn. Soc. Food Sci. 1990, 37, 484–492. [Google Scholar]
- Codex Alimentarius Commission. International Food Standards, Codex Standards for Named Vegetable Oils (CODEX STAN 210-1999); Codex Alimentarius Commission: Geneva, Switzerland, 1999. [Google Scholar]
- Anjum, F.; Anwar, F.; Jamil, A.; Iqbal, M. Microwave roasting effects on the physico-chemical composition and oxidative stability of sunflower seed oil. J. Am. Oil Chem. Soc. 2006, 83, 777–784. [Google Scholar] [CrossRef]
- Harhar, H.; Gharby, S.; Kartah, B.; Monfalouti, H.E.; Guillaume, D.; Charrouf, Z. Influence of argan kernel roasting-time on virgin argan oil composition and oxidative stability. Plant Foods Hum. Nutr. 2011, 66, 163–168. [Google Scholar] [CrossRef]
- Shahidi, F.; Wanasundara, U.N. Methods for measuring oxidative rancidity in fats and oils. In Food Lipids: Chemistry, Nutrition and Biotechnology, 2nd ed.; Akoh, C.C., Ed.; CRC Press: Boca Raton, FL, USA, 2002; pp. 387–403. [Google Scholar]
- Totlani, V.M.; Peterson, D.G. Reactivity of epicatechin in aqueous glycine and glucose Maillard reaction models: Quenching of C2, C3, and C4 sugar fragments. J. Agric. Food Chem. 2005, 53, 4130–4135. [Google Scholar] [CrossRef]
- Belcadi-Haloui, R.; Zekhnini, A.; El-Alem, Y.; Hatimi, A. Effects of roasting temperature and time on the chemical composition of argan oil. Int. J. Food Sci. 2018, 2018, 7683041. [Google Scholar] [CrossRef] [Green Version]
- Suri, K.; Singh, B.; Kaur, A.; Yadav, M.P.; Singh, N. Impact of infrared and dry air roasting on the oxidative stability, fatty acid composition, Maillard reaction products and other chemical properties of black cumin (Nigella sativa L.) seed oil. Food Chem. 2019, 295, 537–547. [Google Scholar] [CrossRef]
- Franke, S.; Fröhlich, K.; Werner, S.; Böhm, V.; Schöne, F. Analysis of carotenoids and vitamin E in selected oilseeds, press cakes and oils. Eur. J. Lipid Sci. Technol. 2010, 112, 1122–1129. [Google Scholar] [CrossRef]
- Fujisawa, M.; Watanabe, M.; Choi, S.K.; Teramoto, M.; Ohyama, K.; Misawa, N. Enrichment of carotenoids in flaxseed (Linum usitatissimum) by metabolic engineering with introduction of bacterial phytoene synthase gene crtB. J. Biosci. Bioeng. 2008, 105, 636–641. [Google Scholar] [CrossRef]
- Durmaz, G.; Gökmen, V. Changes in oxidative stability, antioxidant capacity and phytochemical composition of Pistacia terebinthus oil with roasting. Food Chem. 2011, 128, 410–414. [Google Scholar] [CrossRef]
- Suresh Kumar, G.; Swathi, R.; Gopala Krishna, A.G. Fat-soluble nutraceuticals and their composition in heat-processed wheat germ and wheat bran. Int. J. Food Sci. Nutr. 2014, 65, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Carrin, M.E.; Carelli, A.A. Peanut oil: Compositional data (Review Article). Eur. J. Lipid Sci. Technol. 2010, 112, 697–707. [Google Scholar] [CrossRef]
- Abdel-Razek, A.; Al-Amrousi, E.; Hassanein, M. Mitigate the Extreme Bitterness in Virgin Olive Oil Using Natural Aqueous Solutions. Egypt. J. Chem. 2020, 63, 3975–3984. [Google Scholar] [CrossRef]
- Babiker, E.E.; Uslu, N.; Juhaimi, F.A.; Ahmed, I.A.M.; Ghafoor, K.; Özcan, M.M.; Almusallam, I.A. Effect of roasting on antioxidative properties, polyphenol profile and fatty acids composition of hemp (Cannabis sativa L.) seeds. LWT 2021, 139, 110537. [Google Scholar] [CrossRef]
- Nie, R.; Zhang, Y.; Zhang, H.; Jin, Q.; Wu, G.; Wang, X. Effect of different processing methods on physicochemical properties, chemical compositions and in vitro antioxidant activities of Paeonia lactiflora Pall seed oils. Food Chem. 2020, 332, 127408. [Google Scholar] [CrossRef] [PubMed]
- Sruthi, N.U.; Premjit, Y.; Pandiselvam, R.; Kothakota, A.; Ramesh, S.V. An overview of conventional and emerging techniques of roasting: Effect on food bioactive signatures. Food Chem. 2021, 348, 129088. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Dai, F.; Shilong, F.; Zhu, M.; Shen, X.; Zhang, K.; Li, S. Antimicrobial and antioxidant capacity of glucosamine-zinc(II) complex via non-enzymatic browning reaction. Food Sci. Biotechnol. 2018, 27, 1–7. [Google Scholar] [CrossRef]
- Matthäus, B.; Özcan, M.M. Fatty Acid Composition, Tocopherol and Sterol Contents in Linseed (Linum usitatissimum L.) Varieties. Iran. J. Chem. Chem. Eng. 2017, 36, 147–152. [Google Scholar]
- Moknatjou, R.; Hajimahmoodi, M.; Toliyat, T.; Moghaddam, G.; Sadeghpour, O.; Monsef-Esfahani, H.; Shams-Ardekani, M.R. Effect of roasting on fatty acid profile of brown and yellow varieties of flaxseed (Linum usitatissimum L.). Trop. J. Pharm. Res. 2015, 14, 117–123. [Google Scholar] [CrossRef]
- Waszkowiak, K.; Mikołajczak, B.; Kmiecik, D. Changes in oxidative stability and protein profile of flaxseeds resulting from thermal pre-treatment. J. Sci. Food Agric. 2018, 98, 5459–5469. [Google Scholar] [CrossRef] [PubMed]
- Siger, A.; Kaczmarek, A.; Rudzińska, M. Antioxidant activity and phytochemical content of cold-pressed rapeseed oil obtained from roasted seeds. Eur. J. Lipid Sci. Technol. 2015, 117, 1225–1237. [Google Scholar] [CrossRef]
- Mariod, A.A.; Ahmed, S.Y.; Abdelwahab, S.I.; Cheng, S.F.; Eltom, A.M.; Yagoub, S.O.; Gouk, S.W. Effects of roasting and boiling on the chemical composition, amino acids and oil stability of safflower seeds. Int. J. Food Sci. 2012, 47, 1737–1743. [Google Scholar] [CrossRef]
- Giuffrè, A.M.; Capocasale, M.; Zappia, C.; Poiana, M. Influence of high temperature and duration of heating on the sun-flower seed oil properties for food use and bio-diesel production. J. Oleo Sci. 2017, 66, 1193–1205. [Google Scholar] [CrossRef] [Green Version]
- Giuffrè, A.M.; Zappia, C.; Capocasale, M. Effects of high temperatures and duration of heating on olive oil properties for food use and biodiesel production. J. Am. Oil Chem. Soc. 2017, 94, 819–830. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-6:omega-3 essential fatty acid ratio and chronic diseases. Food Rev. Int. 2004, 20, 77–90. [Google Scholar] [CrossRef]
- Herchi, W.; Ammar, K.B.; Bouali, I.; Abdallah, I.B.; Guetet, A.; Boukhchina, S. Heating effects on physicochemical characteristics and antioxidant activity of flaxseed hull oil (Linum usitatissimum L). Food Sci. Technol. 2016, 36, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Fatemi, S.H.; Hammond, E.G. Analysis of oleate, linoleate and linolenate hydroperoxides inoxidized ester mixtures. Lipids 1980, 15, 379–385. [Google Scholar] [CrossRef]
- Abdel-Razek, A.G.; Hassanein, M.M.M.; Rudzińska, M.; El-Mallah, M.H. Role of minor constituents and balanced fatty acids in upgrading the low stability of cooking oils blended with palm super olein. Asian J. Sci. Res. 2017, 10, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Zhang, L.; Li, P.; Yu, L.; Mao, J.; Wang, X.; Zhang, Q. A review of chemical composition and nutritional properties of minor vegetable oils in China. Trends Food Sci. Technol. 2018, 74, 26–32. [Google Scholar] [CrossRef]
- Kruk, J.; Szymańska, R.; Cela, J.; Munne-Bosch, S. Plastochromanol-8: Fifty years of research. Phytochemistry 2014, 108, 9–16. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Lu, X.; Sun, H.; Wang, F. Effect of oilseed roasting on the quality, flavor and safety of oil: A comprehensive review. Food Res. Int. 2021, 150, 110791. [Google Scholar] [CrossRef] [PubMed]
- Różańska, M.B.; Kowalczewski, P.Ł.; Tomaszewska-Gras, J.; Dwiecki, K.; Mildner-Szkudlarz, S. Seed-roasting process affects oxidative stability of cold-pressed oils. Antioxidants 2019, 8, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendez, E.; Sanhueza, J.; Speisky, H.; Valenzuela, A. Comparison of Rancimat Evaluation Modes to Assess Oxidative Stability of Fish Oils. J. Am. Oil Chem. Soc. 1997, 74, 331–332. [Google Scholar] [CrossRef]
- Qin, Z.; Han, Y.; Wang, N.; Liu, H.; Zheng, Y.; Wang, X. Improvement of the oxidative stability of cold-pressed sesame oil using products from the Maillard reaction of sesame enzymatically hydrolyzed protein and reducing sugars. J. Sci. Food Agric. 2019, 100, 1524–1531. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, C.; Gökmen, V. Compositional characteristics of sour cherry kernel and its oil as influenced by different extraction and roasting conditions. Ind. Crops Prod. 2013, 49, 130–135. [Google Scholar] [CrossRef]
- Rudzińska, M.; Hassanein, M.M.; Abdel-Razek, A.G.; Kmiecik, D.; Siger, A.; Ratusz, K. Influence of composition on degradation during repeated deep-fat frying of binary and ternary blends of palm, sunflower and soybean oils with health-optimised saturated-to-unsaturated fatty acid ratios. Int. J. Food Sci. 2018, 53, 1021–1029. [Google Scholar] [CrossRef]
- AOCS Official Method Ba 2a-38. Moisture and Volatile Matter Forced Draft Oven Method; The American Oil Chemists’ Society: Champaign, IL, USA, 2017.
- AOCS Official Method Am 5-04 128109. Rapid Determination of Oil/Fat Utilizing High-Temperature Solvent Extraction; The American Oil Chemists’ Society: Champaign, IL, USA, 2017.
- AOCS Official Method Cd 3d-63. Acid Value of Fats and Oils; The American Oil Chemists’ Society: Champaign, IL, USA, 2017.
- AOCS Official Method Cd 8b-90. Peroxide Value Acetic Acid—Isooctane Method; The American Oil Chemists’ Society: Champaign, IL, USA, 2009.
- AOCS Official Method Cd 18-90. p-Anisidine Value; The American Oil Chemists’ Society: Champaign, IL, USA, 2017.
- Su, C.; White, P. Frying stability of high-oleate and regular soybean oil blends. J. Am. Oil Chem. Soc. 2004, 81, 783–788. [Google Scholar] [CrossRef]
- AOCS Official Method Cc 13c-50. Color of Fats and Oils, Spectrophotometric Method; The American Oil Chemists’ Society: Champaign, IL, USA, 2017.
- Pons, W.A.; Kuck, J.C.; Frampton, V.L. Color index for cottonseed oils. J. Am. Oil Chem. Soc. 1960, 37, 671–673. [Google Scholar] [CrossRef]
- AOCS Official Method Cc 13d-55. Chlorophyll Pigments in Refined and Bleached Oils; The American Oil Chemists’ Society: Champaign, IL, USA, 2017.
- Rodriguez-Amaya, D.B.; Kimura, M. HarvestPlus Handbook for Carotenoid Analysis; International Food Policy Research Institute: Washington, DC, USA, 2004. [Google Scholar]
- Hart, D.J.; Scott, K.J. Development and evaluation of an HPLC method for the analysis of carotenoids in foods, and the measurement of the carotenoid content of vegetables and fruits commonly consumed in the UK. Food Chem. 1995, 54, 101–111. [Google Scholar] [CrossRef]
- Gutfinger, T. Polyphenols in olive oils. J. Am. Oil Chem. Soc. 1981, 58, 966–968. [Google Scholar] [CrossRef]
- Naeem, M.A.; Zahran, H.A.; Hassanein, M.M. Evaluation of green extraction methods on the chemical and nutritional aspects of roselle seed (Hibiscus sabdariffa L.) oil. OCL-Oilseeds Fats Crops Lipids 2019, 26, 1–9. [Google Scholar] [CrossRef] [Green Version]
- AOCS Official Method Ce 1h-05. Determination of cis-, trans-,saturated, monounsaturated and polyunsaturated fatty acids in vegetable or non-ruminant animal oils and fats by capillary GLC. In Official Methods and Recommended Practices of the AOCS; AOCS Press: Champaign, IL, USA, 2017.
- Ciftci, O.N.; Przybylski, R.; Rudzińska, M.; Acharya, S. Characterization of Fenugreek (Trigonella foenum-graecum) Seed Lipids. J. Am. Oil Chem. Soc. 2011, 88, 1603–1610. [Google Scholar] [CrossRef]
- Idrus, S.I.S.; Latiff, A.A.; Ismail, M.N. Determination of triacylglycerols in food by high-performance liquid chromatography. Instrum. Sci. Technol. 2017, 5, 577–591. [Google Scholar] [CrossRef]
- Gawrysiak-Witulska, M.; Siger, A.; Rudzińska, M.; Bartkowiak-Broda, I. The effect of drying on the native tocopherol and phytosterol content of Sinapis alba L. seeds. J. Sci. Food Agric. 2020, 100, 354–361. [Google Scholar] [CrossRef]
- Hassanien, M.M.; Abdel-Razek, A.G.; Rudzińska, M.; Siger, A.; Ratusz, K.; Przybylski, R. Phytochemical contents and oxidative stability of oils from non-traditional sources. Eur. J. Lipid Sci. Technol. 2014, 116, 1563–1571. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Kroh, L.W.; Mörsel, J.T. Radical Scavenging Activity of Black Cumin (Nigella sativa L.), Coriander (Coriandrum sativum L.), and Niger (Guizotia abyssinica Cass.) Crude Seed Oils and Oil Fractions. J. Agric. Food Chem. 2003, 51, 6961–6969. [Google Scholar] [CrossRef]
- Kowalski, B.; Ratusz, K.; Kowalska, D.; Bekas, W. Determination of the oxidative stability of vegetable oils by differential scanning calorimetry and Rancimat measurements. Eur. J. Lipid Sci. Technol. 2004, 106, 165–169. [Google Scholar] [CrossRef]
Egyptian Linseed Cultivars | ||||||||
---|---|---|---|---|---|---|---|---|
Parameters | Giza 11 | Giza 12 | Sakha 3 | Sakha 6 | ||||
U | R | U | R | U | R | U | R | |
Moisture content (%) | 6.94 a ± 0.02 | 2.62 b ± 0.11 | 6.38 a ± 0.20 | 2.12 b ± 0.01 | 6.26 a ± 0.02 | 3.02 b ± 0.10 | 6.89 a ± 0.05 | 3.42 b ± 0.11 |
Oil percentage (%) | 38.20 a ± 0.20 | 38.03 a ± 0.29 | 36.35 b ± 0.15 | 38.88 a ± 0.40 | 39.05 b ± 0.31 | 40.78 a ± 0.46 | 41.39 a ± 0.02 | 42.01 a ± 0.57 |
Acid value (mg KOH/g) | 0.86 a ± 0.04 | 0.88 a ± 0.04 | 0.98 b ± 0.00 | 1.15 a ± 0.04 | 0.63 b ± 0.00 | 0.85 a ± 0.01 | 0.68 a ± 0.00 | 0.76 a ± 0.00 |
Peroxide value (meq O2/kg) | 4.31 b ± 0.30 | 6.11 a ± 0.87 | 4.65 b ± 0.00 | 6.72 a ± 0.89 | 2.91 a ± 0.01 | 3.20 a ± 0.29 | 2.90 b ± 0.02 | 5.53 a ± 0.28 |
p-Anisidine value (mmol/kg) | 2.75 b ± 0.12 | 3.19 a ± 0.04 | 2.25 a ± 0.40 | 2.42 a ± 0.17 | 2.46 a ± 0.44 | 2.52 a ± 0.03 | 1.51 b ± 0.09 | 1.84 a ± 0.27 |
Totox value | 11.36 b ± 0.71 | 15.41 a ± 1.70 | 11.55 b ± 0.40 | 15.85 a ± 1.94 | 8.27 b ± 0.43 | 8.91 a ± 0.56 | 7.31 b ± 0.13 | 12.89 a ± 0.38 |
Egyptian Linseed Cultivars | ||||||||
---|---|---|---|---|---|---|---|---|
Color Methods | Giza 11 | Giza 12 | Sakha 3 | Sakha 6 | ||||
U | R | U | R | U | R | U | R | |
Color coordinates | ||||||||
L | 89.77 a ± 0.06 | 79.39 b ± 0.13 | 86.19 a ± 0.05 | 82.50 b ± 0.08 | 81.52 b ± 0.19 | 86.21 a ± 0.18 | 92.83 a ± 0.02 | 89.93 b ± 0.17 |
a | 1.35 b ± 0.03 | 4.07 a ± 0.03 | 5.47 b ± 0.01 | 6.59 a ± 0.03 | −1.03 a ± 0.04 | −1.35 a ± 0.09 | −3.75 b ± 0.01 | −1.96 a ± 0.05 |
b | 59.34 a ± 0.03 | 52.54 b ± 0.09 | 57.15 a ± 0.04 | 54.71 b ± 0.05 | 53.53 b ± 0.13 | 56.55 a ± 0.12 | 60.95 a ± 0.01 | 59.09 b ± 0.11 |
Delta EH | 60.23 a ± 0.03 | 56.58 b ± 0.04 | 59.06 a ± 0.02 | 57.82 b ± 0.02 | 56.64 b ± 0.06 | 58.22 a ± 0.07 | 61.48 a ± 0.01 | 59.98 b ± 0.08 |
Delta L | −10.23 a ± 0.06 | -20.61 b ± 0.13 | −13.81 a ± 0.05 | −17.50 b ± 0.08 | −18.48 b ± 0.19 | −13.79 a ± 0.18 | −7.17 a ± 0.02 | −10.07 b ± 0.17 |
Delta a | 1.36 b ± 0.03 | 4.08 a ± 0.02 | 5.47 b ± 0.01 | 6.59 a ± 0.03 | −1.02 a ± 0.04 | −1.35 a ± 0.08 | −3.75 b ± 0.01 | −1.95 a ± 0.05 |
Delta b | 59.34 a ± 0.03 | 52.54 b ± 0.09 | 57.16 a ± 0.04 | 54.71 b ± 0.05 | 53.53 b ± 0.13 | 56.55 a ± 0.12 | 60.95 a ± 0.01 | 59.09 b ± 0.11 |
Photometric color | 8.82 b ± 0.89 | 10.89 a ± 0.82 | 7.23 a ± 1.93 | 4.08 b ± 0.86 | 10.43 b ± 0.84 | 11.82 a ± 1.40 | 7.26 b ± 0.49 | 9.45 a ± 0.43 |
Color index | 342.41 b ± 0.56 | 353.72 a ± 3.18 | 361.90 a ± 2.93 | 349.58 b ± 4.28 | 290.78 a ± 2.41 | 274.57 b ± 2.27 | 272.35 b ± 0.32 | 288.89 a ± 1.08 |
Total phenolic compounds (mg GAE/kg) | 17.72 b ± 0.65 | 31.52 a ± 3.89 | 28.09 b ± 9.35 | 56.65 a ± 4.94 | 33.09 b ± 1.87 | 48.78 a ± 4.21 | 11.28 b ± 1.21 | 28.05 a ± 6.01 |
Egyptian Linseed Cultivars | ||||||||
---|---|---|---|---|---|---|---|---|
Chloroplast Pigments | Giza 11 | Giza 12 | Sakha 3 | Sakha 6 | ||||
U | R | U | R | U | R | U | R | |
Chlorophyll content (µg/kg) | 23.13 b ± 0.53 | 38.63 a ± 0.38 | 47.25 b ± 0.60 | 79.88 a ± 0.38 | 8.88 b ± 0.73 | 11.25 a ± 0.75 | 17.50 b ± 0.50 | 26.75 a ± 1.05 |
Carotenoids content (mg/kg oil) | ||||||||
neoxanthin | 1.55 b ± 0.02 | 2.18 a ± 0.25 | 3.13 a ± 0.35 | 2.47 b ± 0.39 | 1.05 a ± 0.13 | 0.94 a ± 0.01 | 0.99 a ± 0.19 | 0.92 a ± 0.14 |
violaxanthin | 0.56 a ± 0.01 | 0.51 a ± 0.05 | 1.14 a ± 0.12 | 0.38 b ± 0.04 | — | — | — | — |
luteoxanthin | 0.59 b ± 0.01 | 0.81 a ± 0.10 | 1.43 a ± 0.14 | 1.12 b ± 0.16 | 0.43 a ± 0.04 | 0.27 b ± 0.01 | 0.29 a ± 0.00 | 0.25 a ± 0.04 |
antheraxanthin | 0.48 a ± 0.00 | 0.44 a ± 0.01 | 0.51 a ± 0.07 | 0.24 b ± 0.03 | 0.40 a ± 0.05 | 0.27 a ± 0.06 | 0.35 a ± 0.07 | 0.25 a ± 0.00 |
mutatoxanthin | 0.75 b ± 0.01 | 1.18 a ± 0.11 | 1.16 a ± 0.15 | 1.19 a ± 0.33 | 0.76 a ± 0.14 | 0.55 b ± 0.11 | 0.75 a ± 0.27 | 0.70 a ± 0.08 |
lutein | 25.8 b ± 0.7 | 32.5 a ± 2.5 | 42.5 a ± 4.6 | 36.1 b ± 6.7 | 17.6 a ± 1.9 | 13.4 b ± 1.1 | 19.1 a ± 2.8 | 16.7 b ± 0.8 |
α-carotene | 0.16 a ± 0.05 | 0.17 a ± 0.03 | 0.12 a ± 0.04 | 0.08 a ± 0.01 | 0.07 a ± 0.01 | 0.05 a ± 0.01 | 0.03 a ± 0.00 | 0.06 a ± 0.01 |
β-carotene | 0.29 a ± 0.06 | 0.36 a ± 0.03 | 0.43 a ± 0.04 | 0.31 a ± 0.06 | 0.18 a ± 0.03 | 0.15 a ± 0.03 | 0.18 a ± 0.04 | 0.16 a ± 0.01 |
total | 30 b ± 1 | 38 a ± 1 | 50 a ± 5 | 42 b ± 8 | 20 a ± 2 | 16 a ± 1 | 22 a ± 4 | 19 a ± 1 |
Egyptian Linseed Cultivars | ||||||||
---|---|---|---|---|---|---|---|---|
Fatty Acids | Giza 11 | Giza 12 | Sakha 3 | Sakha 6 | ||||
U | R | U | R | U | R | U | R | |
C 16:0 | 5.01 b ± 0.02 | 5.17 a ± 0.00 | 5.23 b ± 0.01 | 5.32 a ± 0.05 | 5.13 a ± 0.01 | 5.17 a ± 0.02 | 5.16 b ± 0.03 | 5.24 a ± 0.00 |
C 18:0 | 4.52 a ± 0.01 | 4.40 b ± 0.03 | 4.78 a ± 0.09 | 4.72 a ± 0.02 | 4.15 a ± 0.01 | 4.12 a ± 0.00 | 4.84 a ± 0.03 | 4.57 b ± 0.01 |
C 18:1 (w9) | 16.63 b ± 0.10 | 16.76 a ± 0.04 | 20.12 a ± 0.01 | 20.05 a ± 0.00 | 14.97 a ± 0.02 | 14.91 a ± 0.06 | 16.00 a ± 0.02 | 15.96 a ± 0.01 |
C 18:2 (w6) | 12.87 a ± 0.01 | 12.73 b ± 0.10 | 11.14 a ± 0.04 | 11.10 a ± 0.01 | 14.21 a ± 0.00 | 14.13 a ± 0.02 | 14.92 a ± 0.07 | 14.97 a ± 0.01 |
C 18:3 (w3) | 60.94 a ± 0.11 | 60.92 a ± 0.04 | 58.74 a ± 0.04 | 58.81 a ± 0.04 | 61.52 a ± 0.03 | 61.65 a ± 0.06 | 59.09 b ± 0.03 | 59.26 a ± 0.04 |
MUFA/PUFA | 0.23 a | 0.23 a | 0.29 a | 0.29 a | 0.20 a | 0.20 a | 0.22 a | 0.22 a |
n-6/n3 | 0.21 a | 0.21 a | 0.19 a | 0.19 a | 0.23 a | 0.23 a | 0.25 a | 0.25 a |
Egyptian Linseed Cultivars | ||||||||
---|---|---|---|---|---|---|---|---|
Triacylglycerol | Giza 11 | Giza 12 | Sakha 3 | Sakha 6 | ||||
U | R | U | R | U | R | U | R | |
LnLnLn | 40.94 a ± 0.89 | 39.35 b ± 0.54 | 37.32 a ± 0.18 | 37.65 a ± 0.42 | 44.17 a ± 0.39 | 42.64 b ± 0.39 | 39.30 a ± 0.46 | 37.26 b ± 1.36 |
LnLLn | 15.65 a ± 0.09 | 14.03 b ± 1.66 | 14.17 a ± 1.60 | 12.22 b ± 0.01 | 16.87 b ± 0.10 | 17.23 a ± 0.04 | 17.83 a ± 0.03 | 17.56 a ± 0.09 |
LLLn | 1.76 a ± 0.24 | 1.22 b ± 0.23 | 1.50 a ± 0.31 | 0.99 b ± 0.16 | 1.83 b ± 0.29 | 2.00 a ± 0.10 | 2.30 a ± 0.30 | 2.21 a ± 0.39 |
LnOLn | 16.01 b ± 0.43 | 18.13 a ± 0.94 | 18.12 b ± 1.34 | 19.67 a ± 0.08 | 14.25 a ± 0.09 | 14.38 a ± 0.15 | 14.97a ± 0.04 | 15.15 a ± 0.21 |
LnLnP | 5.44 a ± 0.10 | 5.44a ± 0.16 | 5.75 a ± 0.39 | 5.49 b ± 0.02 | 5.24 a ± 0.04 | 5.49 a ± 0.19 | 5.18 b ± 0.08 | 5.76a ± 0.27 |
OLLn | 3.74 a ± 0.12 | 3.72 a ± 0.12 | 3.90 a ± 0.37 | 3.60 b ± 0.05 | 3.66 a ± 0.01 | 3.77 a ± 0.01 | 4.46 a ± 0.19 | 4.65 a ± 0.33 |
LnLP | 6.29 a ± 0.16 | 6.07 a ± 0.18 | 6.50 a ± 0.40 | 5.83 b ± 0.11 | 6.13 a ± 0.07 | 6.17 a ± 0.02 | 6.62 a ± 0.20 | 6.78 a ± 0.19 |
OLO | 0.22 a ± 0.07 | 0.26 a ± 0.12 | 0.24 b ± 0.01 | 0.33 a ± 0.03 | 0.28 a ± 0.03 | 0.25 a ± 0.03 | 0.28 a ± 0.07 | 0.35 a ± 0.07 |
OOLn | 4.72 b ± 0.24 | 5.91 a ± 1.03 | 6.20 a ± 0.83 | 6.94 a ± 0.03 | 3.66 a ± 0.00 | 3.68 a ± 0.09 | 3.90 a ± 0.10 | 4.17 a ± 0.01 |
LnOP | 2.76 a ± 0.03 | 2.84 a ± 0.04 | 3.09 a ± 0.15 | 3.38 a ± 0.18 | 2.24 a ± 0.03 | 2.52 a ± 0.23 | 2.90 a ± 0.17 | 3.38 a ± 0.28 |
OLO | 0.32 a ± 0.03 | 0.34 a ± 0.04 | 0.31 a ± 0.01 | 0.37 a ± 0.00 | 0.28 a ± 0.01 | 0.30 a ± 0.00 | 0.40 a ± 0.04 | 0.41 a ± 0.07 |
SOLn | 1.61 b ± 0.05 | 1.99 a ± 0.39 | 1.93 b ± 0.23 | 2.20 a ± 0.01 | 1.22 a ± 0.01 | 1.38 a ± 0.01 | 1.64 b ± 0.04 | 1.91 a ± 0.03 |
OOO | 0.41 b ± 0.08 | 0.57 a ± 0.21 | 0.81 b ± 0.24 | 1.11 a ± 0.20 | 0.20 a ± 0.01 | 0.23 a ± 0.02 | 0.25 b ± 0.04 | 0.44 a ± 0.03 |
SOO | 0.16 a ± 0.06 | 0.19 a ± 0.07 | 0.22 a ± 0.07 | 0.25 a ± 0.01 | — | — | — | — |
Egyptian Linseed Cultivars | ||||||||
---|---|---|---|---|---|---|---|---|
Tocochromanols (mg/100 g) | Giza 11 | Giza 12 | Sakha 3 | Sakha 6 | ||||
U | R | U | R | U | R | U | R | |
alpha-T | 0.47 a ± 0.01 | 0.45 a ± 0.01 | 0.46 a ± 0.02 | 0.37 b ± 0.01 | 0.47 a ± 0.01 | 0.37 b ± 0.02 | 0.45 a ± 0.01 | 0.31 b ± 0.01 |
gamma-T | 51.28 a ± 0.04 | 51.42 a ± 0.05 | 55.69 a ± 0.22 | 51.71 b ± 0.09 | 49.39 a ± 0.04 | 49.72 a ± 0.04 | 45.27 a ± 0.02 | 40.53 b ± 0.11 |
delta-T | 0.65 a ± 0.03 | 0.66 a ± 0.01 | 0.77 a ± 0.02 | 0.70 b ± 0.02 | 0.54 a ± 0.03 | 0.48 b ± 0.01 | 0.55 a ± 0.02 | 0.46 b ± 0.01 |
sum-T | 52.40 a ± 0.01 | 52.53 a ± 0.03 | 56.92 a ± 0.22 | 52.78 b ± 0.09 | 50.39 a ± 0.05 | 50.56 a ± 0.06 | 46.27 a ± 0.05 | 41.29 b ± 0.11 |
Plastochromanol-8 | 15.93 b ± 0.08 | 18.08 a ± 1.59 | 15.26 b ± 0.07 | 19.15 a ± 0.14 | 15.77 b ± 0.13 | 23.13 a ± 0.12 | 14.74 b ± 0.16 | 17.62 a ± 0.03 |
Phytosterols (mg/g) | ||||||||
Campesterol | 0.93 a ± 0.08 | 0.85 a ± 0.04 | 0.80 a ± 0.03 | 0.77 a ± 0.08 | 0.77 b ± 0.05 | 0.90 a ± 0.01 | 0.74 a ± 0.02 | 0.73 a ± 0.01 |
Campestanol | 0.14 a ± 0.01 | 0.13 a ± 0.00 | 0.12 a ± 0.00 | 0.10 a ± 0.01 | 0.11 a ± 0.01 | 0.12 a ± 0.01 | 0.13 a ± 0.02 | 0.12 a ± 0.02 |
Stigmasterol | 0.29 a ± 0.02 | 0.27 a ± 0.01 | 0.27 a ± 0.01 | 0.29 a ± 0.01 | 0.24 a ± 0.02 | 0.27 a ± 0.00 | 0.20 a ± 0.00 | 0.19 a ± 0.01 |
β-Sitosterol | 1.54 a ± 0.10 | 1.39 b ± 0.04 | 1.39 a ± 0.09 | 1.31 a ± 0.13 | 1.25 b ± 0.07 | 1.45 a ± 0.02 | 1.32 a ± 0.04 | 1.33 a ± 0.04 |
Sitostanol | 0.19 a ± 0.01 | 0.15 a ± 0.03 | 0.15 a ± 0.02 | 0.17 a ± 0.03 | 0.18 a ± 0.02 | 0.19 a ± 0.02 | 0.22 a ± 0.04 | 0.15 b ± 0.01 |
Δ5-Avenasterol | 0.52 a ± 0.03 | 0.43 b ± 0.02 | 0.40 a ± 0.04 | 0.38 a ± 0.05 | 0.46 a ± 0.03 | 0.51 a ± 0.00 | 0.50 a ± 0.00 | 0.46 a ± 0.01 |
Δ7-Stigmasterol | 1.44 a ± 0.08 | 1.33 a ± 0.06 | 1.46 a ± 0.08 | 1.41 a ± 0.10 | 1.32 a ± 0.05 | 1.38 a ± 0.00 | 1.39 a ± 0.01 | 1.32 a ± 0.02 |
Cycloartenol | 0.31 a ± 0.01 | 0.28 a ± 0.01 | 0.34 a ± 0.03 | 0.32 a ± 0.02 | 0.25 a ± 0.01 | 0.25 a ± 0.00 | 0.30 a ± 0.00 | 0.28 a ± 0.01 |
24-Methylenecycloartanol | 0.05 a ± 0.00 | 0.04 a ± 0.01 | 0.05 a ± 0.00 | 0.06 a ± 0.01 | 0.05 a ± 0.01 | 0.04 a ± 0.00 | 0.04 a ± 0.01 | 0.06 a ± 0.01 |
Egyptian Cultivars | ||||||||
---|---|---|---|---|---|---|---|---|
Parameters | Giza 11 | Giza 12 | Sakha 3 | Sakha 6 | ||||
U | R | U | R | U | R | U | R | |
RSA% | 17.14 a ± 1.46 | 17.5 1a ± 0.91 | 15.73 b ± 0.32 | 21.04 a ± 0.75 | 20.22 a ± 0.37 | 19.64 a ± 0.86 | 18.40 a ± 0.51 | 17.63 a ± 0.39 |
* EC50 mg/mL | 26.84 a | 24.52 b | 25.9 7a | 23.47 b | 24.67 a | 23.01 a | 29.12 a | 26.18 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassanein, M.M.M.; Abdel-Razek, A.G.; Afifi, S.M.; Qian, Y.; Radziejewska-Kubzdela, E.; Siger, A.; Rudzińska, M.; Abo-Elwafa, G.A.; Grygier, A. Characterization of New Egyptian Linseed Varieties and the Effects of Roasting on Their Pigments, Tocochromanols, Phytosterols, Omega-3 Fatty Acids, and Stability. Molecules 2022, 27, 8526. https://doi.org/10.3390/molecules27238526
Hassanein MMM, Abdel-Razek AG, Afifi SM, Qian Y, Radziejewska-Kubzdela E, Siger A, Rudzińska M, Abo-Elwafa GA, Grygier A. Characterization of New Egyptian Linseed Varieties and the Effects of Roasting on Their Pigments, Tocochromanols, Phytosterols, Omega-3 Fatty Acids, and Stability. Molecules. 2022; 27(23):8526. https://doi.org/10.3390/molecules27238526
Chicago/Turabian StyleHassanein, Minar Mahmoud M., Adel Gabr Abdel-Razek, Sherine Mohammed Afifi, Ying Qian, Elżbieta Radziejewska-Kubzdela, Aleksander Siger, Magdalena Rudzińska, Ghada Ahmed Abo-Elwafa, and Anna Grygier. 2022. "Characterization of New Egyptian Linseed Varieties and the Effects of Roasting on Their Pigments, Tocochromanols, Phytosterols, Omega-3 Fatty Acids, and Stability" Molecules 27, no. 23: 8526. https://doi.org/10.3390/molecules27238526
APA StyleHassanein, M. M. M., Abdel-Razek, A. G., Afifi, S. M., Qian, Y., Radziejewska-Kubzdela, E., Siger, A., Rudzińska, M., Abo-Elwafa, G. A., & Grygier, A. (2022). Characterization of New Egyptian Linseed Varieties and the Effects of Roasting on Their Pigments, Tocochromanols, Phytosterols, Omega-3 Fatty Acids, and Stability. Molecules, 27(23), 8526. https://doi.org/10.3390/molecules27238526