Effect of Holoptelea integrifolia (Roxb.) Planch. n-Hexane Extract and Its Bioactive Compounds on Wound Healing and Anti-Inflammatory Activity
Abstract
:1. Introduction
2. Results
2.1. Effects of H. Integrifolia n-Hexane Extract on Cell Viability in Human and Canine Keratinocytes
2.2. Identification of Friedelin and Lupeol in n-Hexane Extract
2.3. Effect of Friedelin and Lupeol on Cell Viability and Wound-Healing Activity in Keratinocytes
2.4. MMPs Expression by Friedelin
2.5. Effect of Friedelin/Lupeol on Gene Expression in Human Keratinocyte Re-Epithelialization
2.6. Effect of H. integrifolia n-Hexane Extract and Friedelin/Lupeol on Anti-Inflammatory Activity in RAW 264.7 Cells
3. Discussion
4. Materials and Methods
4.1. Reagents and Cell Lines
4.2. Plant Preparation and Extraction
4.3. Thin-Layer Chromatography (TLC)
4.4. Gas Chromatography Analysis (GC-FID)
4.5. Cell Viability Assay
4.6. Immunoblotting Analysis
4.7. Scratch Assay
4.8. Antibody Array
4.9. Gel zymography Assay
4.10. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR)
4.11. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ganie, S.A.; Yadav, S.S. Holoptelea integrifolia (Roxb.) Planch: A review of its ethnobotany, pharmacology, and phytochemistry. BioMed Res. Int. 2014, 2014, 401213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutar, R.; Kasture, S.; Kalaichelvan, V. Isolation and identification of a new phytosterol from Holoptelea integrifolia (ROXB) planch leaves. Int. J. Pharm. Sci. Res. 2014, 6, 354–357. [Google Scholar]
- Nadella, D.; Paarakh, P.; Vedamurthy, A. Isolation of phytoconstituents from the stem bark of Holoptelea integrifolia (Roxb.) Planch. J. Pharm. Res. 2012, 5, 532–533. [Google Scholar]
- Rousselle, P.; Braye, F.; Dayan, G. Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Adv. Drug Deliv. Rev. 2019, 146, 344–365. [Google Scholar] [CrossRef] [PubMed]
- Singer, A.J.; Clark, R.A. Cutaneous wound healing. N. Engl. J. Med. 1999, 341, 738–746. [Google Scholar] [CrossRef]
- Wilkinson, H.N.; Hardman, M.J. Wound healing: Cellular mechanisms and pathological outcomes. Open Biol. 2020, 10, 200223. [Google Scholar] [CrossRef] [PubMed]
- Reddy, B.S.; Reddy, R.K.K.; Naidu, V.; Madhusudhana, K.; Agwane, S.B.; Ramakrishna, S.; Diwan, P.V. Evaluation of antimicrobial, antioxidant and wound-healing potentials of Holoptelea integrifolia. J. Ethnopharmacol. 2008, 115, 249–256. [Google Scholar] [CrossRef]
- Solanki, P.; Pandya, D.; Maitreya, B. Antimicrobial activity of methanolic & aqueous extracts of leaves & young stem bark of Holoptelea integrifolia L. Int. J. Bot. Stud. 2020, 5, 123–127. [Google Scholar]
- Misra, G.; Bhatnagar, S.; Nigam, S. Constituents of Holoptelea integrifolia leaves and bark. Planta Med. 1974, 26, 394–396. [Google Scholar] [CrossRef]
- Hassan, A.; Rasheed, M.; Ali, M.; Ishrat, G.; Ahmed, M. Identification of Five New Triterpenoids from Ethylacetate Bark Extract of Holoptelea integrifolia (Roxb.) Planch by GC-MS. Nat. Prod. Chem. Res. 2018, 6, 338. [Google Scholar] [CrossRef]
- Sabino, F.; Keller, U. Matrix metalloproteinases in impaired wound healing. Met. Med. 2015, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Caley, M.P.; Martins, V.L.; O’Toole, E.A. Metalloproteinases and wound healing. Adv. Wound Care (New Rochelle) 2015, 4, 225–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, R.C.; Pastar, I.; Ojeh, N.; Chen, V.; Liu, S.; Garzon, K.I.; Tomic-Canic, M. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res. 2016, 365, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Konop, M.; Rybka, M.; Drapała, A. Keratin biomaterials in skin wound healing, an old player in modern medicine: A mini review. Pharmaceutics 2021, 13, 2029. [Google Scholar] [CrossRef]
- McGowan, K.M.; Coulombe, P.A. Onset of keratin 17 expression coincides with the definition of major epithelial lineages during skin development. J. Cell Biol. 1998, 143, 469–486. [Google Scholar] [CrossRef] [Green Version]
- Raziyeva, K.; Kim, Y.; Zharkinbekov, Z.; Kassymbek, K.; Jimi, S.; Saparov, A. Immunology of acute and chronic wound healing. Biomolecules 2021, 11, 700. [Google Scholar] [CrossRef]
- Sharma, P.; Nanjaian, M.; Kalra, S.; Chidambaram, K. In vivo anti-inflammatory and in vitro antioxidant potential of leaf and bark fractions of Holoptelea integrifolia (Roxb.) Planch. J. Pharm. Pharmacogn. Res. 2019, 7, 421–432. [Google Scholar]
- Pratap, H.; Shakya, M.K.; Singh, T.; Agrawal, M.; Katiyar, N.S. A Study on Anti-inflammatory Activity of Stem Bark Extract of Holoptelea integrifolia. Res. J. Pharm. Technol. 2022, 15, 77–81. [Google Scholar] [CrossRef]
- Munawar, T.M.; Rao, D.M.; Subramanyam, P. Antibacterial, antioxidant and anti-inflammatory potential of the different extracts of Holoptelia integrifolia. Int. J. Eng. Adv. Technol. 2019, 9, 5234–5240. [Google Scholar] [CrossRef]
- Antonisamy, P.; Duraipandiyan, V.; Ignacimuthu, S. Anti-inflammatory, analgesic and antipyretic effects of friedelin isolated from Azima tetracantha Lam. in mouse and rat models. J. Pharm. Pharmacol. 2011, 63, 1070–1077. [Google Scholar] [CrossRef]
- Nunes, R.; Broering, M.F.; De Faveri, R.; Goldoni, F.C.; Mariano, L.N.B.; Mafessoli, P.C.M.; Delle Monache, F.; Cechinel Filho, V.; Niero, R.; Santin, J.R. Effect of the metanolic extract from the leaves of Garcinia humilis Vahl (Clusiaceae) on acute inflammation. Inflammopharmacology 2021, 29, 423–438. [Google Scholar] [CrossRef] [PubMed]
- Dixit, P.; Pal, M.; Upreti, D. Comparative studies on the analytical and antioxidant activities of the medicinally important stem bark of Holoptelea integrifolia. JPC—J. Planar. Chromat. 2014, 27, 162–165. [Google Scholar] [CrossRef]
- Pereira Beserra, F.; Xue, M.; Maia, G.L.d.A.; Leite Rozza, A.; Helena Pellizzon, C.; Jackson, C.J. Lupeol, a pentacyclic triterpene, promotes migration, wound closure, and contractile effect in vitro: Possible involvement of PI3K/Akt and p38/ERK/MAPK pathways. Molecules 2018, 23, 2819. [Google Scholar] [CrossRef] [Green Version]
- Pereira Beserra, F.; Sérgio Gushiken, L.F.; Vieira, A.J.; Augusto Bérgamo, D.; Luísa Bérgamo, P.; Oliveira de Souza, M.; Alberto Hussni, C.; Kiomi Takahira, R.; Henrique Nóbrega, R.; Monteiro Martinez, E.R. From inflammation to cutaneous repair: Topical application of lupeol improves skin wound healing in rats by modulating the cytokine levels, NF-κB, Ki-67, growth factor expression, and distribution of collagen fibers. Int. J. Mol. Sci. 2020, 21, 4952. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.-C.; Park, A.Y.; Guan, J.-L. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2007, 2, 329–333. [Google Scholar] [CrossRef] [Green Version]
- Martins, V.L.; Caley, M.; O’Toole, E.A. Matrix metalloproteinases and epidermal wound repair. Cell Tissue Res. 2013, 351, 255–268. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, M.; Zhang, L.-j. Keratin 6, 16 and 17—Critical barrier alarmin molecules in skin wounds and psoriasis. Cells 2019, 8, 807. [Google Scholar] [CrossRef] [Green Version]
- Pang, B.; Zhu, Z.; Xiao, C.; Luo, Y.; Fang, H.; Bai, Y.; Sun, Z.; Ma, J.; Dang, E.; Wang, G. Keratin 17 Is Required for Lipid Metabolism in Keratinocytes and Benefits Epidermal Permeability Barrier Homeostasis. Front. Cell Dev. Biol. 2022, 9, 779257. [Google Scholar] [CrossRef]
- Lee, C.-H.; Choi, E.Y. Macrophages and inflammation. J. Rheum. Dis. 2018, 25, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Fernández, M.A.; de las Heras, B.; Garcia, M.D.; Sáenz, M.T.; Villar, A. New insights into the mechanism of action of the anti-inflammatory triterpene lupeol. J. Pharm. Pharmacol. 2001, 53, 1533–1539. [Google Scholar] [CrossRef]
- Saha, S.; Profumo, E.; Togna, A.R.; Riganò, R.; Saso, L.; Buttari, B. Lupeol Counteracts the Proinflammatory Signalling Triggered in Macrophages by 7-Keto-Cholesterol: New Perspectives in the Therapy of Atherosclerosis. Oxid. Med. Cell. Longev. 2020, 2020, 1232816. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Arnedo, A.; Figueroa, F.T.; Clavijo, C.; Arbeláez, P.; Cruz, J.C.; Muñoz-Camargo, C. An image J plugin for the high throughput image analysis of in vitro scratch wound healing assays. PLoS ONE 2020, 15, e0232565. [Google Scholar] [CrossRef] [PubMed]
- Toth, M.; Sohail, A.; Fridman, R. Assessment of gelatinases (MMP-2 and MMP-9) by gelatin zymography. Methods Mol. Biol. 2012, 878, 121–135. [Google Scholar] [CrossRef] [PubMed]
human KRT-17 | sense strand | 5′-GAGATTGCCACCTACCGCC-3′ |
anti-sense strand | 5′-ACCTCTTCCACAATGGTACGC-3′ | |
human DSG-1 | sense strand | 5′-GAGATTGCCACCTACCGCC-3′ |
anti-sense strand | 5′-ACCTCTTCCACAATGGTACGC-3′ | |
human CDH-1 | sense strand | 5′-GCTGGACCGAGAGAGTTTCC-3′ |
anti-sense strand | 5′-CAAAATCCAAGCCCGTGGTG-3′ | |
human GAPDH | sense strand | 5′-GTCTCCTCTGACTTCAACAGCG-3′ |
anti-sense strand | 5′-ACCACCCTGTTGCTGTAGCCAA-3′ |
mouse COX-2 | sense strand | 5′–CCCCCACAGTCAAAGACACT-3′ |
anti-sense strand | 5′–GAGTCCATGTTCCAGGAGGA-3′ | |
mouse iNOS | sense strand | 5′–GTCTTGCAAGCTGATGGTC-3′ |
anti-sense strand | 5′–CATGATGGTCACATTCTGC-3′ | |
mouse TNF-α | sense strand | 5′–GCCTCTTCTCATTCCTGCTTG-3′ |
anti-sense strand | 5′–CTGATGAGAGGGAGGCCATT-3′ | |
mouse IL-6 | sense strand | 5′–TACCACTTCACAAGTCGGAGGC-3′ |
anti-sense strand | 5′–CTGCAAGTGCATCATCGTTGTTC-3′ | |
mouse GAPDH | sense strand | 5′–CAGGAGCGAGACCCCACTAACAT-3′ |
anti-sense strand | 5′–GTCAGATCCACGACGGACACATT-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Somwong, K.; Lertpatipanpong, P.; Nimlamool, W.; Panya, A.; Tragoolpua, Y.; Yongsawas, R.; Gritsanapan, W.; Pandith, H.; Baek, S.J. Effect of Holoptelea integrifolia (Roxb.) Planch. n-Hexane Extract and Its Bioactive Compounds on Wound Healing and Anti-Inflammatory Activity. Molecules 2022, 27, 8540. https://doi.org/10.3390/molecules27238540
Somwong K, Lertpatipanpong P, Nimlamool W, Panya A, Tragoolpua Y, Yongsawas R, Gritsanapan W, Pandith H, Baek SJ. Effect of Holoptelea integrifolia (Roxb.) Planch. n-Hexane Extract and Its Bioactive Compounds on Wound Healing and Anti-Inflammatory Activity. Molecules. 2022; 27(23):8540. https://doi.org/10.3390/molecules27238540
Chicago/Turabian StyleSomwong, Kanokwan, Pattawika Lertpatipanpong, Wutigri Nimlamool, Aussara Panya, Yingmanee Tragoolpua, Rujipas Yongsawas, Wandee Gritsanapan, Hataichanok Pandith, and Seung Joon Baek. 2022. "Effect of Holoptelea integrifolia (Roxb.) Planch. n-Hexane Extract and Its Bioactive Compounds on Wound Healing and Anti-Inflammatory Activity" Molecules 27, no. 23: 8540. https://doi.org/10.3390/molecules27238540
APA StyleSomwong, K., Lertpatipanpong, P., Nimlamool, W., Panya, A., Tragoolpua, Y., Yongsawas, R., Gritsanapan, W., Pandith, H., & Baek, S. J. (2022). Effect of Holoptelea integrifolia (Roxb.) Planch. n-Hexane Extract and Its Bioactive Compounds on Wound Healing and Anti-Inflammatory Activity. Molecules, 27(23), 8540. https://doi.org/10.3390/molecules27238540