Oxalactam A, a Novel Macrolactam with Potent Anti-Rhizoctonia solani Activity from the Endophytic Fungus Penicillium oxalicum
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Structural Identification
2.2. Anti-Rhizoctonia solani Activity
2.3. Assessment of Binding Affinity of 1 and CYP51
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Strain Material
3.3. Fermentation and Isolation
3.4. Enzymatic Hydrolysis
3.5. Sugar Identification
3.6. ECD and NMR Calculation Methods
3.7. The Plate Confrontation Test
3.8. Anti-Rhizoctonia solani Assays In Vitro
3.9. Molecular Docking Study
3.10. Molecular Dynamics Simulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Rao, T.B.; Chopperla, R.; Prathi, N.B.; Balakrishnan, M.; Prakasam, V.; Laha, G.S.; Balachandran, S.M.; Mangrauthia, S.K. A comprehensive gene expression profile of pectin degradation enzymes reveals the molecular events during cell wall degradation and pathogenesis of rice sheath blight pathogen Rhizoctonia solani AG1-IA. J. Fungi. 2020, 6, 71. [Google Scholar]
- Molla, K.A.; Karmakar, S.; Molla, J.; Bajaj, P.; Varshney, R.K.; Datta, S.K.; Datta, K. Understanding sheath blight resistance in rice: The road behind and the road ahead. Plant Biotechnol. J. 2020, 18, 895–915. [Google Scholar] [CrossRef] [PubMed]
- Senapati, M.; Tiwari, A.; Sharma, N.; Chandra, P.; Bashyal, B.M.; Ellur, R.K.; Bhowmick, P.K.; Bollinedi, H.; Vinod, K.K.; Singh, A.K.; et al. Rhizoctonia solani Kühn pathophysiology: Status and prospects of sheath blight disease management in rice. Front. Plant Sci. 2022, 13, 881116. [Google Scholar] [CrossRef] [PubMed]
- Bernardes-de-Assis, J.; Storari, M.; Zala, M.; Wang, W.X.; Jiang, D.H.; Dong, L.S.; Jin, M.S.; McDonald, B.A.; Ceresini, P.C. Genetic structure of populations of the rice-infecting pathogen Rhizoctonia solani AG-1 IA from China. Phytopathology 2009, 99, 1090–1099. [Google Scholar] [CrossRef] [Green Version]
- Shu, C.W.; Zhao, M.; Anderson, J.P.; Garg, G.; Singh, K.B.; Zheng, W.B.; Wang, C.J.; Yang, M.; Zhou, E.X. Transcriptome analysis reveals molecular mechanisms of sclerotial development in the rice sheath blight pathogen Rhizoctonia solani AG1-IA. Funct. Integr. Genom. 2019, 19, 743–758. [Google Scholar] [CrossRef]
- Li, D.; Zhang, F.; Pinson, S.R.M.; Edwards, J.D.; Jackson, A.K.; Xia, X.; Eizenga, G.C. Assessment of rice sheath blight resistance including associations with plant architecture, as revealed by genome-wide association studies. Rice 2022, 15, 31. [Google Scholar] [CrossRef]
- Zhu, G.; Liang, E.X.; Lan, X.; Li, Q.; Qian, J.J.; Tao, H.X.; Zhang, M.J.; Xiao, N.; Zuo, S.M.; Chen, J.M.; et al. ZmPGIP3 gene encodes a polygalacturonase-inhibiting protein that enhances resistance to sheath blight in rice. Phytopathology 2019, 109, 1732–1740. [Google Scholar] [CrossRef]
- Singh, P.; Mazumdar, P.; Harikrishna, J.A.; Babu, S. Sheath blight of rice: A review and identification of priorities for future research. Planta 2019, 250, 1387–1407. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Sun, D. Macrocyclic drugs and synthetic methodologies toward macrocycles. Molecules 2013, 18, 6230–6268. [Google Scholar] [CrossRef] [Green Version]
- Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274. [Google Scholar] [CrossRef]
- Hügel, H.M.; Smith, A.T.; Rizzacasa, M.A. Macrolactam analogues of macrolide natural products. Org. Biomol. Chem. 2016, 14, 11301–11316. [Google Scholar] [CrossRef] [PubMed]
- Che, C.T.; Zhao, M.; Guo, B.; Onakpa, M.M. Icacina trichantha, a tropical medicinal plant. Nat. Prod. Commun. 2016, 11, 1039–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asuzu, I.U.; Ugwueze, E.E. Screening of Icacina trichantha extracts for pharmacological activity. J. Ethnopharmacol. 1990, 28, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Grimblat, N.; Zanardi, M.M.; Sarotti, A.M. Beyond DP4: An improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J. Org. Chem. 2015, 80, 12526–12534. [Google Scholar] [CrossRef] [PubMed]
- Sarotti, A.M. Successful combination of computationally inexpensive GIAO 13C NMR calculations and artificial neural network pattern recognition: A new strategy for simple and rapid detection of structural misassignments. Org. Biomol. Chem. 2013, 11, 4847–4859. [Google Scholar] [CrossRef] [Green Version]
- Miyanaga, A.; Kudo, F.; Eguchi, T. Mechanisms of β-amino acid incorporation in polyketide macrolactam biosynthesis. Curr. Opin. Chem. Biol. 2016, 35, 58–64. [Google Scholar] [CrossRef]
- Pescitelli, G.; Bari, L.D.; Berova, N. Application of electronic circular dichroism in the study of supramolecular systems. Chem. Soc. Rev. 2014, 43, 5211–5233. [Google Scholar] [CrossRef]
- Shinohara, Y.; Kudo, F.; Eguchi, T. A natural protecting group strategy to carry an amino acid starter unit in the biosynthesis of macrolactam polyketide antibiotics. J. Am. Chem. Soc. 2011, 133, 18134–18137. [Google Scholar] [CrossRef]
- Ogasawara, Y.; Katayama, K.; Minami, A.; Otsuka, M.; Eguchi, T.; Kakinuma, K. Cloning, sequencing, and functional analysis of the biosynthetic gene cluster of macrolactam antibiotic vicenistatin in Streptomyces halstedii. Chem. Biol. 2004, 11, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Ogasawara, Y.; Kakinuma, K.; Eguchi, T. Involvement of glutamate mutase in the biosynthesis of the unique starter unit of the macrolactam polyketide antibiotic vicenistatin. J. Antibiot. 2005, 58, 468–472. [Google Scholar] [CrossRef]
- Li, Y.Y.; Llewellyn, N.M.; Giri, R.; Huang, F.L.; Spencer, J.B. Biosynthesis of the unique amino acid side chain of butirosin: Possible protective-group chemistry in an acyl carrier protein-mediated pathway. Chem. Biol. 2005, 12, 665–675. [Google Scholar] [CrossRef]
- Llewellyn, N.M.; Li, Y.Y.; Spencer, J.B. Biosynthesis of butirosin: Transfer and deprotection of the unique amino acid side chain. Chem. Biol. 2007, 14, 379–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, H.; Samborskyy, M.; Lindner, F.; Leadlay, P.F. An amidinohydrolase provides the missing link in the biosynthesis of amino marginolactone antibiotics. Angew. Chem. Int. Ed. 2016, 55, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Bivin, D.B.; Kubota, S.; Pearlstein, R.; Morales, M.F. On how a myosin tryptophan may be perturbed. Proc. Natl. Acad. Sci. USA 1993, 90, 6791–6795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, J.; Tang, H.; Geng, W.L.; Liu, B.S.; Zhang, W. Cyclic dipeptides in actinomycete Brevibacterium sp. associated with sea cucumber Apostichopus japonicas Selenka: Isolation and identification. Acad. J. Second Military Med. Univ. 2013, 33, 1284–1287. [Google Scholar] [CrossRef]
- Adamczeski, M.; Reed, A.R.; Crews, P. New and known diketopiperazines from the Caribbean sponge, calyx cf. Podatypa. J. Nat. Prod. 1995, 58, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Wattana-Amorn, P.; Charoenwongsa, W.; Williams, C.; Crump, M.P.; Apichaisataienchote, B. Antibacterial activity of cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr) from Streptomyces sp. strain 22-4 against phytopathogenic bacteria. Nat. Prod. Res. 2016, 30, 1980–1983. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, X.M.; Zhang, P.; Wang, B.G. A new phenolic enamide and a new meroterpenoid from marine alga-derived endophytic fungus Penicillium oxalicum EN-290. J. Asian Nat. Prod. Res. 2015, 17, 1204–1212. [Google Scholar] [CrossRef]
- Yang, L.P.; Xie, J.T.; Jiang, D.H.; Fu, Y.P.; Li, G.Q.; Lin, F.C. Antifungal substances produced by Penicillium oxalicum strain PY-1—Potential antibiotics against plant pathogenic fungi. World J. Microbiol. Biotechnol. 2008, 24, 909–915. [Google Scholar] [CrossRef]
- Gintis, B.O.; Benson, D.M. Biological control of Phytophthora root rot of azalea with Penicillium oxalicum. Phytopathology 1987, 77, 1688. [Google Scholar]
- Trapero-Casas, A.; Kaiser, W.J.; Ingram, D.M. Control of Pythium seed rot and preemergence damping-off of chickpea in the US Pacific Northwest and Spain. Plant Dis. 1990, 74, 563–569. [Google Scholar] [CrossRef]
- Sabuquillo, P.; De Cal, A.; Melgarejo, P. Dispersal improvement of a powder formulation of Penicillium oxalicum, a biocontrol agent of tomato wilt. Plant Dis. 2005, 89, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, R.K.; Saini, K.K.; Deswal, N.; Singh, T.; Tripathi, K.P.; Kaushik, P.; Shakil, N.A.; Bhartid, A.C.; Kumar, R. Synthesis of benzothiazole-appended bis-triazolebased structural isomers with promising antifungal activity against Rhizoctonia solani. RSC Adv. 2022, 12, 24412. [Google Scholar] [CrossRef] [PubMed]
- Lepesheva, G.I.; Park, H.W.; Hargrove, T.Y.; Vanhollebeke, B.; Wawrzak, Z.; Harp, J.M.; Sundaramoorthy, M.; Nes, W.D.; Pays, E.; Chaudhuri, M.; et al. Crystal structures of Trypanosoma brucei sterol 14alpha-demethylase and implications for selective treatment of human infections. J. Biol. Chem. 2010, 285, 1773–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosam, K.; Monk, B.C.; Lackner, M. Sterol 14-Demethylase Ligand-Binding Pocket-Mediated Acquired and Intrinsic Azole Resistance in Fungal Pathogens. J. Fungi 2021, 7, 1. [Google Scholar] [CrossRef]
- Mullins, J.G.; Parker, J.E.; Cools, H.J.; Togawa, R.C.; Lucas, J.A.; Fraaije, B.A.; Kelly, D.E.; Kelly, S.L. Molecular modelling of the emergence of azole resistance in Mycosphaerella graminicola. PLoS ONE 2011, 6, e20973. [Google Scholar] [CrossRef]
- Snelders, E.; Camps, S.M.; Karawajczyk, A.; Rijs, A.J.; Zoll, J.; Verweij, P.E.; Melchers, W.J. Genotype-phenotype complexity of the TR46/Y121F/T289A cyp51A azole resistance mechanism in Aspergillus fumigatus. Fungal Genet. Biol. 2015, 82, 129–135. [Google Scholar] [CrossRef]
- Abdullah, F.O.; Hussain, F.H.S.; Sardar, A.S.; Gilardoni, G.; Tosi, S.; Vidari, G. Iridoids Isolation from a Phytochemical Study of the Medicinal Plant Teucrium parviflorum Collected in Iraqi Kurdistan. Molecules 2022, 27, 5963. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, X.; Liu, B.; Li, P.; Suo, X.; Zhu, T.; Ji, T.; Li, J.; Li, X. Hyperacmosin R, a New Decarbonyl Prenylphloroglucinol with Unusual Spiroketal Subunit from Hypericum acmosepalum. Molecules 2022, 27, 5932. [Google Scholar] [CrossRef]
- Liang, H.J.; Di, Y.L.; Li, J.L.; Zhu, F.X. Baseline sensitivity and control efficacy of fluazinam against Sclerotinia sclerotiorum. Eur. J. Plant Pathol. 2015, 142, 691–699. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, Y.B.; Zhou, M.G. Baseline sensitivity and efficacy of fluazinam in controlling Sclerotinia stem rot of rapeseed. Eur. J. Plant Pathol. 2016, 144, 337–343. [Google Scholar] [CrossRef]
- Karwasra, R.; Ahmad, S.; Bano, N.; Qazi, S.; Raza, K.; Singh, S.; Varma, S. Macrophage-Targeted Punicalagin Nanoengineering to Alleviate Methotrexate-Induced Neutropenia: A Molecular Docking, DFT, and MD Simulation Analysis. Molecules 2022, 27, 6034. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.R.; Bruccoleri, R.E.; Olafson, B.D.; States, D.J.; Swaminathan, S.; Karplus, M. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 1983, 4, 187–217. [Google Scholar] [CrossRef]
- Armstrong, J.A.; Bresme, F. Water polarization induced by thermal gradients: The extended simple point charge model (SPC/E). J. Chem. Phys. 2013, 139, 014504. [Google Scholar] [CrossRef]
- Zeng, Q.H.; Yu, A.B.; Lu, G.Q.; Standish, R.K. Molecular Dynamics Simulation of Organic-Inorganic Nanocomposites: Layering Behavior and Interlayer Structure of Organoclays. Chem. Mater. 2003, 15, 4732–4738. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Petersen, H.G. Accuracy and efficiency of the particle mesh Ewald method. J. Chem. Phys. 1995, 103, 3668–3679. [Google Scholar] [CrossRef]
Oxalactam A (1) | ||
---|---|---|
Position | δH (J in Hz) | δC, Type |
2 | 175.6, C | |
3 | 4.44 (d, J = 6.0 Hz) | 74.2, CH |
4 | 5.49 (dd, J = 16.0, 6.0 Hz) | 129.2, CH |
5 | 5.84 (dt, J = 16.0, 6.0 Hz) | 134.8, CH |
6 | 2.04, m | 33.6, CH2 |
7 | 1.40, m | 29.3, CH2 |
8 | 1.98 (t, J = 7.5 Hz) | 41.0, CH2 |
9 | 136.9, C | |
10 | 5.15 (t, J = 6.5 Hz) | 125.0, CH |
11 | 2.06, m | 28.8, CH2 |
12 | 2.04, m | 33.9, CH2 |
13 | 5.72 (dt, J = 15.1, 6.1 Hz) | 134.7, CH |
14 | 5.45 (dd, J = 15.1, 5.4 Hz) | 131.2, CH |
15 | 4.14 (dd, J = 10.1, 5.4 Hz) | 73.0, CH |
16 | 3.97, m | 54.7, CH |
17a | 3.71 (dd, J = 10.3, 3.4 Hz); | 69.8, CH2 |
17b | 4.13, overlap | |
18 | 1.60, s | 16.3, CH3 |
1′ | 4.27 (d, J = 7.8 Hz) | 104.9, CH |
2′ | 3.19, m | 75.1, CH |
3′ | 3.28, m | 78.1, CH |
4′ | 3.27, m | 71.7, CH |
5′ | 3.36, m | 78.0, CH |
6a’ | 3.86, (d, J = 11.7 Hz) | 62.8, CH2 |
6b’ | 3.66, (dd, J = 11.7, 4.3 Hz) |
No. | Inhibition Rate (%) ** | MIC (μg/mL) | ED50 (µM) |
---|---|---|---|
1 | 29.30 ± 2.91 | 10 | / |
2 | −7.82 ± 1.31 | / | / |
3 | 2.13 ± 2.29 | / | / |
4 | 0.83 ± 2.12 | / | / |
5 | −3.34 ± 2.12 | / | / |
6 | 0.83 ± 2.12 | / | / |
7 | 2.11 ± 2.94 | / | / |
Carbendazim *** | 82.39 ± 7.32 | / | / |
Hexaconazole *** | 70.55 ± 5.8 [33] | / | 2.44 [33] |
Compound | Binding Energy (kcal/mol) | Interaction with Amino Acids |
---|---|---|
1 | −202.0196 | TYR103, THR295, LEU356, GLY414, MET460, VAL461 |
Hexaconazole * | −105.4279 | ALA291, LEU356, LEU359, CYS422, ILE423 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Ma, Y.; Xu, M.-M.; Wei, X.; Yang, C.-B.; Zeng, F.; Duan, J.-A.; Che, C.-T.; Zhou, J.; Zhao, M. Oxalactam A, a Novel Macrolactam with Potent Anti-Rhizoctonia solani Activity from the Endophytic Fungus Penicillium oxalicum. Molecules 2022, 27, 8811. https://doi.org/10.3390/molecules27248811
Zhang R, Ma Y, Xu M-M, Wei X, Yang C-B, Zeng F, Duan J-A, Che C-T, Zhou J, Zhao M. Oxalactam A, a Novel Macrolactam with Potent Anti-Rhizoctonia solani Activity from the Endophytic Fungus Penicillium oxalicum. Molecules. 2022; 27(24):8811. https://doi.org/10.3390/molecules27248811
Chicago/Turabian StyleZhang, Ruizhen, Yingrun Ma, Ming-Ming Xu, Xinyi Wei, Cheng-Bin Yang, Fei Zeng, Jin-Ao Duan, Chun-Tao Che, Junfei Zhou, and Ming Zhao. 2022. "Oxalactam A, a Novel Macrolactam with Potent Anti-Rhizoctonia solani Activity from the Endophytic Fungus Penicillium oxalicum" Molecules 27, no. 24: 8811. https://doi.org/10.3390/molecules27248811
APA StyleZhang, R., Ma, Y., Xu, M. -M., Wei, X., Yang, C. -B., Zeng, F., Duan, J. -A., Che, C. -T., Zhou, J., & Zhao, M. (2022). Oxalactam A, a Novel Macrolactam with Potent Anti-Rhizoctonia solani Activity from the Endophytic Fungus Penicillium oxalicum. Molecules, 27(24), 8811. https://doi.org/10.3390/molecules27248811