SnSe Nanosheets Mimic Lactate Dehydrogenase to Reverse Tumor Acid Microenvironment Metabolism for Enhancement of Tumor Therapy
Abstract
:1. Introduction
2. Results
2.1. Characterization and Functional Evaluation of SnSe NSs
2.2. Analyses of Lactate Consumption Behaviors of SnSe NSs
2.3. Evaluation of the Antitumor Efficacy of SnSe NSs
2.4. SnSe NSs Promote Antitumor Efficacy in Multiple Tumor Models
3. Materials and Methods
3.1. Materials Synthesis
3.2. Characterization of Materials
3.3. Enzymatic Activity Assay
3.4. Cell Lines
3.5. Mice
3.6. In Vitro Cytotoxicity Assessment
3.7. Lactate Treatment of SnSe NSs in Macrophages
3.8. In Vitro Cellular Uptake Experiment
3.9. Tumor pH Treatment of SnSe NSs
3.10. Evaluation of Lactate Consumption In Vivo
3.11. In Vivo Cancer Treatment
3.12. In Vivo Immune Activation of SnSe NSs
3.13. Statistical Analysis
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Khalaf, K.; Hana, D.; Chou, J.T.; Singh, C.; Mackiewicz, A.; Kaczmarek, M. Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance. Front. Immunol. 2021, 12, 656364. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Xiao, F.; Chen, M.; Gao, H. Tumor-Microenvironment-Responsive Nanomedicine for Enhanced Cancer Immunotherapy. Adv. Sci. 2022, 9, e2103836. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.S.; Almeida, C.R.; Helguero, L.A.; Duarte, I.F. Metabolic crosstalk in the breast cancer microenvironment. Eur. J. Cancer 2019, 121, 154–171. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zheng, H.; Jiang, J.; Li, Z.; Jiang, D.; Shi, X.; Wang, H.; Jiang, J.; Xie, Q.; Gao, M.; et al. Engineering micro oxygen factories to slow tumour progression via hyperoxic microenvironments. Nat. Commun. 2022, 13, 4495. [Google Scholar] [CrossRef]
- Corbet, C.; Feron, O. Tumour acidosis: From the passenger to the driver’s seat. Nat. Rev. Cancer 2017, 17, 577–593. [Google Scholar] [CrossRef]
- Dey, P.; Kimmelman, A.C.; DePinho, R.A. Metabolic Codependencies in the Tumor Microenvironment. Cancer Discov. 2021, 11, 1067–1081. [Google Scholar] [CrossRef]
- Chang, C.H.; Qiu, J.; O’Sullivan, D.; Buck, M.D.; Noguchi, T.; Curtis, J.D.; Chen, Q.; Gindin, M.; Gubin, M.M.; van der Windt, G.J.; et al. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell 2015, 162, 1229–1241. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.; Tian, H.; Zheng, Y.; Yang, Z.; Li, S.; Fan, T.; Xu, J.; Bai, G.; Liu, J.; Deng, Z.; et al. Glycolysis in tumor microenvironment as a target to improve cancer immunotherapy. Front. Cell Dev. Biol. 2022, 10, 1013885. [Google Scholar] [CrossRef]
- Ippolito, L.; Morandi, A.; Giannoni, E.; Chiarugi, P. Lactate: A Metabolic Driver in the Tumour Landscape. Trends Biochem. Sci. 2019, 44, 153–166. [Google Scholar] [CrossRef]
- Doherty, J.R.; Cleveland, J.L. Targeting lactate metabolism for cancer therapeutics. J. Clin. Investig. 2013, 123, 3685–3692. [Google Scholar] [CrossRef]
- Brand, A.; Singer, K.; Koehl, G.E.; Kolitzus, M.; Schoenhammer, G.; Thiel, A.; Matos, C.; Bruss, C.; Klobuch, S.; Peter, K.; et al. LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells. Cell Metab. 2016, 24, 657–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitale, I.; Manic, G.; Coussens, L.M.; Kroemer, G.; Galluzzi, L. Macrophages and Metabolism in the Tumor Microenvironment. Cell Metab. 2019, 30, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Colegio, O.R.; Chu, N.Q.; Szabo, A.L.; Chu, T.; Rhebergen, A.M.; Jairam, V.; Cyrus, N.; Brokowski, C.E.; Eisenbarth, S.C.; Phillips, G.M.; et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014, 513, 559–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, J.; Chang, Y.; Yuan, Z.; Chen, Q.; He, L.; Chen, T. Designing Lactate Dehydrogenase-Mimicking SnSe Nanosheets To Reprogram Tumor-Associated Macrophages for Potentiation of Photothermal Immunotherapy. ACS Appl. Mater. Interfaces 2022, 14, 27651–27665. [Google Scholar] [CrossRef]
- Gao, M.; Wang, Z.; Zheng, H.; Wang, L.; Xu, S.; Liu, X.; Li, W.; Pan, Y.; Wang, W.; Cai, X.; et al. Two-Dimensional Tin Selenide (SnSe) Nanosheets Capable of Mimicking Key Dehydrogenases in Cellular Metabolism. Angew. Chem. Int. Ed. Engl. 2020, 59, 3618–3623. [Google Scholar] [CrossRef]
- Dai, H.; Fan, Q.; Wang, C. Recent applications of immunomodulatory biomaterials for disease immunotherapy. Exploration 2022. ahead of print. [Google Scholar] [CrossRef]
- Wu, D.; Li, J.; Xu, S.; Xie, Q.; Pan, Y.; Liu, X.; Ma, R.; Zheng, H.; Gao, M.; Wang, W.; et al. Engineering Fe-N Doped Graphene to Mimic Biological Functions of NADPH Oxidase in Cells. J. Am. Chem. Soc. 2020, 142, 19602–19610. [Google Scholar] [CrossRef]
- Gao, M.; Liu, X.; Wang, Z.; Wang, H.; Asset, T.; Wu, D.; Jiang, J.; Xie, Q.; Xu, S.; Cai, X.; et al. Engineering catalytic dephosphorylation reaction for endotoxin inactivation. Nano Today 2022, 44, 101456. [Google Scholar] [CrossRef]
- Li, F.; Wang, H.; Huang, R.; Chen, W.; Zhang, H. Recent Advances in SnSe Nanostructures beyond Thermoelectricity. Adv. Funct. Mater. 2022, 32, 2200516. [Google Scholar] [CrossRef]
- Ahmad, A.u.; Liang, H.; Ali, S.; Dastgeer, G.; Abbas, Q.; Farid, A.; Abbas, A.; Idrees, A.; Iqbal, M.; Farooq, Z. Experimental and theoretical evidence of P-type conduction in fluorinated hexagonal boron nitride nano-sheets. Ceram. Int. 2020, 46, 7298–7305. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, Z.; Huang, H.; Zhou, G.; Cui, C.; Weng, Y.; Liu, W.; Kim, S.; Lee, S.; Perez-Neut, M.; et al. Metabolic regulation of gene expression by histone lactylation. Nature 2019, 574, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Neri, D.; Supuran, C.T. Interfering with pH regulation in tumours as a therapeutic strategy. Nat. Rev. Drug Discov. 2011, 10, 767–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Wang, C. Cell-derived vesicles for delivery of cancer immunotherapy. Explor. Med. 2021, 2, 35–59. [Google Scholar] [CrossRef]
- Xu, S.; Zheng, H.; Ma, R.; Wu, D.; Pan, Y.; Yin, C.; Gao, M.; Wang, W.; Li, W.; Liu, S.; et al. Vacancies on 2D transition metal dichalcogenides elicit ferroptotic cell death. Nat. Commun. 2020, 11, 3484. [Google Scholar] [CrossRef]
- Dai, H.; Fan, Q.; Fei, Z.; Ma, Q.; Yang, Q.; Chu, J.; Zhou, X.; Zhang, Y.; Dong, Z.; Xu, F.; et al. Systemically administered silica nanoparticles result in diminished T cell response in lung. Nano Today 2022, 42, 101332. [Google Scholar] [CrossRef]
- Xu, J.; Ma, Q.; Zhang, Y.; Fei, Z.; Sun, Y.; Fan, Q.; Liu, B.; Bai, J.; Yu, Y.; Chu, J.; et al. Yeast-derived nanoparticles remodel the immunosuppressive microenvironment in tumor and tumor-draining lymph nodes to suppress tumor growth. Nat. Commun. 2022, 13, 110. [Google Scholar] [CrossRef]
- Wang, B.; Bai, J.; Tian, B.; Chen, H.; Yang, Q.; Chen, Y.; Xu, J.; Zhang, Y.; Dai, H.; Ma, Q.; et al. Genetically Engineered Hematopoietic Stem Cells Deliver TGF-beta Inhibitor to Enhance Bone Metastases Immunotherapy. Adv. Sci. 2022, 9, e2201451. [Google Scholar] [CrossRef]
- Bader, J.E.; Voss, K.; Rathmell, J.C. Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy. Mol. Cell 2020, 78, 1019–1033. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Wang, B.; Jiang, J.; Wu, Y.; Song, A.; Wang, X.; Yao, C.; Dai, H.; Xu, J.; Zhang, Y.; et al. SnSe Nanosheets Mimic Lactate Dehydrogenase to Reverse Tumor Acid Microenvironment Metabolism for Enhancement of Tumor Therapy. Molecules 2022, 27, 8552. https://doi.org/10.3390/molecules27238552
Wang H, Wang B, Jiang J, Wu Y, Song A, Wang X, Yao C, Dai H, Xu J, Zhang Y, et al. SnSe Nanosheets Mimic Lactate Dehydrogenase to Reverse Tumor Acid Microenvironment Metabolism for Enhancement of Tumor Therapy. Molecules. 2022; 27(23):8552. https://doi.org/10.3390/molecules27238552
Chicago/Turabian StyleWang, Heng, Beilei Wang, Jie Jiang, Yi Wu, Anning Song, Xiaoyu Wang, Chenlu Yao, Huaxing Dai, Jialu Xu, Yue Zhang, and et al. 2022. "SnSe Nanosheets Mimic Lactate Dehydrogenase to Reverse Tumor Acid Microenvironment Metabolism for Enhancement of Tumor Therapy" Molecules 27, no. 23: 8552. https://doi.org/10.3390/molecules27238552
APA StyleWang, H., Wang, B., Jiang, J., Wu, Y., Song, A., Wang, X., Yao, C., Dai, H., Xu, J., Zhang, Y., Ma, Q., Xu, F., Li, R., & Wang, C. (2022). SnSe Nanosheets Mimic Lactate Dehydrogenase to Reverse Tumor Acid Microenvironment Metabolism for Enhancement of Tumor Therapy. Molecules, 27(23), 8552. https://doi.org/10.3390/molecules27238552