In Vitro Evaluation of the Interaction of Seven Biologically Active Components in Anemarrhenae rhizoma with P-gp
Abstract
:1. Introduction
2. Results
2.1. Identification of Seven Components in AR as P-gp Substrates
2.2. Transport Characteristics of Seven Components in AR Extract
2.3. Identification of AR Components as Potential P-gp Inhibitors
2.4. Molecular Docking of TAIII, TBII, MGF, and BHI to P-gp
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Cell Lines and Culture Conditions
4.3. Plant Materials
4.4. Preparation of AR Extract
4.5. Cytotoxicity Assay
4.6. Bidirectional Transport Assays
4.6.1. Substrate Assays for Seven Components in AR
4.6.2. Substrate Assays for AR Extract
4.7. Sample Pretreatment and LC-MS/MS Analysis
4.8. Bidirectional Transport Assays of Rh-123
4.9. Molecular Docking
4.10. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, P.; Lin, B.; Deng, X.; He, S.; Chen, N.; Wang, N. Anti-osteoporosis effects of Anemarrhenae Rhizoma/Phellodendri Chinensis Cortex herb pair and its major active components in diabetic rats and zebrafish. J. Ethnopharmacol. 2022, 293, 115269. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Wu, F.; Zhang, J.; Chen, Q. Progress in research of pharmacological actions of Anemarrhena asphodeloides. Chin. J. New Drugs Clin. 2015, 34, 898–902. [Google Scholar] [CrossRef]
- Liu, Y. Progress on pharmacological activities and mechanism of Anemarrhena saponin. J. Pharm. Pract. 2018, 36, 24–29. [Google Scholar]
- Liao, Z.; Zhang, X.; Guo, Y.; Sun, H. Study on the effect of proliferation and apoptosis of sarsasapogenin to human gastric cancer line BGC-823. J. Mod. Oncol. 2010, 18, 1085–1087. [Google Scholar]
- Ni, Y.; Gong, X.G.; Lu, M.; Chen, H.M.; Wang, Y. Mitochondrial ROS burst as an early sign in sarsasapogenin-induced apoptosis in HepG2 cells. Cell Biol. Int. 2008, 32, 337–343. [Google Scholar] [CrossRef]
- King, F.W.; Fong, S.; Griffin, C.; Shoemaker, M.; Staub, R.; Zhang, Y.L.; Cohen, I.; Shtivelman, E. Timosaponin AIII is preferentially cytotoxic to tumor cells through inhibition of mTOR and induction of ER stress. PLoS ONE 2009, 4, e7283. [Google Scholar] [CrossRef]
- Sy, L.K.; Yan, S.C.; Lok, C.N.; Man, R.Y.; Che, C.M. Timosaponin A-III induces autophagy preceding mitochondria-mediated apoptosis in HeLa cancer cells. Cancer Res. 2008, 68, 10229–10237. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.J.; Chung, H.J.; Nam, J.W.; Park, H.J.; Seo, E.K.; Kim, Y.S.; Lee, D.; Lee, S.K. Cytotoxic and antineoplastic activity of timosaponin A-III for human colon cancer cells. J. Nat. Prod. 2011, 74, 701–706. [Google Scholar] [CrossRef]
- Lee, B.; Jung, K.; Kim, D.H. Timosaponin AIII, a saponin isolated from Anemarrhena asphodeloides, ameliorates learning and memory deficits in mice. Pharmacol. Biochem. Behav. 2009, 93, 121–127. [Google Scholar] [CrossRef]
- Li, T.J.; Qiu, Y.; Yang, P.Y.; Rui, Y.C.; Chen, W.S. Timosaponin B-II improves memory and learning dysfunction induced by cerebral ischemia in rats. Neurosci. Lett. 2007, 421, 147–151. [Google Scholar] [CrossRef]
- Jung, K.; Lee, B.; Han, S.J.; Ryu, J.H.; Kim, D.H. Mangiferin ameliorates scopolamine-induced learning deficits in mice. Biol. Pharm. Bull. 2009, 32, 242–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, X.; Shang, Y.; Kong, W.; Jiang, S.; Liao, J.; Dai, R. Flavonoids derived from Anemarrhenae Rhizoma ameliorate inflammation of benign prostatic hyperplasia via modulating COX/LOX pathways. J. Ethnopharmacol. 2022, 284, 114740. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.T.; Li, J.; Ma, S.T.; Feng, W.Y.; Wang, Q.; Zhou, H.Y.; Zhao, J.M.; Yao, J. A study on the prevention and treatment of murine calvarial inflammatory osteolysis induced by ultra-high-molecular-weight polyethylene particles with neomangiferin. Exp. Ther. Med. 2018, 16, 3889–3896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, M.S.; Lu, Z.Y. Antiviral effect of mangiferin and isomangiferin on herpes simplex virus. Chin. Med. J. 1990, 103, 160–165. [Google Scholar] [PubMed]
- Santhi, V.P.; Masilamani, P.; Sriramavaratharajan, V.; Murugan, R.; Gurav, S.S.; Sarasu, V.P.; Parthiban, S.; Ayyanar, M. Therapeutic potential of phytoconstituents of edible fruits in combating emerging viral infections. J. Food Biochem. 2021, 45, 13851. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Ke, Z.C.; Feng, L.; Jia, X.B. Preparation method and pharmacological effect of baohuoside I. China J. Chin. Mater. Med. 2018, 43, 3444–3450. [Google Scholar] [CrossRef]
- Chang-jie, C.; Janice, E.C.; Kazumitsu, U.; Douglas, P.C.; Ira, P.; Michael, M.G.; Igor, B.R. Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell 1986, 47, 381–389. [Google Scholar] [CrossRef]
- Tian, X.; Xu, Z.; Li, Z.; Ma, Y.; Lian, S.; Guo, X.; Hu, P.; Gao, Y.; Huang, C. Pharmacokinetics of mangiferin and its metabolite-norathyriol, Part 2: Influence of UGT, CYP450, P-gp, and enterobacteria and the potential interaction in Rhizoma Anemarrhenae decoction with timosaponin B2 as the major contributor. BioFactors 2016, 42, 545–555. [Google Scholar] [CrossRef]
- Wang, H.Q.; Gong, X.M.; Lan, F.; Zhang, Y.H.; Xia, J.E.; Zhang, H.; Guo, J.L.; Liu, M. Biopharmaceutics and Pharmacokinetics of Timosaponin A-III by a Sensitive HPLC-MS/MS Method: Low Bioavailability Resulting from Poor Permeability and Solubility. Curr. Pharm. Biotechnol. 2021, 22, 672–681. [Google Scholar] [CrossRef]
- Dewanjee, S.; Dua, T.K.; Bhattacharjee, N.; Das, A.; Gangopadhyay, M.; Khanra, R.; Joardar, S.; Riaz, M.; Feo, V.; Zia-Ul-Haq, M. Natural Products as Alternative Choices for P-Glycoprotein (P-gp) Inhibition. Molecules 2017, 22, 871. [Google Scholar] [CrossRef]
- Poma, P.; Labbozzetta, M.; Ramarosandratana, A.V.; Rosselli, S.; Tutone, M.; Sajeva, M.; Notarbartolo, M. In Vitro Modulation of P-Glycoprotein Activity by Euphorbia intisy Essential Oil on Acute Myeloid Leukemia Cell Line HL-60R. Pharmaceuticals 2021, 14, 111. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.-N.; Wang, C.C.N.; Liao, W.-C.; Lan, Y.-H.; Hung, C.-C. Caffeic Acid Attenuates Multi-Drug Resistance in Cancer Cells by Inhibiting Efflux Function of Human P-Glycoprotein. Molecules 2020, 25, 247. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-J.; Chung, Y.-L.; Li, C.-Y.; Chang, Y.-T.; Wang, C.C.N.; Lee, H.-Y.; Lin, H.-Y.; Hung, C.-C. Taxifolin Resensitizes Multidrug Resistance Cancer Cells via Uncompetitive Inhibition of P-Glycoprotein Function. Molecules 2018, 23, 3055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastan, I.; Gottesman, M.M.; Ueda, K.; Lovelace, E.; Rutherford, A.V.; Willingham, M.C. A retrovirus carrying an MDR1 cDNA confers multidrug resistance and polarized expression of P-glycoprotein in MDCK cells. Proc. Natl. Acad. Sci. USA 1988, 85, 4486–4490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Zeng, S. Advances in the MDCK-MDR1 cell model and its applications to screen drug permeability. Acta Pharm. Sin. 2008, 43, 559–564. [Google Scholar]
- Deferme, S.; Annaert, P.; Augustijns, P. In Vitro Screening Models to Assess Intestinal Drug Absorption and Metabolism. In Drug Absorption Studies; Springer: New York, NY, USA, 2008; pp. 182–215. [Google Scholar]
- Chen, J.R.; Jia, X.H.; Wang, H.; Yi, Y.J.; Wang, J.Y.; Li, Y.J. Timosaponin A-III reverses multi-drug resistance in human chronic myelogenous leukemia K562/ADM cells via downregulation of MDR1 and MRP1 expression by inhibiting PI3K/Akt signaling pathway. Int. J. Oncol. 2016, 48, 2063–2070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louisa, M.; Soediro, T.M.; Suyatna, F.D. In vitro modulation of P-glycoprotein, MRP-1 and BCRP expression by mangiferin in doxorubicin-treated MCF-7 cells. Asian Pac. J. Cancer Prev. APJCP 2014, 15, 1639–1642. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Du, S.; Lu, Y.; Jia, S.; Zhao, M.; Bai, J.; Li, P.; Wu, H. Influence of paeoniflorin and menthol on puerarin transport across MDCK and MDCK-MDR1 cells as blood-brain barrier in vitro model. J. Pharm. Pharmacol. 2018, 70, 349–360. [Google Scholar] [CrossRef]
- Li, H.; Jin, H.E.; Kim, W.; Han, Y.H.; Kim, D.D.; Chung, S.J.; Shim, C.K. Involvement of P-glycoprotein, multidrug resistance protein 2 and breast cancer resistance protein in the transport of belotecan and topotecan in Caco-2 and MDCKII cells. Pharm. Res. 2008, 25, 2601–2612. [Google Scholar] [CrossRef]
- Singh, A.; Patel, S.K.; Kumar, P.; Das, K.C.; Verma, D.; Sharma, R.; Tripathi, T.; Giri, R.; Martins, N.; Garg, N. Quercetin acts as a P-gp modulator via impeding signal transduction from nucleotide-binding domain to transmembrane domain. J. Biomol. Struct. Dyn. 2022, 40, 4507–4515. [Google Scholar] [CrossRef]
- de Souza, J.; Benet, L.Z.; Huang, Y.; Storpirtis, S. Comparison of bidirectional lamivudine and zidovudine transport using MDCK, MDCK-MDR1, and Caco-2 cell monolayers. J. Pharm. Sci. 2009, 98, 4413–4419. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Hu, H.; Wang, X.; Yu, L.; Jiang, H.; Chen, J.; Lou, Y.; Zeng, S. Inhibitory effects of neochamaejasmin B on P-glycoprotein in MDCK-hMDR1 cells and molecular docking of NCB binding in P-glycoprotein. Molecules 2015, 20, 2931–2948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, A.; Rodrigues, M.; Fortuna, A.; Falcão, A.; Alves, G. Flavonoid compounds as reversing agents of the P-glycoprotein-mediated multidrug resistance: An in vitro evaluation with focus on antiepileptic drugs. Food Res. Int. 2018, 103, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Shi, Y.; Cai, Y.; Hong, Z.; Chai, Y. The Effects of Traditional Chinese Medicine on P-Glycoprotein-Mediated Multidrug Resistance and Approaches for Studying the Herb-P-Glycoprotein Interactions. Drug Metab. Dispos. Biol. Fate Chem. 2020, 48, 972–979. [Google Scholar] [CrossRef]
- Nosol, K.; Romane, K.; Irobalieva, R.N.; Alam, A.; Kowal, J.; Fujita, N.; Locher, K.P. Cryo-EM structures reveal distinct mechanisms of inhibition of the human multidrug transporter ABCB1. Proc. Natl. Acad. Sci. USA 2020, 117, 26245–26253. [Google Scholar] [CrossRef]
- Alam, A.; Kowal, J.; Broude, E.; Roninson, I.; Locher, K.P. Structural insight into substrate and inhibitor discrimination by human P-glycoprotein. Science 2019, 363, 753–756. [Google Scholar] [CrossRef] [Green Version]
- Labbozzetta, M.; Poma, P.; Tutone, M.; McCubrey, J.A.; Sajeva, M.; Notarbartolo, M. Phytol and Heptacosane Are Possible Tools to Overcome Multidrug Resistance in an In Vitro Model of Acute Myeloid Leukemia. Pharmaceuticals 2022, 15, 356. [Google Scholar] [CrossRef]
- Dinić, J.; Podolski-Renić, A.; Jeremić, M.; Pešić, M. Potential of Natural-Based Anticancer Compounds for P-Glycoprotein Inhibition. Curr. Pharm. Des. 2018, 24, 4334–4354. [Google Scholar] [CrossRef]
Single Component Group | Single Component + Verapamil Group | |||||
---|---|---|---|---|---|---|
Compound | Papp (AP-BL) (×10−8 cm/s) | Papp (BL-AP) (×10−8 cm/s) | ER | Papp (AP-BL) (×10−8 cm/s) | Papp (BL-AP) (×10−8 cm/s) | ER |
TAIII | 95.54 | 215.81 | 2.26 | 24.36 | 21.55 | 0.88 *** |
TBII | 71.87 | 166.58 | 2.32 | 87.37 | 56.5 | 0.65 *** |
MGF | 60.6 | 134.98 | 2.23 | 63.03 | 33.41 | 0.53 ** |
IMGF | 6.51 | 7.02 | 1.08 | 25.9 | 14.25 | 0.55 * |
NMGF | 12.06 | 13.65 | 1.13 | 52.89 | 27.38 | 0.52 ** |
SSG | 3.74 | 5.66 | 1.51 | 9.04 | 3.74 | 0.41 ** |
BHI | 23.98 | 72.04 | 3.00 | 84.8 | 91.88 | 1.08 ** |
Compound | Papp (AP-BL) (×10−8 cm/s) | Papp (BL-AP) (×10−8 cm/s) | ER | |
---|---|---|---|---|
AR Extract Group | Single Component Group | |||
TAIII | 305.29 | 193.73 | 0.63 *** | 2.26 |
TBII | 181.30 | 150.25 | 0.83 *** | 2.32 |
MGF | 58.64 | 28.25 | 0.48 *** | 2.23 |
IMGF | 5.46 | 4.95 | 0.91 | 1.08 |
NMGF | 9.76 | 6.54 | 0.67 ** | 1.13 |
SSG | 3.98 | 3.47 | 0.87 ** | 1.51 |
BHI | 15.51 | 29.78 | 1.92 * | 3.00 |
Compound | Papp (AP-BL) (×10−6 cm/s) | Papp (BL-AP) (×10−6 cm/s) | ER |
---|---|---|---|
Control | 1.89 | 4.65 | 2.46 |
Valspodar | 1.94 | 2.02 | 1.04 *** |
Timosaponin AIII | 1.78 | 2.17 | 1.22 ** |
Timosaponin BII | 1.85 | 2.34 | 1.27 ** |
Mangiferin | 1.88 | 2.36 | 1.25 ** |
Isomangiferin | 1.78 | 1.93 | 1.09 *** |
Neomangiferin | 1.92 | 2.51 | 1.31 ** |
Sarsasapogenin | 1.45 | 2.80 | 1.92 |
Baohuoside I | 1.73 | 2.53 | 1.47 * |
Compounds | Transmembrane Domain | Nucleotide-Binding Domain | ||
---|---|---|---|---|
Key Residue | Binding Free Energy (Kcal/mol) | Key Residue | Binding Free Energy (Kcal/mol) | |
Timosaponin AIII | GLN-721, GLN-986 | −8.7 | ARG-258, THR-259, GLN-1114, ILE-1226 | −8.3 |
Timosaponin BII | GLN-986, ASN-838, GLN-834, GLU-778, LYS-287 | −8.6 | ILE-257, ILE-261, THR-259, ASP-1196 | −7.9 |
Mangiferin | SER-827, ASN-292 | −7.7 | GLN-1108, ARD-1188 | −7.8 |
Baohuoside I | GLU-778, LYS-822, GLN-769, GLY-770 | −10.1 | LYS-1023, ASP-1131, ASN-1132 | −8.8 |
Elacridar | SER-218, TYR-306 | −9.6 | / | / |
Verapamil | / | / | ARG-1188, GLN-1108, LYS-1023 | −13.4 |
ESI Mode | Compound | MRM Transition (Precursor-Product) | Fragmentor (V) | CID (eV) |
---|---|---|---|---|
Pos | Neomangiferin | 607.0–426.7 | 140 | 34 |
Baohuoside I | 537.0–391.2 | 150 | 17 | |
Timosaponin BII | 943.6–925.6 | 150 | 40 | |
Sarsasapogenin | 417.0–273.2 | 120 | 15 | |
Carbamazepine (IS) | 236.9–193.9 | 120 | 20 | |
Neg | Isomangiferin | 421.0–331.1 | 135 | 20 |
Timosaponin AIII | 739.7–577.2 | 120 | 33 | |
Mangiferin | 421.0–331.1 | 135 | 20 | |
Puerarin (IS) | 415.0–267.0 | 140 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, J.; He, Y.; Fang, J.; Wang, H.; Chao, L.; Zhao, L.; Hong, Z.; Chai, Y. In Vitro Evaluation of the Interaction of Seven Biologically Active Components in Anemarrhenae rhizoma with P-gp. Molecules 2022, 27, 8556. https://doi.org/10.3390/molecules27238556
Dai J, He Y, Fang J, Wang H, Chao L, Zhao L, Hong Z, Chai Y. In Vitro Evaluation of the Interaction of Seven Biologically Active Components in Anemarrhenae rhizoma with P-gp. Molecules. 2022; 27(23):8556. https://doi.org/10.3390/molecules27238556
Chicago/Turabian StyleDai, Jianying, Yuzhen He, Jiahao Fang, Hui Wang, Liang Chao, Liang Zhao, Zhanying Hong, and Yifeng Chai. 2022. "In Vitro Evaluation of the Interaction of Seven Biologically Active Components in Anemarrhenae rhizoma with P-gp" Molecules 27, no. 23: 8556. https://doi.org/10.3390/molecules27238556
APA StyleDai, J., He, Y., Fang, J., Wang, H., Chao, L., Zhao, L., Hong, Z., & Chai, Y. (2022). In Vitro Evaluation of the Interaction of Seven Biologically Active Components in Anemarrhenae rhizoma with P-gp. Molecules, 27(23), 8556. https://doi.org/10.3390/molecules27238556