Lycopene, Mesoporous Silica Nanoparticles and Their Association: A Possible Alternative against Vulvovaginal Candidiasis?
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Drug-Free MSNs and MSN@LYC and Drug Impregnation
2.2. Evaluation of Antifungal Activity In Vitro by Determining the Minimum Inhibitory Concentration (MIC)
2.3. MFC Determination
2.4. Toxicity Assessment in Galleria Mellonella Larvae
3. Material and Methods
3.1. Mesoporous Silica Nanoparticle (MSN) Synthesis:
3.1.1. Reflux Treatment
3.1.2. Calcination Treatment
3.2. Lycopene Impregnation in MSN
3.3. Characterization of Drug-Free MSNs and MSN@LIC
3.4. Evaluation of Antifungal Activity In Vitro by Determining the Minimum Inhibitory Concentration (MIC)
3.5. Determination of the Minimum Fungicide Concentration (MFC)
3.6. Evaluation of Toxicity in Galleria Mellonella Larvae
3.7. Statistical Analyzes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Cruz, G.S.; de Brito, E.H.S.; Freitas, L.V.; Monteiro, F.P.M. Vulvovaginal Candidiasis in Primary Health Care: Diagnosis and Treatment. Rev. Enferm. Atual Derme 2020, 94, 1–10. [Google Scholar] [CrossRef]
- Czechowicz, P.; Nowicka, J.; Gościniak, G. Virulence Factors of Candida Spp. and Host Immune Response Important in the Pathogenesis of Vulvovaginal Candidiasis. Int. J. Mol. Sci. 2022, 23, 5895. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, S.N.; Yamang, H.; Lorenz, M.C.; Chew, S.Y.; Than, L.T.L. Role of Vaginal Mucosa, Host Immunity and Microbiota in Vulvovaginal Candidiasis. Pathogens 2022, 11, 618. [Google Scholar] [CrossRef]
- Firmiano, L.; Dias, D.P.; Santos, T.G.; Terra, S.D.N.; Queiros, V.M. dos A. Benefício Dos Alimentos Usados Como Terapia Complementar Para Candidíase Vulvovaginal Recorrente/The Benefit of Food and Its Usage as Complementary Therapy for Recurrent Vulvovaginal Candidiasis. ID Line Rev. Psicol. 2020, 14, 913–925. [Google Scholar] [CrossRef]
- Soares, D.M.; de Oliveira Lima, E.; Soares, D.M.M.; da Silva, N.F.; Costa, N.G.M.; faria, F.; Rodriguez, A.F.R. Candidíase Vulvovaginal: Uma Revisão de Literatura Com Abordagem Para Candida Albicans. Braz. J. Surg Clin Res-BJSCR 2018, 25, 28–34. [Google Scholar]
- Salazar, G.J.T.; Carneiro, J.N.P.; da Silva, A.C.A.; Cruz, B.G.; da Silva, R.O.M.; da Costa, J.G.M.; da Cruz, R.P.; da Silva, J.C.P.; Ferreira, M.H.; dos Santos, A.T.L.; et al. Antioxidant and Antifungal Activity of the Cynophalla flexuosa (L.) J. Presl (Capparaceae) against Opportunistic Fungal Pathogens. Futur. Pharmacol. 2022, 2, 16–30. [Google Scholar] [CrossRef]
- Denning, D.W.; Kneale, M.; Sobel, J.D.; Rautemaa-Richardson, R. Global Burden of Recurrent Vulvovaginal Candidiasis: A Systematic Review. Lancet Infect. Dis. 2018, 18, e339–e347. [Google Scholar] [CrossRef]
- CDC Vaginal Candidiasis. Available online: https://www.cdc.gov/fungal/diseases/candidiasis/genital/index.html (accessed on 5 October 2022).
- Sobel, J.D. Pathogenesis of Recurrent Vulvovaginal Candidiasis. Curr. Infect. Dis. Rep. 2002, 4, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Osman Mohamed, A.; Suliman Mohamed, M.; Hussain Mallhi, T.; Abdelrahman Hussain, M.; Ali Jalloh, M.; Ali Omar, K.; Omar Alhaj, M.; Makki Mohamed Ali, A.A. Prevalence of Vulvovaginal Candidiasis among Pregnant Women in Africa: A Systematic Review and Meta-Analysis. J. Infect. Dev. Ctries. 2022, 16, 1243–1251. [Google Scholar] [CrossRef]
- Álvares, C.A.; Svidzinski, T.I.E.; Consolaro, M.E.L. Candidíase Vulvovaginal: Fatores Predisponentes Do Hospedeiro e Virulência Das Leveduras. J. Bras. Patol. Med. Lab. 2007, 43, 319–327. [Google Scholar] [CrossRef]
- Davis, S. Bacterial Vaginosis and Candida Vulvovaginitis. Prof. Nurs. Today 2020, 24, 17–20. [Google Scholar]
- Mason, K.L.; Downward, J.R.E.; Mason, K.D.; Falkowski, N.R.; Eaton, K.A.; Kao, J.Y.; Young, V.B.; Huffnagle, G.B. Candida Albicans and Bacterial Microbiota Interactions in the Cecum during Recolonization Following Broad-Spectrum Antibiotic Therapy. Infect. Immun. 2012, 80, 3371–3380. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Sánchez, D.; Calderón-Romero, L.; Sánchez-Vega, J.T.; Tay, J. Intestinal Candidiasis. A Clinical Report and Comments about This Opportunistic Pathology. Mycopathologia 2003, 156, 9–11. [Google Scholar] [CrossRef] [PubMed]
- Farr, A.; Effendy, I.; Frey Tirri, B.; Hof, H.; Mayser, P.; Petricevic, L.; Ruhnke, M.; Schaller, M.; Schaefer, A.P.A.; Sustr, V.; et al. Guideline: Vulvovaginal Candidosis (AWMF 015/072, Level S2k). Mycoses 2021, 64, 583–602. [Google Scholar] [CrossRef] [PubMed]
- Barbedo, L.S.; Sgarbi, D.B.G. Candidíase. DST J. Bras. Doenças Sex. Transm. 2010, 22, 22–38. [Google Scholar]
- Gonçalves, B.; Ferreira, C.; Alves, C.T.; Henriques, M.; Azeredo, J.; Silva, S. Vulvovaginal Candidiasis: Epidemiology, Microbiology and Risk Factors. Crit. Rev. Microbiol. 2016, 42, 905–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jane, W.J.; Iramiot, J.S.; Kalule, J.B. Prevalence and Antifungal Susceptibility Patterns of Candida Isolated on CHROMagarTMCandida at a Tertiary Referral Hospital, Eastern Uganda. Microbiol. Res. J. Int. 2019, 28, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Marchaim, D.; Lemanek, L.; Bheemreddy, S.; Kaye, K.S.; Sobel, J.D. Fluconazole-Resistant Candida Albicans Vulvovaginitis. Obstet. Gynecol. 2012, 120, 1407–1414. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, G.C.; de Camargo, B.A.F.; de Araújo, J.T.C.; Chorilli, M. Lycopene: From Tomato to Its Nutraceutical Use and Its Association with Nanotechnology. Trends Food Sci. Technol. 2021, 118, 447–458. [Google Scholar] [CrossRef]
- Vikrant, P.; Priya, J.; Nirichan, K.B. Plants with Anti-Candida Activity and Their Mechanism of Action: A Review. J. Environ. Res. Dev. 2015, 9, 1189. [Google Scholar]
- Sanglard, D. Emerging Threats in Antifungal-Resistant Fungal Pathogens. Front. Med. 2016, 3, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, G.C.; Sábio, R.M.; Chorilli, M. An Overview of Properties and Analytical Methods for Lycopene in Organic Nanocarriers. Crit. Rev. Anal. Chem. 2021, 51, 674–686. [Google Scholar] [CrossRef] [PubMed]
- Falsafi, S.R.; Rostamabadi, H.; Babazadeh, A.; Tarhan, Ö.; Rashidinejad, A.; Boostani, S.; Khoshnoudi-Nia, S.; Akbari-Alavijeh, S.; Shaddel, R.; Jafari, S.M. Lycopene Nanodelivery Systems; Recent Advances. Trends Food Sci. Technol. 2021, 119, 378–399. [Google Scholar] [CrossRef]
- Carvalho, G.C.; Sábio, R.M.; de Cássia Ribeiro, T.; Monteiro, A.S.; Pereira, D.V.; Ribeiro, S.J.L.; Chorilli, M. Highlights in Mesoporous Silica Nanoparticles as a Multifunctional Controlled Drug Delivery Nanoplatform for Infectious Diseases Treatment. Pharm. Res. 2020, 37, 191. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.K.; Labhasetwar, V. Nanotech Approaches to Drug Delivery and Imaging. Drug Discov. Today 2003, 8, 1112–1120. [Google Scholar] [CrossRef]
- Giret, S.; Wong Chi Man, M.; Carcel, C. Mesoporous-Silica-Functionalized Nanoparticles for Drug Delivery. Chem. Eur. J. 2015, 21, 13850–13865. [Google Scholar] [CrossRef]
- Zhou, S.; Zhong, Q.; Wang, Y.; Hu, P.; Zhong, W.; Huang, C.-B.; Yu, Z.-Q.; Ding, C.-D.; Liu, H.; Fu, J. Chemically Engineered Mesoporous Silica Nanoparticles-Based Intelligent Delivery Systems for Theranostic Applications in Multiple Cancerous/Non-Cancerous Diseases. Coord. Chem. Rev. 2022, 452, 214309. [Google Scholar] [CrossRef]
- Vallet-Regi, M.; Rámila, A.; del Real, R.P.; Pérez-Pariente, J. A New Property of MCM-41: Drug Delivery System. Chem. Mater. 2001, 13, 308–311. [Google Scholar] [CrossRef]
- Vallet-Regí, M. Our Contributions to Applications of Mesoporous Silica Nanoparticles. Acta Biomater. 2022, 137, 44–52. [Google Scholar] [CrossRef]
- Patnaik, S.; Gorain, B.; Padhi, S.; Choudhury, H.; Gabr, G.A.; Md, S.; Kumar Mishra, D.; Kesharwani, P. Recent Update of Toxicity Aspects of Nanoparticulate Systems for Drug Delivery. Eur. J. Pharm. Biopharm. 2021, 161, 100–119. [Google Scholar] [CrossRef]
- Wright, C.L.; Kavanagh, O. Galleria Mellonella as a Novel In Vivo Model to Screen Natural Product-Derived Modulators of Innate Immunity. Appl. Sci. 2022, 12, 6587. [Google Scholar] [CrossRef]
- Piatek, M.; Sheehan, G.; Kavanagh, K. Galleria Mellonella: The Versatile Host for Drug Discovery, In Vivo Toxicity Testing and Characterising Host-Pathogen Interactions. Antibiotics 2021, 10, 1545. [Google Scholar] [CrossRef] [PubMed]
- Nairi, V.; Medda, S.; Piludu, M.; Casula, M.F.; Vallet-Regì, M.; Monduzzi, M.; Salis, A. Interactions between Bovine Serum Albumin and Mesoporous Silica Nanoparticles Functionalized with Biopolymers. Chem. Eng. J. 2018, 340, 42–50. [Google Scholar] [CrossRef]
- Rocha, L.A. Materiais Meso-Estruturados Luminescentes. Doctoral Thesis, Universidade Estadual Paulista, Instituto de Química, Araraquara, Brazil, 2010. Available online: http://hdl.handle.net/11449/105768 (accessed on 1 December 2022).
- Sábio, R.M. Ancoragem de Complexos de Rutênio Com Ligantes Siliados Em Sílica Mesoporosa Obtida via Pirólise de Spray. Master’s Thesis, Instituto de Química (IQ), Araraquara, Sao Paulo, Brazil, 2012. [Google Scholar]
- Samadi-Maybodi, A.; Vahid, A. High Yield Synthesis and Characterization of Well-Ordered Mesoporous Silica Nanoparticles Using Sodium Carboxy Methyl Cellulose. J. Non. Cryst. Solids 2011, 357, 1827–1830. [Google Scholar] [CrossRef]
- Aghel, N.; Ramezani, Z.; Amirfakhrian, S. Isolation and Quantification of Lycopene from Tomato Cultivated in Dezfoul, Iran. Jundishapur J. Nat. Pharm. Prod. 2011, 6, 9–15. [Google Scholar]
- Cancar, H.D.; Dedic, A.; Alispahic, A.; Muratovic, S.; Tahirovic, I. Chromatographic And Spectroscopic Characterisation Of Lycopen Extracted From Fresh And Thermally Processed Tomato Fruit. Res. J. Pharm. Biol. Chem. Sci. 2018, 9, 1094–1102. [Google Scholar]
- M27-A2; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. 2nd ed. NCCLS: Wayne, PA, USA, 2002; ISBN 1-56238-469-4.
- EUCAST The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs for Antifungal Agents, Version 10.0. 2020. Available online: http://Www.Eucast.Org/Astoffungi/Clinicalbreakpointsforantifungals/ (accessed on 9 September 2022).
- Bonifácio, B.V.; dos Santos Ramos, M.A.; da Silva, P.B.; Negri, K.M.S.; de Oliveira Lopes, É.; de Souza, L.P.; Vilegas, W.; Pavan, F.R.; Chorilli, M.; Bauab, T.M. Nanostructured Lipid System as a Strategy to Improve the Anti-Candida Albicans Activity of Astronium Sp. Int. J. Nanomed. 2015, 10, 5081. [Google Scholar] [CrossRef] [Green Version]
- CLSI M 60; Performance Standards for Antifungal Susceptibility Testing of Yeasts. 2nd ed. Clinical and Laboratory Standards: Wayne, PA, USA, 2020; ISBN 978-1-68440-082-9/978-1-68440-083-6.
- Choi, H.; Lee, D.G. Lycopene Induces Apoptosis in Candida Albicans through Reactive Oxygen Species Production and Mitochondrial Dysfunction. Biochimie 2015, 115, 108–115. [Google Scholar] [CrossRef]
- Sung, W.S.; Lee, I.-S.; Lee, D.G. Damage to the Cytoplasmic Membrane and Cell Death Caused by Lycopene in Candida Albicans. J. Microbiol. Biotechnol. 2007, 17, 1797–1804. [Google Scholar]
- ATCC Candida Albicans (Robin) Berkhout 18804TM. Available online: https://www.atcc.org/products/18804 (accessed on 18 September 2021).
- Panthee, S.; Hamamoto, H.; Ishijima, S.A.; Paudel, A.; Sekimizu, K. Utilization of Hybrid Assembly Approach to Determine the Genome of an Opportunistic Pathogenic Fungus, Candida Albicans TIMM 1768. Genome Biol. Evol. 2018, 10, 2017–2022. [Google Scholar] [CrossRef] [Green Version]
- Desai, P.R.; Holihosur, P.D.; Marathe, S.V.; Kulkarni, B.B.; UK, V.; Geetanjali, R.K.; Rajeev, R.P.; Hiremath, S.V. Studies on Isolation and Quantification of Lycopene from Tomato and Papaya and Its Antioxidant and Antifungal Properties. Int. J. Agric. Innov. Res. 2018, 6, 257–260. [Google Scholar]
- Croissant, J.G.; Butler, K.S.; Zink, J.I.; Brinker, C.J. Synthetic Amorphous Silica Nanoparticles: Toxicity, Biomedical and Environmental Implications. Nat. Rev. Mater. 2020, 5, 886–909. [Google Scholar] [CrossRef]
- Garrido-Cano, I.; Candela-Noguera, V.; Herrera, G.; Cejalvo, J.M.; Lluch, A.; Marcos, M.D.; Sancenon, F.; Eroles, P.; Martínez-Máñez, R. Biocompatibility and Internalization Assessment of Bare and Functionalised Mesoporous Silica Nanoparticles. Microporous Mesoporous Mater. 2021, 310, 110593. [Google Scholar] [CrossRef]
- Natarajan, K.; Gajendran, P.L.; Arjunkumar, R.; Kumar, S.R. Anti-Fungal Activity of chitosan nanoparticle incorporated lycopene against Candida Albicans using minimal inhibitory concentration assay. Plant Cell Biotechnol. Mol. Biol. 2020, 21, 73–82. [Google Scholar]
- Abdellatif, A.A.H.; El-Telbany, D.F.A.; Zayed, G.; Al-Sawahli, M.M. Hydrogel Containing PEG-Coated Fluconazole Nanoparticles with Enhanced Solubility and Antifungal Activity. J. Pharm. Innov. 2019, 14, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Stamey, T.A. Resistance to Nalidixic Acid. JAMA 1976, 236, 1857. [Google Scholar] [CrossRef]
- Gambino, M.; Ahmed, M.A.A.; Villa, F.; Cappitelli, F. Zinc Oxide Nanoparticles Hinder Fungal Biofilm Development in an Ancient Egyptian Tomb. Int. Biodeterior. Biodegrad. 2017, 122, 92–99. [Google Scholar] [CrossRef]
- Salouti, M.; Ahangari, A. Nanoparticle Based Drug Delivery Systems for Treatment of Infectious Diseases. In Application of Nanotechnology in Drug Delivery; InTech. Janeza Trdine: Rijeka, Croatia, 2014; ISBN 978-953-51-1628-8. [Google Scholar]
- Panáček, A.; Kvítek, L.; Smékalová, M.; Večeřová, R.; Kolář, M.; Röderová, M.; Dyčka, F.; Šebela, M.; Prucek, R.; Tomanec, O.; et al. Bacterial Resistance to Silver Nanoparticles and How to Overcome It. Nat. Nanotechnol. 2018, 13, 65–71. [Google Scholar] [CrossRef]
- Guirao-Abad, J.P.; Sánchez-Fresneda, R.; Alburquerque, B.; Hernández, J.A.; Argüelles, J.-C. ROS Formation Is a Differential Contributory Factor to the Fungicidal Action of Amphotericin B and Micafungin in Candida Albicans. Int. J. Med. Microbiol. 2017, 307, 241–248. [Google Scholar] [CrossRef]
- Berkow, E.; Lockhart, S. Fluconazole Resistance in Candida Species: A Current Perspective. Infect. Drug Resist. 2017, 10, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Rohr, B.S.; Mikus, G. Proposal of a Safe and Effective Study Design for CYP3A-Mediated Drug-Drug Interactions. J. Clin. Pharmacol. 2020, 60, 1294–1303. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Lee, D.G. A Novel Mechanism of Fluconazole: Fungicidal Activity through Dose-Dependent Apoptotic Responses in Candida Albicans. Microbiology 2018, 164, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Moosa, M.-Y.S.; Sobel, J.D.; Elhalis, H.; Du, W.; Akins, R.A. Fungicidal Activity of Fluconazole against Candida Albicans in a Synthetic Vagina-Simulative Medium. Antimicrob. Agents Chemother. 2004, 48, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Narang, R.S.; Srivastava, S.; Ali, J.; Baboota, S.; Singh, B.; Kahlon, S.S.; Dogra, A.; Narang, J.K. Formulation and in vitro evaluation of fluconazole loaded nanoemulgel against candida albicans. J. Nat. Remedies 2020, 21, 19–25. [Google Scholar]
- Lehman, S.E.; Larsen, S.C. Zeolite and Mesoporous Silica Nanomaterials: Greener Syntheses, Environmental Applications and Biological Toxicity. Environ. Sci. Nano 2014, 1, 200–213. [Google Scholar] [CrossRef]
- Lewis, J.S.; Graybill, J.R. Fungicidal versus Fungistatic: What’s in a Word? Expert Opin. Pharmacother. 2008, 9, 927–935. [Google Scholar] [CrossRef] [PubMed]
- López-Prieto, A.; Vecino, X.; Rodríguez-López, L.; Moldes, A.; Cruz, J. Fungistatic and Fungicidal Capacity of a Biosurfactant Extract Obtained from Corn Steep Water. Foods 2020, 9, 662. [Google Scholar] [CrossRef]
- Champion, O.L.; Wagley, S.; Titball, R.W. Galleria Mellonella as a Model Host for Microbiological and Toxin Research. Virulence 2016, 7, 840–845. [Google Scholar] [CrossRef] [Green Version]
- Moya-Andérico, L.; Vukomanovic, M.; del Mar Cendra, M.; Segura-Feliu, M.; Gil, V.; del Río, J.A.; Torrents, E. Utility of Galleria Mellonella Larvae for Evaluating Nanoparticle Toxicology. Chemosphere 2021, 266, 129235. [Google Scholar] [CrossRef]
- Browne, N.; Heelan, M.; Kavanagh, K. An Analysis of the Structural and Functional Similarities of Insect Hemocytes and Mammalian Phagocytes. Virulence 2013, 4, 597–603. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Arutanti, O.; Ogi, T.; Iskandar, F.; Kim, T.O.; Okuyama, K. Synthesis of Spherical Macroporous WO3 Particles and Their High Photocatalytic Performance. Chem. Eng. Sci. 2013, 101, 523–532. [Google Scholar] [CrossRef]
- Maturi, F.E.; Sábio, R.M.; Silva, R.R.; Lahoud, M.G.; Meneguin, A.B.; Valente, G.T.; Caface, R.A.; Leite, I.S.; Inada, N.M.; Ribeiro, S.J.L. Luminescent Mesoporous Silica Nanohybrid Based on Drug Derivative Terbium Complex. Materials 2019, 12, 933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lungare, S.; Hallam, K.; Badhan, R.K.S. Phytochemical-Loaded Mesoporous Silica Nanoparticles for Nose-to-Brain Olfactory Drug Delivery. Int. J. Pharm. 2016, 513, 280–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BRASIL. Farmacopéia Brasileira, 6th ed.; Agência Nacional de Vigilância Sanitária (ANVISA): Brasília, Brasil, 2019. [Google Scholar]
- Li, C.; Li, J.; Zhang, W.-H.; Wang, N.; Ji, S.; An, Q.-F. Enhanced Permeance for PDMS Organic Solvent Nanofiltration Membranes Using Modified Mesoporous Silica Nanoparticles. J. Memb. Sci. 2020, 612, 118257. [Google Scholar] [CrossRef]
- Zhang, Z.; Mayoral, A.; Melián-Cabrera, I. Protocol Optimization for the Mild Detemplation of Mesoporous Silica Nanoparticles Resulting in Enhanced Texture and Colloidal Stability. Microporous Mesoporous Mater. 2016, 220, 110–119. [Google Scholar] [CrossRef] [Green Version]
- M27; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. 4th ed. NCCLS: Wayne, PA, USA, 2017.
- Marena, G.D.; Girotto, L.; Saldanha, L.L.; dos Santos Ramos, M.A.; De Grandis, R.A.; da Silva, P.B.; Dokkedal, A.L.; Chorilli, M.; Bauab, T.M.; Pavan, F.R.; et al. Hydroalcoholic Extract of Myrcia Bella Loaded into a Microemulsion System: A Study of Antifungal and Mutagenic Potential. Planta Med. 2022, 88, 405–415. [Google Scholar] [CrossRef]
- Pereira, T.; de Barros, P.; Fugisaki, L.; Rossoni, R.; Ribeiro, F.; de Menezes, R.; Junqueira, J.; Scorzoni, L. Recent Advances in the Use of Galleria Mellonella Model to Study Immune Responses against Human Pathogens. J. Fungi 2018, 4, 128. [Google Scholar] [CrossRef] [Green Version]
- Marena, G.D.; Ramos, M.A.D.S.; Lima, L.C.; Chorilli, M.; Bauab, T.M. Galleria Mellonella for Systemic Assessment of Anti-Candida Auris Using Amphotericin B Loaded in Nanoemulsion. Sci. Total Environ. 2021, 807, 151023. [Google Scholar] [CrossRef]
- Fuchs, B.B.; Eby, J.; Nobile, C.J.; El Khoury, J.B.; Mitchell, A.P.; Mylonakis, E. Role of Filamentation in Galleria Mellonella Killing by Candida Albicans. Microbes Infect. 2010, 12, 488–496. [Google Scholar] [CrossRef] [Green Version]
- Wojda, I. Immunity of the Greater Wax Moth Galleria Mellonella. Insect Sci. 2017, 24, 342–357. [Google Scholar] [CrossRef]
- Cook, S.M.; McArthur, J.D. Developing Galleria Mellonella as a Model Host for Human Pathogens. Virulence 2013, 4, 350–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, C.J.-Y.; Loh, J.M.S.; Proft, T. Galleria Mellonella Infection Models for the Study of Bacterial Diseases and for Antimicrobial Drug Testing. Virulence 2016, 7, 214–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trevijano-Contador, N.; Herrero-Fernández, I.; García-Barbazán, I.; Scorzoni, L.; Rueda, C.; Rossi, S.A.; García-Rodas, R.; Zaragoza, O. Cryptococcus Neoformans Induces Antimicrobial Responses and Behaves as a Facultative Intracellular Pathogen in the Non Mammalian Model Galleria Mellonella. Virulence 2015, 6, 66–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allegra, E.; Titball, R.W.; Carter, J.; Champion, O.L. Galleria Mellonella Larvae Allow the Discrimination of Toxic and Non-Toxic Chemicals. Chemosphere 2018, 198, 469–472. [Google Scholar] [CrossRef] [PubMed]
Sample | Impregnation Efficiency (%) | Load Capacity (%) | Amount of Impregnated Drug (g) in 5 mg of MSN |
---|---|---|---|
MSN-R | 98.19 ± 0.12 | 49.10 ± 0.12 | 2.45 |
MSN-C | 75.34 ± 0.22 | 37.67 ± 0.10 | 1.88 |
Strains | Minimum Inhibitory Concentration of the Groups Tested (µg/mL) | |||||
---|---|---|---|---|---|---|
Amphotericin B | Fluconazole | Lycopene | MSN-C | MSN-R | MSN@LYC | |
Clinical-azole resistant (FMB-01) | 1.0 | 125.0 | 500.0 | 500.0 | NA | NA |
C. albicans ATCC 18804 | 0.06 | 1.0 | 500.0 | 500.0 | 1000.0 | NA |
Strains | Minimum Fungicidal Concentration (µg/mL) | ||||
---|---|---|---|---|---|
Amphotericin B | Fluconazole | Lycopene | MSN-C | MSN-R | |
Clinical-azole resistant (FMB-01) | Fungicide at 1.0 | Fungicide at 125.0 | Fungistatic at 500.0 | Fungistatic at 500.0 | - |
C. albicans ATCC 18804 | Fungicide at 0.06 | Fungicide at 1.0 | Fungistatic at 500.0 | Fungistatic at 500.0 | Fungistatic at 1000.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, G.C.; Marena, G.D.; Leonardi, G.R.; Sábio, R.M.; Corrêa, I.; Chorilli, M.; Bauab, T.M. Lycopene, Mesoporous Silica Nanoparticles and Their Association: A Possible Alternative against Vulvovaginal Candidiasis? Molecules 2022, 27, 8558. https://doi.org/10.3390/molecules27238558
Carvalho GC, Marena GD, Leonardi GR, Sábio RM, Corrêa I, Chorilli M, Bauab TM. Lycopene, Mesoporous Silica Nanoparticles and Their Association: A Possible Alternative against Vulvovaginal Candidiasis? Molecules. 2022; 27(23):8558. https://doi.org/10.3390/molecules27238558
Chicago/Turabian StyleCarvalho, Gabriela Corrêa, Gabriel Davi Marena, Gabriela Ricci Leonardi, Rafael Miguel Sábio, Ione Corrêa, Marlus Chorilli, and Tais Maria Bauab. 2022. "Lycopene, Mesoporous Silica Nanoparticles and Their Association: A Possible Alternative against Vulvovaginal Candidiasis?" Molecules 27, no. 23: 8558. https://doi.org/10.3390/molecules27238558
APA StyleCarvalho, G. C., Marena, G. D., Leonardi, G. R., Sábio, R. M., Corrêa, I., Chorilli, M., & Bauab, T. M. (2022). Lycopene, Mesoporous Silica Nanoparticles and Their Association: A Possible Alternative against Vulvovaginal Candidiasis? Molecules, 27(23), 8558. https://doi.org/10.3390/molecules27238558