Lupin (Lupinus albus L.) Seeds: Balancing the Good and the Bad and Addressing Future Challenges
Abstract
:1. Introduction
2. Lupin (Lupinus albus L.)
2.1. General Description
2.2. Use of the Plant over Times
3. Nutritional Compounds of Lupin Seeds
3.1. Protein and Amino Acids
3.2. Carbohydrates, Polysaccharides and Dietary Fiber
3.3. Fat Content and Fatty Acids
3.4. Other Macro and Micronutrients
3.5. Phytochemicals
3.5.1. Polyphenols
3.5.2. Phytosterols
3.5.3. Tocopherols
3.5.4. Other Phytochemical Compounds
4. Antinutritive Factors
4.1. Phytates
4.2. Alkaloids
4.3. Protease Inhibitors
4.4. Lectins
4.5. Raffinose Family Oligosaccharides
5. Potential Contaminants of Lupine Seeds
5.1. Mycotoxins
5.1.1. Formation of Phomopsins in Lupine
5.1.2. EFSA Recommendations
5.2. Other Contaminants
6. Nutraceutical Potential for Human Health
6.1. Effect on Satiety (Appetite Suppression) and on the Energy Intake
6.2. Role as Cardiovascular Disease Prevention
6.3. Role in Arterial Hypertension
6.4. Effect on Glucose and Insulin Metabolism
6.5. Effect on Bowel Function
6.6. Anticonvulsant Action
7. Conclusions and Future Challenges
Funding
Conflicts of Interest
References
- Duranti, M.; Consonni, A.; Magni, C.; Sessa, F.; Scarafoni, A. The major proteins of lupin seed: Characterisation and molecular properties for use as functional and nutraceutical ingredients. Trends Food Sci. Technol. 2008, 19, 624–633. [Google Scholar] [CrossRef]
- Arnoldi, A.; Boschin, G.; Zanoni, C.; Lammi, C. The health benefits of sweet lupin seed flours and isolated proteins. J. Funct. Foods 2015, 18, 550–563. [Google Scholar] [CrossRef]
- Afonso, J.P.M. Recuperação de Proteínas e Alcaloides dos Meios de Adoçamento de Lupinus albus. Master’s Thesis, Licenciatura em Bioquímica, Universidade NOVA de Lisboa, Lisbon, Portugal, 2020. [Google Scholar]
- Erbaş, M.; Certel, M.; Uslu, M.K. Some chemical properties of white lupin seeds (Lupinus albus L.). Food Chem. 2005, 89, 341–345. [Google Scholar] [CrossRef]
- Khan, M.K.; Karnpanit, W.; Nasar-Abbas, S.M.; Huma, Z.E.; Jayasena, V. Phytochemical composition and bioactivities of lupin: A review. Int. J. Food Sci. Technol. 2015, 50, 2004–2012. [Google Scholar] [CrossRef]
- Brebaum, S.; Boland, G.J. Sweet white lupin: A potential crop for Ontario. Can. J. Plant Sci. 1995, 75, 841–849. [Google Scholar] [CrossRef]
- USDA. White Lupine. Available online: https://plantsorig.sc.egov.usda.gov/plantguide/pdf/pg_lual22.pdf (accessed on 30 August 2022).
- Tadele, Y. White Lupin (Lupinus albus) grain, a potential source of protein for ruminants. Res. J. Agric. Environ. Manag. 2015, 4, 180–188. [Google Scholar]
- Huyghe, C. White lupin (Lupinus albus L.). F. Crop. Res. 1997, 53, 147–160. [Google Scholar] [CrossRef]
- Staples, K.D.; Hamama, A.A.; Knight-Mason, R.; Bhardwaj, H.L. Alkaloids in White Lupin and Their Effects on Symbiotic N Fixation. J. Agric. Sci. 2017, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Uzun, B.; Arslan, C.; Karhan, M.; Toker, C. Fat and fatty acids of white lupin (Lupinus albus L.) in comparison to sesame (Sesamum indicum L.). Food Chem. 2007, 102, 45–49. [Google Scholar] [CrossRef]
- Uauy, R.; Gattas, V.; Yañez, E. Sweet lupins in human nutrition. World Rev. Nutr. Diet. 1995, 77, 75–88. [Google Scholar]
- Knecht, K.T.; Sanchez, P.; Kinder, D.H. Lupine Seeds (Lupinus spp.): History of Use, Use as An Antihyperglycemic Medicinal, and Use as a Food Plant; Elsevier Inc.: Amsterdam, The Netherlands, 2020; ISBN 9780128185537. [Google Scholar]
- Dendle, P. Lupines, manganese, and devil-sickness: An Anglo-Saxon medical response to epilepsy. Bull. Hist. Med. 2001, 75, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Sujak, A.; Kotlarz, A.; Strobel, W. Compositional and nutritional evaluation of several lupin seeds. Food Chem. 2006, 98, 711–719. [Google Scholar] [CrossRef]
- Trugo, L.C.; Donangelo, C.M.; Duarte, Y.A.; Tavares, C.L. Phytic acid and selected mineral composition of seed from wild species and cultivated varieties of lupin. Food Chem. 1993, 47, 391–394. [Google Scholar] [CrossRef]
- Getachew, P. Chemical Composition and The Effects of Traditional Processing on Nutritional Composition of Gibto (Lupinus albus L.) Grown in, Gojam Area; AAU-ETD: Addis Ababa, Ethiopia, 2009. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO) FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 30 August 2022).
- Kohajdová, Z.; Karovičová, J.; Schmidt, Š. Lupin composition and possible use in bakery—A review. Czech J. Food Sci. 2011, 29, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Sherasia, P.L.; Garg, M.R.; Bhanderi, B.M. Pulses and their By-Products as Animal Feed; United Nations: New York, NY, USA, 2018; ISBN 9789251099155. [Google Scholar]
- Cowling, W. Lupin. Lupinus spp. Promoting the Conservation and Use of Underutilized and Neglected Crops; Gatersleben/International Plant Genetic Resources Institute: Rome, Italy, 1998; ISBN 9290433728. [Google Scholar]
- INSA—Instituto Nacional de Saúde Doutor Ricardo Jorge Tabela de Composição de Alimentos. Available online: http://portfir.insa.pt (accessed on 30 August 2022).
- USDA. Food Data Central. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/170148/nutrients (accessed on 30 August 2022).
- Martínez-Villaluenga, C.; Frías, J.; Vidal-Valverde, C. Functional lupin seeds (Lupinus albus L. and Lupinus luteus L.) after extraction of α-galactosides. Food Chem. 2006, 98, 291–299. [Google Scholar] [CrossRef]
- De Cortes Sánchez, M.; Altares, P.; Pedrosa, M.M.; Burbano, C.; Cuadrado, C.; Goyoaga, C.; Muzquiz, M.; Jiménez-Martínez, C.; Dávila-Ortiz, G. Alkaloid variation during germination in different lupin species. Food Chem. 2005, 90, 347–355. [Google Scholar] [CrossRef]
- Bähr, M.; Fechner, A.; Hasenkopf, K.; Mittermaier, S.; Jahreis, G. Chemical composition of dehulled seeds of selected lupin cultivars in comparison to pea and soya bean. Lwt 2014, 59, 587–590. [Google Scholar] [CrossRef]
- Manickavasagan, A.; Thirunathan, P. (Eds.) Pulses: Processing and Product Development; Springer Nature Switzerland AG: Cham, Switzerland, 2020; ISBN 9783030413767. [Google Scholar]
- Taylor, J.R.N. Millets: Their Unique Nutritional and Health-Promoting Attributes; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; ISBN 9780081008911. [Google Scholar]
- Johnson, S.K.; Clements, J.; Villarino, C.B.J.; Coorey, R. Lupins: Their Unique Nutritional and Health-Promoting Attributes. In Gluten-Free Ancient Grains: Cereals, Pseudocereals, and Legumes: Sustainable, Nutritious, and Health-Promoting Foods for the 21st Century; Woodhead Publishing: Cambridge, UK, 2017; pp. 179–221. [Google Scholar]
- Arnoldi, A.; Greco, S. Nutritional and nutraceutical characteristics of lupin protein. Nutrafoods 2011, 10, 23–29. [Google Scholar] [CrossRef]
- Czubinski, J.; Feder, S. Lupin seeds storage protein composition and their interactions with native flavonoids. J. Sci. Food Agric. 2019, 99, 4011–4018. [Google Scholar] [CrossRef]
- Pihlanto, A.; Mattila, P.; Mäkinen, S.; Pajari, A.M. Bioactivities of alternative protein sources and their potential health benefits. Food Funct. 2017, 8, 3443–3458. [Google Scholar] [CrossRef]
- Cabello-Hurtado, F.; Keller, J.; Ley, J.; Sanchez-Lucas, R.; Jorrín-Novo, J.V.; Aïnouche, A. Proteomics for exploiting diversity of lupin seed storage proteins and their use as nutraceuticals for health and welfare. J. Proteomics 2016, 143, 57–68. [Google Scholar] [CrossRef]
- Trugo, L.C.; von Baer, E.; von Baer, D. Lupin: Breeding, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; Volume 4, ISBN 9780123947864. [Google Scholar]
- Phan, H.T.T.; Ellwood, S.R.; Adhikari, K.; Nelson, M.N.; Oliver, R.P. The first genetic and comparative map of white lupin (Lupinus albus L.): Identification of QTLs for anthracnose resistance and flowering time, and a locus for alkaloid content. DNA Res. 2007, 14, 59–70. [Google Scholar] [CrossRef]
- Nigussie, Z. Contribution of white Lupin for food Security in North-Western Ethiopia. Asian J. Plant Sci. 2012, 11, 200–205. [Google Scholar] [CrossRef]
- Ruiz-López, M.A.; Barrientos-Ramírez, L.; García-López, P.M.; Valdés-Miramontes, E.H.; Zamora-Natera, J.F.; Rodríguez-Macias, R.; Salcedo-Pérez, E.; Bañuelos-Pineda, J.; Vargas-Radillo, J.J. Nutritional and bioactive compounds in mexican lupin beans species: A mini-review. Nutrients 2019, 11, 1785. [Google Scholar] [CrossRef] [Green Version]
- Sedláková, K.; Straková, E.; Suchý, P.; Krejcarová, J.; Herzig, I. Lupin as a perspective protein plant for animal and human nutrition—A review. Acta Vet. Brno 2016, 85, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Písaříková, B.; Zralý, Z. Nutriční hodnota lupiny v dietách pro prasata—Review. Acta Vet. Brno 2009, 78, 399–409. [Google Scholar] [CrossRef]
- Calabrò, S.; Cutrignelli, M.I.; Lo Presti, V.; Tudisco, R.; Chiofalo, V.; Grossi, M.; Infascelli, F.; Chiofalo, B. Characterization and effect of year of harvest on the nutritional properties of three varieties of white lupine (Lupinus albus L.). J. Sci. Food Agric. 2015, 95, 3127–3136. [Google Scholar] [CrossRef]
- Chiofalo, B.; Presti, V.L.; Chiofalo, V.; Gresta, F. The productive traits, fatty acid profile and nutritional indices of three lupin (Lupinus spp.) species cultivated in a Mediterranean environment for the livestock. Anim. Feed Sci. Technol. 2012, 171, 230–239. [Google Scholar] [CrossRef]
- Straková, E.; Suchý, P.; Večerek, V.; Šerman, V.; Mas, N.; Jůzl, M. Nutritional composition of seeds of the genus Lupinus. Acta Vet. Brno 2006, 75, 489–493. [Google Scholar] [CrossRef]
- Pisarikova, B.; Peterka, J.; Trčková, M.; Moudrý, J.; Zralý, Z.; Herzig, I. The content of insoluble fibre and crude protein value of the aboveground biomass of Amaranthus cruentus and A· hypochondriacus. Czech J. Anim. Sci. 2007, 52, 348–353. [Google Scholar] [CrossRef] [Green Version]
- Oomah, B.D.; Tiger, N.; Olson, M.; Balasubramanian, P. Phenolics and antioxidative activities in narrow-leafed lupins (Lupinus angustifolius L.). Plant Foods Hum. Nutr. 2006, 61, 91–97. [Google Scholar] [CrossRef]
- Hamama, A.A.; Bhardwaj, H.L. Phytosterols, triterpene alcohols, and phospholipids in Seed Oil from White Lupin. JAOCS 2004, 81, 1039–1044. [Google Scholar] [CrossRef]
- Cabianca, A.; Müller, L.; Pawlowski, K.; Dahlin, P. Changes in the plant β-sitosterol/stigmasterol ratio caused by the plant parasitic nematode meloidogyne incognita. Plants 2021, 10, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G.; Atkinson, J. Vitamin E, antioxidant and nothing more. Free Radic. Biol. Med. 2007, 43, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Boschin, G.; Arnoldi, A. Legumes are valuable sources of tocopherols. Food Chem. 2011, 127, 1199–1203. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Chiou, A.; Ioannou, M.; Karathanos, V.T.; Hassapidou, M.; Andrikopoulos, N.K. Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chem. 2010, 121, 682–690. [Google Scholar] [CrossRef]
- Fernandez-Orozco, R.; Frias, J.; Muñoz, R.; Zielinski, H.; Piskula, M.K.; Kozlowska, H.; Vidal-Valverde, C. Effect of fermentation conditions on the antioxidant compounds and antioxidant capacity of Lupinus angustifolius cv. zapaton. Eur. Food Res. Technol. 2008, 227, 979–988. [Google Scholar] [CrossRef]
- Prusinski, J. White lupin (Lupinus albus L.)—Nutritional and health values in human nutrition—A review. Czech J. Food Sci. 2017, 35, 95–105. [Google Scholar]
- Pastor-Cavada, E.; Juan, R.; Pastor, J.E.; Alaiz, M.; Vioque, J. Analytical nutritional characteristics of seed proteins in six wild Lupinus species from Southern Spain. Food Chem. 2009, 117, 466–469. [Google Scholar] [CrossRef]
- Resta, D.; Boschin, G.; D’Agostina, A.; Arnoldi, A. Evaluation of total quinolizidine alkaloids content in lupin flours, lupin-based ingredients, and foods. Mol. Nutr. Food Res. 2008, 52, 490–495. [Google Scholar] [CrossRef]
- European Commission (EC). Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 5–24. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF (accessed on 1 November 2022).
- The Council of the European Communities Regulation. (EEC) No 315/93 laying down Community procedures for contaminants in food. Off. J. Eur. Communities 1993, 1993, 1–3. [Google Scholar]
- Schrenk, D.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C.; Nebbia, C.S.; Nielsen, E.; et al. Scientific opinion on the risks for animal and human health related to the presence of quinolizidine alkaloids in feed and food, in particular in lupins and lupin-derived products. EFSA J. 2019, 17, e05860. [Google Scholar] [PubMed] [Green Version]
- Magalhães, S.C.Q.; Fernandes, F.; Cabrita, A.R.J.; Fonseca, A.J.M.; Valentão, P.; Andrade, P.B. Alkaloids in the valorization of European Lupinus spp. seeds crop. Ind. Crops Prod. 2017, 95, 286–295. [Google Scholar] [CrossRef]
- Wiedemann, M.; Gurrola-Díaz, C.M.; Vargas-Guerrero, B.; Wink, M.; García-López, P.M.; Düfer, M. Lupanine improves glucose homeostasis by influencing KATP channels and insulin gene expression. Molecules 2015, 20, 19085–19100. [Google Scholar] [CrossRef]
- Villalpando-Vargas, F.; Medina-Ceja, L. Effect of sparteine on status epilepticus induced in rats by pentylenetetrazole, pilocarpine and kainic acid. Brain Res. 2015, 1624, 59–70. [Google Scholar] [CrossRef]
- Schloß, S.; Wedell, I.; Koch, M.; Rohn, S.; Maul, R. Biosynthesis and characterization of 15N6-labeled phomopsin A, a lupin associated mycotoxin produced by Diaporthe toxica. Food Chem. 2015, 177, 61–65. [Google Scholar] [CrossRef]
- Opinion, S.; Panel, E.; Chain, F. Scientific Opinion on the risks for animal and public health related to the presence of phomopsins in feed and food. EFSA J. 2012, 10, 1–52. [Google Scholar]
- Battilani, P.; Gualla, A.; Dall’Asta, C.; Pellacani, C.; Galaverna, G.; Giorni, P.; Caglieri, A.; Tagliaferri, S.; Pietri, A.; Dossena, A.; et al. Phomopsins: An overview of phytopathological and chemical aspects, toxicity, analysis and occurrence. World Mycotoxin J. 2011, 4, 345–359. [Google Scholar] [CrossRef]
- Reinhard, H.; Rupp, H.; Sager, F.; Streule, M.; Zoller, O. Quinolizidine alkaloids and phomopsins in lupin seeds and lupin containing food. J. Chromatogr. A 2006, 1112, 353–360. [Google Scholar] [CrossRef]
- Food Standards Australia New Zealand Act. Maximum levels of contaminants and natural toxicants. Aust. New Zeal. Food Stand.—Sched. 19 2017, 1991, 7. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Mycotoxin Regulations in 2003 and Current Developments; FAO: Rome, Italy, 2004; ISBN 92-5-105162-3. [Google Scholar]
- The Advisory Committee on Novel Foods and Processes (ACNFP). ACNFP Annual Report 1996; MAFF: London, UK, 1996. [Google Scholar]
- Brennan, R.F.; Mann, S.S. Accumulation of cadmium by lupin species as affected by Cd application to acidic yellow sand. Water. Air. Soil Pollut. 2005, 167, 243–258. [Google Scholar] [CrossRef]
- Di Toppi, S.L.; Gabbrielli, R. Response to cadmium in higher plants. Environ. Exp. Bot. 1999, 41, 105–130. [Google Scholar] [CrossRef]
- Zornoza, P.; Sánchez-Pardo, B.; Carpena, R.O. Interaction and accumulation of manganese and cadmium in the manganese accumulator Lupinus albus. J. Plant Physiol. 2010, 167, 1027–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van de Noort, M. Lupin: An Important Protein and Nutrient Source; Elsevier Inc.: Amsterdam, The Netherlands, 2016; ISBN 9780128027769. [Google Scholar]
- CXS 193-1995; Codex General Standard for Contaminants and Toxins in Food and Feed. FAO: Rome, Italy, 2009.
- Lee, Y.P.; Mori, T.A.; Puddey, I.B.; Sipsas, S.; Ackland, T.R.; Beilin, L.J.; Hodgson, J.M. Effects of lupin kernel flour-enriched bread on blood pressure: A controlled intervention study. Am. J. Clin. Nutr. 2009, 89, 766–772. [Google Scholar] [CrossRef] [Green Version]
- Keogh, J.; Atkinson, F.; Eisenhauer, B.; Inamdar, A.; Brand-Miller, J. Food intake, postprandial glucose, insulin and subjective satiety responses to three different bread-based test meals. Appetite 2011, 57, 707–710. [Google Scholar] [CrossRef]
- Archer, B.J.; Johnson, S.K.; Devereux, H.M.; Baxter, A.L. Effect of fat replacement by inulin or lupin-kernel fibre on sausage patty acceptability, post-meal perceptions of satiety and food intake in men. Br. J. Nutr. 2004, 91, 591–599. [Google Scholar] [CrossRef]
- Weisse, K.; Brandsch, C.; Hirche, F.; Eder, K.; Stangl, G.I. Lupin protein isolate and cysteine-supplemented casein reduce calcification of atherosclerotic lesions in apoE-deficient mice. Br. J. Nutr. 2010, 103, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.S.; Johnson, S.K.; Baxter, A.L.; Ball, M.J. Lupin kernel fibre-enriched foods beneficially modify serum lipids in men. Eur. J. Clin. Nutr. 2005, 59, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Bettzieche, A.; Brandsch, C.; Eder, K.; Stangl, G.I. Lupin protein acts hypocholesterolemic and increases milk fat content in lactating rats by influencing the expression of genes involved in cholesterol homeostasis and triglyceride synthesis. Mol. Nutr. Food Res. 2009, 53, 1134–1142. [Google Scholar] [CrossRef]
- Parolini, C.; Rigamonti, E.; Marchesi, M.; Busnelli, M.; Cinquanta, P.; Manzini, S.; Sirtori, C.R.; Chiesa, G. Cholesterol-lowering effect of dietary Lupinus angustifolius proteins in adult rats through regulation of genes involved in cholesterol homeostasis. Food Chem. 2012, 132, 1475–1479. [Google Scholar] [CrossRef] [PubMed]
- Burke, V.; Hodgson, J.M.; Beilin, L.J.; Giangiulioi, N.; Rogers, P.; Puddey, I.B. Dietary protein and soluble fiber reduce ambulatory blood pressure in treated hypertensives. Hypertension 2001, 38, 821–826. [Google Scholar] [CrossRef] [Green Version]
- Garzón-de la Mora, P.; Zarate-Guzman, K.J.; Munguia-Zuńiga, L.E.; Garcia-Lopez, P.; Rodriguez-Macias, R.; Lopez, J.C.; Garzón-Garcia, C.; Jimenez-Rodriguez, L.E. Lupinus albus gamma conglutin decreases glucose in healthy subjects and type 2 diabetes mellitus patients. In Proceedings of the XIV International Lupin Conference, Milan, Italy, 21–26 June 2015; Capraro, J., Duranti, M., Magni, C., Scarafoni, A., Eds.; p. 81, ISBN 9788890598944. [Google Scholar]
- Smith, S.C.; Choy, R.; Johnson, S.K.; Hall, R.S.; Wildeboer-Veloo, A.C.M.; Welling, G.W. Lupin kernel fiber consumption modifies fecal microbiota in healthy men as determined by rRNA gene fluorescent in situ hybridization. Eur. J. Nutr. 2006, 45, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Garzón-de la Mora, P.; Meneses-Medina, M.; Ramirez-Zermeño, A.; Moreno-Sandoval, L.E.; García-López, M.; Garcia-Estrada, J. Sparteine Inhibition of non Convulsive Seizures and Memory Preservation in Wistar Rats. In Proceedings of the ‘Lupins for Health and Wealth’: 12th International Lupin Conference, Fremantle, Australia, 14–18 September 2008; International Lupin Association: Canterbury, New Zealand, 2008; Volume 42, pp. 469–499. [Google Scholar]
- Hodgson, J.; Lee, Y.P. Potential for Benefit of Lupin on Obesity and Cardiovascular Disease Risk in Humans. Lupins Health Wealth 2008, 466–468. Available online: https://www.researchgate.net/publication/228788489_Potential_for_benefit_of_lupin_on_obesity_and_cardiovascular_disease_risk_in_humans (accessed on 1 November 2022).
- Severino, D.; Dias, H.V.; Roque, M.F.; Esteves, M.C. Benefícios do Tremoço—Mito ou Realidade ? Rev. Port. Diabetes 2011, 6, 126–128. [Google Scholar]
- Sirtori, C.R.; Lovati, M.R.; Manzoni, C.; Castiglioni, S.; Duranti, M.; Magni, C.; Morandi, S.; D’Agostina, A.; Arnoldi, A. Proteins of White Lupin Seed, a Naturally Isoflavone-Poor Legume, Reduce Cholesterolemia in Rats and Increase LDL Receptor Activity in HepG2 Cells. J. Nutr. 2004, 134, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Pilvi, T.K.; Jauhiainen, T.; Cheng, Z.J.; Mervaala, E.M.; Vapaatalo, H.; Korpela, R. Lupin protein attenuates the development of hypertension and normalises the vascular function of NaCl-loaded Goto-Kakizaki rats. J. Physiol. Pharmacol. 2006, 57, 167–176. [Google Scholar]
- Boschin, G.; Scigliuolo, G.M.; Resta, D.; Arnoldi, A. ACE-inhibitory activity of enzymatic protein hydrolysates from lupin and other legumes. Food Chem. 2014, 145, 34–40. [Google Scholar] [CrossRef]
- Guariguata, L. By the numbers: New estimates from the IDF Diabetes Atlas Update for 2012. Diabetes Res. Clin. Pract. 2012, 98, 524–525. [Google Scholar] [CrossRef]
- Halban, P.A.; Ferrannini, E.; Nerup, J. Diabetes research investment in the European Union. Nat. Med. 2006, 12, 70–72. [Google Scholar] [CrossRef]
- Tapadia, M.; Johnson, S.; Utikar, R.; Newsholme, P.; Carlessi, R. Antidiabetic effects and mechanisms of action of γ-conglutin from lupin seeds. J. Funct. Foods 2021, 87, 104786. [Google Scholar] [CrossRef]
- Capraro, J.; Duranti, M.; Magni, C.; Scarafoni, A. Proceedings Book XIV International Lupin Conference. Proc. XIV Int. Lupin Conf. 2015, 27, 6–9. [Google Scholar]
- Sarao, L.K.; Arora, M. Probiotics, prebiotics, and microencapsulation: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 344–371. [Google Scholar] [CrossRef] [PubMed]
- Sandstrom, B.; Lyhne, N.; Pedersen, J.I.; Aro, A.; Thorsdottir, I.; Becker, W. Nordic Nutrition: Recommendations 2012; Nordic Council of Ministers: Copenhagen, Denmark, 2012; Volume 40, ISBN 9789289326704. [Google Scholar]
- Gulewicz, P.; Martínez-Villaluenga, C.; Frias, J.; Ciesiołka, D.; Gulewicz, K.; Vidal-Valverde, C. Effect of germination on the protein fraction composition of different lupin seeds. Food Chem. 2008, 107, 830–844. [Google Scholar] [CrossRef]
- Pothier, J.; Cheav, S.L.; Galand, N.; Dormeau, C.; Viel, C. A comparative study of the effects of sparteine, lupanine and lupin extract on the central nervous system of the mouse. J. Pharm. Pharmacol. 1998, 50, 949–954. [Google Scholar] [CrossRef]
- Villalpando-Vargas, F.; Medina-Ceja, L. Sparteine as an anticonvulsant drug: Evidence and possible mechanism of action. Seizure 2016, 39, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Lucas, M.M.; Stoddard, F.L.; Annicchiarico, P.; Frías, J.; Martínez-Villaluenga, C.; Sussmann, D.; Duranti, M.; Seger, A.; Zander, P.M.; Pueyo, J.J. The future of lupin as a protein crop in Europe. Front. Plant Sci. 2015, 6, 1–6. [Google Scholar] [CrossRef]
Components/Sources | USDA | USDA | INSA | Other Sources |
---|---|---|---|---|
Mature seeds, raw | Cooked lupine, without salt | Cooked lupine, without salt | ||
Calcium, Ca | 176 mg/100 g | 51 mg/100 g | 48 mg/100 g | 2.1–4.7 g/kg [43] |
Iron, Fe | 4.36 mg/100 g | 1.2 mg/100 g | 3.4 mg/100 g | - |
Magnesium, Mg | 198 mg/100 g | 54 mg/100 g | 54 mg/100 g | 1.2–2.2 g/kg [43] |
Manganese, Mn | 2.38 mg/100 g | 0.676 mg/100 g | - | 896 mg/kg [16,32,38] |
Phosphorus, P | 440 mg/100 g | 128 mg/100 g | 110 mg/100 g | 4.3–7.2 g/kg [43] |
Potassium, K | 1010 mg/100 g | 245 mg/100 g | 250 mg/100 g | 8.6–11.1 g/kg [43] |
Selenium, Se | 9.2 µg | 2.6 µg | - | - |
Sodium, Na | 15 mg/100 g | 4 mg/100 g | 4 mg/100 g | 0.1–0.2 g/kg [43] |
Zinc, Zn | 4.75 mg/100 g | 1.38 mg/100 g | 1.4 mg/100 g | - |
Carotenoids | 0 µg/100 g | 0 µg/100 g | 0 µg/100 g | Reported [27,28,38] |
Niacin (B3) | 2.19 mg/100 g | 0.495 mg/100 g | 0.5 mg/100 g | Consuming 100 g of lupin satisfying 30% of B3 requirement for a diet of 2000 kcal/day [4] |
Riboflavin (B2) | 0.22 mg/100 g | 0.053 mg/100 g | 0.03 mg/100 g | Consuming 100 g of lupin satisfying 20% of B2 requirement for a diet of 2000 kcal/day [4] |
Thiamin (B1) | 0.64 mg/100 g | 0.495 mg/100 g | 0.12 mg/100 g | Consuming 100 g of lupin satisfying 50% of B1 requirement for a diet of 2000 kcal/day [4] |
Tocopherol (VE) | - | - | α-tocopherol 0.1 µg/100 g | γ-tocopherol was the main isomer in L. albus [24] |
Vitamin C | 4.8 mg/100 g | 1.1 mg/100 g | 1.1 mg/100 g | Reported in C, was only detected in L. albus and L. luteus [28] |
Health Effect | Study Aim | No. of Participants | Duration | Model | Main Results | Ref. |
---|---|---|---|---|---|---|
Satiety and energy intake; arterial hypertension | Determine the effects on body weight, energy and nutrient intakes, and serum and urinary analytes of a diet moderately higher in dietary protein and fiber achieved by substituting lupin. | 88 | 16 weeks | Randomized, controlled parallel-designed trial. | Substituting 40% lupine flour gave higher levels of self-reported satiety and lower energy intake at lunch than compared to bread made with wheat flour alone, and increasing protein and fiber in bread with lupin kernel flour may be a simple dietary approach to help reduce blood pressure and cardiovascular risk. | [72] |
Satiety and energy intake | Measure food and energy intake two hours after the consumption of three test bread meals differing in their GI, protein, fiber and moisture content but similar in total energy. | 20 | 120 min | Randomized controlled trial. | The subjects consumed less food following the Lupin Bread than the White Bread. | [73] |
Satiety and energy intake | Examine the effect of replacing approximately one half of the fat in a sausage patty with inulin or lupin kernel fiber on the sensory acceptability of the products, post-meal perceptions of satiety and daily energy and fat intakes of healthy men. | 33 | 3 weeks | Randomized within-subject trial. | Incorporation of lupine seed fiber into processed foods resulted in feelings of fullness for up to 4.5 h after ingestion and approximately 15% lower energy intake. | [74] |
Cardiovascular disease prevention | Compare the effects of lupin protein and cysteine-supplemented casein with those of casein on atherosclerotic lesion development in apoE-deficient mice. | 30 male apoE-deficient mice | 16 weeks | Randomized controlled trial. | Lupin protein and cysteine-supplemented casein compared with casein reduced the calcification of atherosclerotic lesions in apoE-deficient mice. | [75] |
Cardiovascular disease prevention | Examine the effect of a diet containing a novel legume food ingredient, Australian sweet lupin kernel fiber (LKFibre), compared to a control diet without the addition of LKFibre, on serum lipids in men. | 38 | 1 month | Randomized crossover dietary intervention study. | Addition of LKFibre to the diet provided favorable changes to some serum lipid measures in men, which, combined with its high palatability, suggest that this novel ingredient may be useful in the dietary reduction of coronary heart disease risk. | [76] |
Cardiovascular disease prevention | Investigate for the first time whether lupin protein also influences the lipid metabolism of lactating rats and the triglyceride content of milk by influencing SREBPs and the mRNA expression of other genes such as the peroxisome proliferator-activated receptor (PPAR)-a which is involved in the fatty acid catabolism or cholesterol 7a-hydroxylase (CYP7A1), a key enzyme for the bile acid synthesis. | 24 9-week-old male Sprague–Dawley rats | - | Randomized controlled trial. | Lupin protein increases milk fat content and strongly modifies triglyceride and cholesterol metabolism by influencing the transcription levels of genes involved in fatty acid oxidation and synthesis and cholesterol homeostasis. | [77] |
Cardiovascular disease prevention | Evaluate a possible hypolipidemic effect of lupin proteins. | 30 male Sprague–Dawley rats | 28 days | Randomized controlled trial. | Demonstrates a marked cholesterol-lowering activity of proteins from lupinus in rats. Moreover, lupin proteins appear to affect cellular lipid homeostasis by up-regulating SREBP-2 and CYP7A1 genes. | [78] |
Arterial hypertension | Determine whether dietary protein and fiber had additive effects on blood pressure reduction in hypertensives. | 36 | 4 weeks | Randomized controlled trial. | Suggested that adequate intake of protein and fiber, particularly with fruits and vegetables as sources of soluble fiber, should be considered in recommendations of an optimal diet for reduction in cardiovascular risk in subjects with normal renal function. | [79] |
Glucose and insulin metabolism | Determine the effect of lupinus albus gamma conglutin decreases glucose in healthy subjects and type 2 diabetes mellitus patients. | 31 | 3 days | Randomized controlled trial. | Lupinus albus gamma conglutins displayed a short duration hypoglycemic effects in normal volunteers and type 2 diabetic patients. | [80] |
Bowel function | Determine the effect of LKFibre on human intestinal microbiota by quantitative fluorescent in situ hybridization (FISH) analysis. | 18 | 4 months | Single-blind, randomized, crossover dietary intervention design. | Ingestion of LKFibre stimulated colonic bifidobacteria growth, which suggests that this dietary fiber may be considered as a prebiotic and may beneficially contribute to colon health. | [81] |
Anticonvulsant action | Evaluated the anticonvulsant properties of sparteitn in an Epileptiform seizures Experimental Models (MECES). | 100 male and female Wistar rats | 8 days | Randomized controlled trial. | Sparteine produced 100% inhibition of maximal electrical stimulation-induced seizures on day 8 compared to 65% and 55% of inhibition rates in male and female rats, respectively, that were treated with 30 mg/kg carbamazepine. | [82] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, A.; Ramos, F.; Sanches Silva, A. Lupin (Lupinus albus L.) Seeds: Balancing the Good and the Bad and Addressing Future Challenges. Molecules 2022, 27, 8557. https://doi.org/10.3390/molecules27238557
Pereira A, Ramos F, Sanches Silva A. Lupin (Lupinus albus L.) Seeds: Balancing the Good and the Bad and Addressing Future Challenges. Molecules. 2022; 27(23):8557. https://doi.org/10.3390/molecules27238557
Chicago/Turabian StylePereira, Ana, Fernando Ramos, and Ana Sanches Silva. 2022. "Lupin (Lupinus albus L.) Seeds: Balancing the Good and the Bad and Addressing Future Challenges" Molecules 27, no. 23: 8557. https://doi.org/10.3390/molecules27238557
APA StylePereira, A., Ramos, F., & Sanches Silva, A. (2022). Lupin (Lupinus albus L.) Seeds: Balancing the Good and the Bad and Addressing Future Challenges. Molecules, 27(23), 8557. https://doi.org/10.3390/molecules27238557