Separation of Low-Molecular-Weight Organics by Water-Soluble Macrocyclic Arenes
Abstract
:1. Introduction
2. Results
2.1. Effect of Pillararene Concentration and Stirring Time
2.2. Effect of Single Component Content
2.3. Curve of Extraction Equilibrium
2.4. Effect of Successive Cycles
3. Materials and Methods
3.1. General Information
3.2. Liquid-Liquid Extraction Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zubris, K.A.V.; Richards, B.K. Synthetic fibers as an indicator of land application of sludge. Environ. Pollut. 2005, 138, 201–211. [Google Scholar] [CrossRef]
- Garcia, M.T.; Campos, E.; Marsal, A.; Ribosa, I. Fate and effects of amphoteric surfactants in the aquatic environment. Environ. Int. 2008, 34, 1001–1005. [Google Scholar] [CrossRef]
- Lochaiwatana, Y.; Poolthong, S.; Hirata, I.; Okazaki, M.; Swasdison, S.; Vongsavan, N. The synthesis and characterization of a novel potassium chloride-fluoridated hydroxyapatite varnish for treating dentin hypersensitivity. Dent. Mater. J. 2015, 34, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Patel, R.N. Biocatalysis: Synthesis of key intermediates for development of pharmaceuticals. ACS Catal. 2011, 1, 1056–1074. [Google Scholar] [CrossRef]
- Patel, R.N. Synthesis of chiral pharmaceutical intermediates by biocatalysis. Coord. Chem. Rev. 2008, 252, 659–701. [Google Scholar] [CrossRef]
- Jie, K.-C.; Liu, M.; Zhou, Y.-J.; Little, M.A.; Pulido, A.; Chong, S.Y.; Stephenson, A.; Hughes, A.R.; Sakakibara, F.; Ogoshi, T.; et al. Near-ideal xylene selectivity in adaptive molecular pillar[n]arene crystals. J. Am. Chem. Soc. 2018, 140, 6921–6930. [Google Scholar] [CrossRef]
- Sajisha, V.S.; Maitra, U. Remarkable isomer-selective gelation of aromatic solvents by a polymorph of a urea-linked bile acid-amino acid conjugate. RSC Adv. 2014, 4, 43167–43171. [Google Scholar] [CrossRef]
- Abdallah, D.J.; Weiss, R.G. n-alkanes gel n-alkanes (and many other organic liquids). Langmuir 2000, 16, 352–355. [Google Scholar] [CrossRef]
- Cai, W.-Q.; Li, H.-Q.; Yi, Z. Selective oxidation of ethylhenzene to styrene with carbon dioxide. Prog. Chem. 2004, 16, 406–413. [Google Scholar]
- Villaluenga, J.P.G.; Tabe-Mohammadi, A. A review on the separation of benzene/cyclohexane mixtures by pervaporation processes. J. Membr. Sci. 2000, 169, 159–174. [Google Scholar] [CrossRef]
- Agrawal, R.; Gooty, R.T. Misconceptions about efficiency and maturity of distillation. AlChE J. 2020, 66, e16294. [Google Scholar] [CrossRef]
- Kawasaki, J.; Kosuge, H.; Habaki, H.; Morita, Y. Separation of taxane compounds by liquid-liquid extraction. Chem. Eng. Commun. 2008, 195, 644–660. [Google Scholar] [CrossRef]
- Pramanik, B.K.; Pramanik, S.K.; Suja, F. A comparative study of coagulation, granular- and powdered-activated carbon for the removal of perfluorooctane sulfonate and perfluorooctanoate in drinking water treatment. Environ. Technol. 2015, 36, 2610–2617. [Google Scholar] [CrossRef] [PubMed]
- Putra, E.K.; Pranowo, R.; Sunarso, J.; Indraswati, N.; Ismadji, S. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water Res. 2009, 43, 2419–2430. [Google Scholar] [CrossRef]
- Barlokova, D.; Ilavsky, J. Natural zeolites with a surface MnO2 layer in water treatment. Chem. Listy 2014, 108, 1153–1157. [Google Scholar]
- Chew, T.-L.; Ahmad, A.L.; Bhatia, S. Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2). Adv. Colloid Interface Sci. 2010, 153, 43–57. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, T.; Wang, G.; Hu, W.-B.; Liu, Y.H.A.; Yang, H.; Wen, K. A pillar[5]arene conjugated polymer for removal of low-molecular-weight organic acids, amines, and alcohols from water. ACS Appl. Polym. Mater. 2020, 2, 5566–5573. [Google Scholar] [CrossRef]
- Xue, M.; Yang, Y.; Chi, X.-D.; Zhang, Z.-B.; Huang, F.-H. Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc. Chem. Res. 2012, 45, 1294–1308. [Google Scholar] [CrossRef]
- Del Valle, E.M.M. Cyclodextrins and their uses: A review. Process Biochem. 2004, 39, 1033–1046. [Google Scholar] [CrossRef]
- Ikeda, A.; Shinkai, S. Novel cavity design using calix[n]arene skeletons: Toward molecular recognition and metal binding. Chem. Rev. 1997, 97, 1713–1734. [Google Scholar] [CrossRef]
- Lou, X.-Y.; Song, N.; Yang, Y.-W. Fluorescence resonance energy transfer systems in supramolecular macrocyclic chemistry. Molecules 2017, 22, 1640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.-W.; Sun, Y.-L.; Song, N. Switchable host-guest systems on surfaces. Acc. Chem. Res. 2014, 47, 1950–1960. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.-R.; Kou, Y.-H.; Liang, J.-Q.; Chen, Z.-Z.; Wang, L.-Y.; Meier, H. A facile and efficient preparation of pillararenes and a pillarquinone. Angew. Chem. Int. Ed. 2009, 48, 9721–9723. [Google Scholar] [CrossRef] [PubMed]
- Qu, D.-H.; Wang, Q.-C.; Zhang, Q.-W.; Ma, X.; Tian, H. Photoresponsive host-guest functional systems. Chem. Rev. 2015, 115, 7543–7588. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.-H.; Yang, J.; Zou, Y.-C.; Wu, J.-R.; Tan, L.-L.; Wang, Y.; Li, B.; Lu, T.; Wang, B.; Yang, Y.-W. Macrocyclic arenes-based conjugated macrocycle polymers for highly selective CO2 capture and iodine adsorption. Angew. Chem. Int. Ed. 2021, 60, 8967–8975. [Google Scholar] [CrossRef]
- Li, M.-H.; Lou, X.-Y.; Yang, Y.-W. Pillararene-based molecular-scale porous materials. Chem. Commun. 2021, 57, 13429–13447. [Google Scholar] [CrossRef]
- Kursunlu, A.N.; Acikbas, Y.; Ozmen, M.; Erdogan, M.; Capan, R. Haloalkanes and aromatic hydrocarbons sensing using langmuir-blodgett thin film of pillar[5]arene-biphenylcarboxylic acid. Colloid Surf. A 2019, 565, 108–117. [Google Scholar] [CrossRef]
- Bastug, E.; Kursunlu, A.N.; Guler, E. A fluorescent clever macrocycle: Deca-bodipy bearing a pillar[5]arene and its selective binding of asparagine in half -aqueous medium. J. Lumin. 2020, 225, 117343–117348. [Google Scholar] [CrossRef]
- Wu, M.-X.; Gao, J.; Wang, F.; Yang, J.; Song, N.; Jin, X.-Y.; Mi, P.; Tian, J.; Luo, J.-Y.; Liang, F.; et al. Multistimuli responsive core-shell nanoplatform constructed from Fe3O4@MOF equipped with Pillar[6]arene nanovalves. Small 2018, 14, 1704440–1704446. [Google Scholar] [CrossRef]
- Chi, X.-D.; Ji, X.-F.; Xia, D.-Y.; Huang, F.-H. A dual-responsive supra-amphiphilic polypseudorotaxane constructed from a water-soluble pillar[7]arene and an azobenzene-containing random copolymer. J. Am. Chem. Soc. 2015, 137, 1440–1443. [Google Scholar] [CrossRef]
- Chai, Y.; Chen, L.-M.; Zhang, Y.-H.; Zhao, L.; Meng, Z.; Chen, J.-Y.; Li, C.-J.; Meng, Q.-B. Reversing neuromuscular blocking agent decamethonium by carboxylatopillar[6]arene based on host-guest encapsulation. Chin. Chem. Lett. 2022, 33, 3003–3006. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, J.-R.; Wang, X.; Li, X.-S.; Wu, M.-X.; Liang, F.; Yang, Y.-W. One-pot solvothermal synthesis of carboxylatopillar[5]arene-modified Fe3O4 magnetic nanoparticles for ultrafast separation of cationic dyes. Dyes Pigment. 2019, 162, 512–516. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, Z.-C.; Ding, Y.; Hu, L.-P.; Wang, J.; Chen, T.-T.; Yao, Y. Recent development of pillar[n]arene-based amphiphiles. Chin. Chem. Lett. 2021, 32, 1267–1279. [Google Scholar] [CrossRef]
- Liu, S.-Y.; Yan, T.-S.; Wu, Q.-X.; Xu, Z.; Han, J. Accelerating the thermal fading rate of photochromic naphthopyrans by pillar[5]arene-based conjugated macrocycle polymer. Chin. Chem. Lett. 2022, 33, 239–242. [Google Scholar] [CrossRef]
- Wang, D.-H.; Wang, J.; Wang, Y.; Yang, Y.-W. A fluorescent linear conjugated polymer constructed from pillararene and anthracene. Molecules 2022, 27, 3162. [Google Scholar] [CrossRef]
- Li, Y.-F.; Lou, X.-Y.; Wang, C.-Y.; Wang, Y.; Jia, Y.; Lin, Q.; Yang, Y.-W. Synthesis of stimuli-responsive pillararene-based supramolecular polymer materials for the detection and separation of metal ions. Chin. Chem. Lett. 2022, 107877–107894. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, K.-T.; Ding, L.; Yang, J.; Yang, Y.-W.; Liang, F. Electrochemical determination of paraquat using a glassy carbon electrode decorated with pillararene-coated nitrogen-doped carbon dots. Chin. Chem. Lett. 2022, 33, 1537–1540. [Google Scholar] [CrossRef]
- Wang, W.-M.; Dai, D.; Wu, J.-R.; Wang, C.; Wang, Y.; Yang, Y.-W. Renewable supramolecular assembly-induced emission enhancement system for efficient detection and removal of silver(I). Dye. Pigment. 2022, 207, 110712. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Z.; Zhang, Y.; Yang, B.; Yang, Y.-W. An acidochromic and nitroaromatic responsive hydrazone-linked pillararene framework using a macrocycle-to-framework strategy. Angew. Chem. Int. Ed. 2022, 61, e202206144. [Google Scholar]
- Wu, J.-R.; Mu, A.U.; Li, B.; Wang, C.-Y.; Fang, L.; Yang, Y.-W. Desymmetrized leaning pillar[6]arene. Angew. Chem. Int. Ed. 2018, 57, 9853–9858. [Google Scholar] [CrossRef]
- Dai, D.-H.; Li, Z.; Yang, J.; Wang, C.-Y.; Wu, J.-R.; Wang, Y.; Zhang, D.-M.; Yang, Y.-W. Supramolecular assembly-induced emission enhancement for efficient mercury(II) detection and removal. J. Am. Chem. Soc. 2019, 141, 4756–4763. [Google Scholar] [CrossRef]
- Wu, J.-R.; Wu, G.-X.; Yang, Y.-W. Pillararene-inspired macrocycles: From extended pillar[n]arenes to geminiarenes. Acc. Chem. Res. 2022, 55, 3191–3204. [Google Scholar] [CrossRef]
- Wu, J.-R.; Wu, G.-X.; Cai, Z.; Li, D.-X.; Li, M.-H.; Wang, Y.; Yang, Y.-W. A water-soluble leggero pillar[5]arene. Molecules 2022, 27, 6259. [Google Scholar] [CrossRef] [PubMed]
- Boinski, T.; Cieszkowski, A.; Rosa, B.; Szumna, A. Hybrid[n]arenes through thermodynamically driven macrocyclization reactions. J. Org. Chem. 2015, 80, 3488–3495. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-Y.; Jordan, J.-H.; Velmurugan, K.; Tian, X.-Q.; Zuo, M.-Z.; Hu, X.-Y.; Wang, L.-Y. Role of functionalized pillararene architectures in supramolecular catalysis. Angew. Chem. Int. Ed. 2021, 60, 9205–9214. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Fa, S.; Ohtani, S.; Shi, T.-H.; Brouwer, A.M.; Ogoshi, T. Noncovalently bound and mechanically interlocked systems using pillar[n]arenes. Chem. Soc. Rev. 2022, 51, 3648–3687. [Google Scholar] [CrossRef]
- Tian, M.-M.; Chen, D.-X.; Sun, Y.-L.; Yang, Y.-W.; Jia, Q. Pillararene-functionalized Fe3O4 nanoparticles as magnetic solid-phase extraction adsorbent for pesticide residue analysis in beverage samples. RSC Adv. 2013, 3, 22111–22119. [Google Scholar] [CrossRef]
- Liu, Z.-J.; Wu, J.-R.; Wang, C.-Y.; Yang, J.; Wang, Y.; Yang, Y.-W. Stimuli-responsive fluorescent supramolecular polymer network based on a monofunctionalized leaning tower[6]arene. Chin. Chem. Lett. 2019, 30, 2299–2303. [Google Scholar] [CrossRef]
- Zhu, H.-T.-Z.; Li, Q.; Khalil-Cruz, L.E.; Khashab, N.M.; Yu, G.C.; Huang, F.-H. Pillararene-based supramolecular systems for theranostics and bioapplications. Sci. China Chem. 2021, 64, 688–700. [Google Scholar] [CrossRef]
- Yang, J.; Dai, D.-H.; Ma, L.-J.; Yang, Y.-W. Molecular-scale drug delivery systems loaded with oxaliplatin for supramolecular chemotherapy. Chin. Chem. Lett. 2021, 32, 729–734. [Google Scholar] [CrossRef]
- Wang, X.; Ji, K.Y.; Rockenbauer, A.; Liu, Y.-P.; Song, Y.-G. Host-guest interaction of nitroxide radicals with water-soluble pillar[6]arenes. Org. Biomol. Chem. 2020, 18, 2321–2325. [Google Scholar] [CrossRef]
- Ogoshi, T.; Hashizume, M.; Yamagishi, T.A.; Nakamoto, Y. Synthesis, conformational and host-guest properties of water-soluble pillar[5]arene. Chem. Commun. 2010, 46, 3708–3710. [Google Scholar] [CrossRef]
- Yu, G.-C.; Xue, M.; Zhang, Z.-B.; Li, J.-Y.; Han, C.-Y.; Huang, F.-H. A water-soluble pillar[6]arene: Synthesis, host-guest chemistry, and its application in dispersion of multiwalled carbon nanotubes in water. J. Am. Chem. Soc. 2012, 134, 13248–13251. [Google Scholar] [CrossRef] [PubMed]
- Uemasu, I.; Kushiyama, S. Selective separation of benzene from hydrocarbon mixtures via liquid-liquid extraction method using aqueous solutions of substituted cyclodextrins. Fuel Process. Technol. 2004, 85, 1519–1526. [Google Scholar] [CrossRef]
- Zhang, G.-W.; Moosa, B.; Chen, A.-P.; Khashab, N.-M. Separation and detection of meta-andortho-substituted benzene isomers by using a water-soluble pillar[5]arene. Chempluschem 2020, 85, 1244–1248. [Google Scholar] [CrossRef] [PubMed]
Mixtures | WP5 | WP6 | WLT6 | WBpP6 |
---|---|---|---|---|
OX | 0.15 | 0.44 | / | / |
MX | 0.85 | 0.56 | ||
MCT | 0.96 | 0.75 | 0.46 | 0.53 |
OCT | 0.04 | 0.25 | 0.54 | 0.47 |
MBT | 0.93 | 0.73 | 0.59 | 0.44 |
OBT | 0.07 | 0.27 | 0.41 | 0.56 |
St | 0.36 | 0.54 | 0.64 | / |
EB | 0.64 | 0.46 | 0.36 | |
Tol | 0.14 | 0.11 | / | / |
MCH | 0.86 | 0.89 | ||
Br-n-bu | 0.76 | 0.48 | 0.49 | 0.75 |
Br-i-bu | 0.14 | 0.23 | 0.27 | / |
Br-s-bu | 0.1 | 0.29 | 0.24 | 0.25 |
Br-n-Pr | 0.71 | 0.43 | 0.52 | 0.55 |
Br-i-Pr | 0.29 | 0.57 | 0.48 | 0.45 |
Cl-n-bu | 0.60 | 0.42 | 0.48 | 0.47 |
Cl-i-bu | 0.40 | 0.57 | 0.52 | 0.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Li, Z.; Song, C.; Yang, J.; Yang, Y. Separation of Low-Molecular-Weight Organics by Water-Soluble Macrocyclic Arenes. Molecules 2022, 27, 8554. https://doi.org/10.3390/molecules27238554
Wang W, Li Z, Song C, Yang J, Yang Y. Separation of Low-Molecular-Weight Organics by Water-Soluble Macrocyclic Arenes. Molecules. 2022; 27(23):8554. https://doi.org/10.3390/molecules27238554
Chicago/Turabian StyleWang, Wenhui, Zheng Li, Chunli Song, Jie Yang, and Yingwei Yang. 2022. "Separation of Low-Molecular-Weight Organics by Water-Soluble Macrocyclic Arenes" Molecules 27, no. 23: 8554. https://doi.org/10.3390/molecules27238554
APA StyleWang, W., Li, Z., Song, C., Yang, J., & Yang, Y. (2022). Separation of Low-Molecular-Weight Organics by Water-Soluble Macrocyclic Arenes. Molecules, 27(23), 8554. https://doi.org/10.3390/molecules27238554