Farnesol Protects against Cardiotoxicity Caused by Doxorubicin-Induced Stress, Inflammation, and Cell Death: An In Vivo Study in Wistar Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drugs and Chemicals
2.2. Animals
2.3. Dosing Paradigm
- Group I (control): normal saline, p.o. Daily for 14 days.
- Group II (TOXIC): DOXO 2.4 mg/kg, i.p, thrice weekly for 2 weeks.
- Group III: FSN 100 mg/kg, p.o. daily for 14 days + DOXO, similar to Group II
- Group IV: FSN 200 mg/kg, p.o. daily for 14 days + DOXO, similar to Group II
2.4. Serum and Tissue Preparation
2.5. Estimation of the Markers of Oxidative and Nitrative Stress
2.6. Estimation of Cardiac Injury Markers (LDH, CK-MB, BNPc, cTn-T and AST, ALT)
2.7. Examination of Cardiac TNF-α, IL-6, IL-10, and IL-1β Levels
2.8. Cardiac Apoptosis Examination
2.9. Histopathological Assessment
3. Statistical Analysis
4. Results
4.1. Effect of FSN on DOXO-Induced Change in Body and Heart Weight
4.2. Effect of FSN on DOXO-Induced Cardiac Injury Markers (LDH, CK-MB, cTn-T, and BNP)
4.3. Effect of FSN on DOXO-Induced Cardiac Injury Markers (ALT and AST)
4.4. Effect of FSN on DOXO-Induced Oxidative and Nitrative Stress
4.5. Effect of FSN on DOXO-Induced Cardiac Inflammation and Apoptosis
4.6. Effect of FSN on DOXO-Induced Histopathological Aberrations
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Sritharan, S.; Sivalingam, N. A Comprehensive Review on Time-Tested Anticancer Drug Doxorubicin. Life Sci. 2021, 278, 119527. [Google Scholar] [CrossRef] [PubMed]
- Iqubal, A.; Iqubal, M.K.; Sharma, S.; Ansari, M.A.; Najmi, A.K.; Ali, S.M.; Ali, J.; Haque, S.E. Molecular Mechanism Involved in Cyclophosphamide-Induced Cardiotoxicity: Old Drug with a New Vision. Life Sci. 2019, 218, 112–131. [Google Scholar] [CrossRef] [PubMed]
- Rawat, P.S.; Jaiswal, A.; Khurana, A.; Bhatti, J.S.; Navik, U. Doxorubicin-Induced Cardiotoxicity: An Update on the Molecular Mechanism and Novel Therapeutic Strategies for Effective Management. Biomed. Pharmacother. 2021, 139, 111708. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Shi, J.; Li, Y.J.; Wei, L. Cardiomyocyte Death in Doxorubicin-Induced Cardiotoxicity. Arch. Immunol. Ther. Exp. 2009, 57, 435–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Shaikh, I.A.; More, S.S.; Mahnashi, M.H.; Almohaimeed, H.M.; El-Sherbiny, M.; Ghoneim, M.M.; Umar, A.; Soni, H.K.; Agrawal, H.; et al. Blockage of KHSRP-NLRP3 by MCC950 Can Reverse the Effect of Manganese-Induced Neuroinflammation in N2a Cells and Rat Brain. Int. J. Mol. Sci. 2022, 23, 13224. [Google Scholar] [CrossRef] [PubMed]
- Kalivendi, S.V.; Kotamraju, S.; Zhao, H.; Joseph, J.; Kalyanaraman, B. Doxorubicin-Induced Apoptosis Is Associated with Increased Transcription of Endothelial Nitric-Oxide Synthase. Effect of Antiapoptotic Antioxidants and Calcium: Effect of Antiapoptotic Antioxidants and Calcium. J. Biol. Chem. 2001, 276, 47266–47276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilleron, M.; Marechal, X.; Montaigne, D.; Franczak, J.; Neviere, R.; Lancel, S. NADPH Oxidases Participate to Doxorubicin-Induced Cardiac Myocyte Apoptosis. Biochem. Biophys. Res. Commun. 2009, 388, 727–731. [Google Scholar] [CrossRef]
- Iqubal, A.; Sharma, S.; Ansari, M.A.; Najmi, A.K.; Syed, M.A.; Ali, J.; Alam, M.M.; Ahmad, S.; Haque, S.E. Nerolidol Attenuates Cyclophosphamide-Induced Cardiac Inflammation, Apoptosis and Fibrosis in Swiss Albino Mice. Eur. J. Pharmacol. 2019, 863, 172666. [Google Scholar] [CrossRef]
- Delmondes, G.D.A.; Santiago Lemos, I.C.; Dias, D.D.Q.; Cunha, G.L.D.; Araújo, I.M.; Barbosa, R.; Coutinho, H.D.M.; Felipe, C.F.B.; Barbosa-Filho, J.M.; Lima, N.T.R.D.; et al. Pharmacological Applications of Farnesol (C15H26O): A Patent Review. Expert Opin. Ther. Pat. 2020, 30, 227–234. [Google Scholar] [CrossRef]
- Lapczynski, A.; Bhatia, S.P.; Letizia, C.S.; Api, A.M. Fragrance Material Review on Farnesol. Food Chem. Toxicol. 2008, 46 (Suppl. S11), S149–S156. [Google Scholar] [CrossRef]
- Jung, Y.Y.; Hwang, S.T.; Sethi, G.; Fan, L.; Arfuso, F.; Ahn, K.S. Potential Anti-Inflammatory and Anti-Cancer Properties of Farnesol. Molecules 2018, 23, 2827. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.; Sultana, S. Farnesol Attenuates 1,2-Dimethylhydrazine Induced Oxidative Stress, Inflammation and Apoptotic Responses in the Colon of Wistar Rats. Chem. Biol. Interact. 2011, 192, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Abukhalil, M.H.; Hussein, O.E.; Bin-Jumah, M.; Saghir, S.A.M.; Germoush, M.O.; Elgebaly, H.A.; Mosa, N.M.; Hamad, I.; Qarmush, M.M.; Hassanein, E.M.; et al. Farnesol Attenuates Oxidative Stress and Liver Injury and Modulates Fatty Acid Synthase and Acetyl-CoA Carboxylase in High Cholesterol-Fed Rats. Environ. Sci. Pollut. Res. Int. 2020, 27, 30118–30132. [Google Scholar] [CrossRef]
- Souza, D.S.; de Barreto, T.O.; de Menezes-Filho, J.E.R.; Heimfarth, L.; Rhana, P.; Rabelo, T.K.; Santana, M.N.S.; Durço, A.O.; de Conceição, M.R.L.; Quintans-Júnior, L.J.; et al. Myocardial Hypertrophy Is Prevented by Farnesol through Oxidative Stress and ERK1/2 Signaling Pathways. Eur. J. Pharmacol. 2020, 887, 173583. [Google Scholar] [CrossRef] [PubMed]
- Lombard, J.; Moreira, D. Origins and Early Evolution of the Mevalonate Pathway of Isoprenoid Biosynthesis in the Three Domains of Life. Mol. Biol. Evol. 2011, 28, 87–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Souza, D.S.; de Menezes-Filho, J.E.R.; Santos-Miranda, A.; de Jesus, I.C.G.; Silva Neto, J.A.; Guatimosim, S.; Cruz, J.S.; de Vasconcelos, C.M.L. Calcium Overload-Induced Arrhythmia Is Suppressed by Farnesol in Rat Heart. Eur. J. Pharmacol. 2019, 859, 172488. [Google Scholar] [CrossRef]
- Silva, E.A.P.; Carvalho, J.S.; dos Santos, D.M.; Oliveira, A.M.S.; de Souza Araújo, A.A.; Serafini, M.R.; Oliveira Santos, L.A.B.; de Batista, M.V.A.; Viana Santos, M.R.; de Siqueira Quintans, J.S.; et al. Cardiovascular Effects of Farnesol and Its β-Cyclodextrin Complex in Normotensive and Hypertensive Rats. Eur. J. Pharmacol. 2021, 901, 174060. [Google Scholar] [CrossRef]
- Nowacka, M.; Kowalewska, A.; Kręgiel, D. Farnesol-Containing Macromolecular Systems for Antibiofilm Strategies. Surfaces 2020, 3, 197–210. [Google Scholar] [CrossRef]
- Khan, S.A.; Rehman, S.; Nabi, B.; Iqubal, A.; Nehal, N.; Fahmy, U.A.; Kotta, S.; Baboota, S.; Md, S.; Ali, J. Boosting the Brain Delivery of Atazanavir through Nanostructured Lipid Carrier-Based Approach for Mitigating NeuroAIDS. Pharmaceutics 2020, 12, 1059. [Google Scholar] [CrossRef]
- Iqubal, A.; Syed, M.A.; Najmi, A.K.; Azam, F.; Barreto, G.E.; Iqubal, M.K.; Ali, J.; Haque, S.E. Nano-Engineered Nerolidol Loaded Lipid Carrier Delivery System Attenuates Cyclophosphamide Neurotoxicity—Probable Role of NLRP3 Inflammasome and Caspase-1. Exp. Neurol. 2020, 334, 113464. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Iqubal, A.; Syed, M.A.; Ali, J.; Najmi, A.K.; Haque, M.M.; Haque, S.E. Nerolidol Protects the Liver against Cyclophosphamide-Induced Hepatic Inflammation, Apoptosis, and Fibrosis via Modulation of Nrf2, NF-ΚB P65, and Caspase-3 Signaling Molecules in Swiss Albino Mice. BioFactors 2020, 46, 963–973. [Google Scholar] [CrossRef] [PubMed]
- Marklund, S.; Marklund, G. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. Eur. J. Biochem. 1974, 47, 469–474. [Google Scholar] [CrossRef]
- Iqubal, A.; Sharma, S.; Sharma, K.; Bhavsar, A.; Hussain, I.; Iqubal, M.K.; Kumar, R. Intranasally Administered Pitavastatin Ameliorates Pentylenetetrazol-Induced Neuroinflammation, Oxidative Stress and Cognitive Dysfunction. Life Sci. 2018, 211, 172–181. [Google Scholar] [CrossRef]
- Iqubal, A.; Syed, M.A.; Haque, M.M.; Najmi, A.K.; Ali, J.; Haque, S.E. Effect of Nerolidol on Cyclophosphamide-Induced Bone Marrow and Hematologic Toxicity in Swiss Albino Mice. Exp. Hematol. 2020, 82, 24–32. [Google Scholar] [CrossRef]
- Sedlak, J.; Lindsay, R.H. Estimation of Total, Protein-Bound, and Nonprotein Sulfhydryl Groups in Tissue with Ellman’s Reagent. Anal. Biochem. 1968, 25, 192–205. [Google Scholar] [CrossRef]
- Khan, V.; Sharma, S.; Bhandari, U.; Ali, S.M.; Haque, S.E. Raspberry Ketone Protects against Isoproterenol-Induced Myocardial Infarction in Rats. Life Sci. 2018, 194, 205–212. [Google Scholar] [CrossRef]
- Sharma, S.; Khan, V.; Najmi, A.; Alam, O.; Haque, S. Prophylactic Treatment with Icariin Prevents Isoproterenol-Induced Myocardial Oxidative Stress via Nuclear Factor-Like 2 Activation. Pharmacogn. Mag. 2018, 14, 227–236. [Google Scholar] [CrossRef]
- Sheibani, M.; Azizi, Y.; Shayan, M.; Nezamoleslami, S.; Eslami, F.; Farjoo, M.H.; Dehpour, A.R. Doxorubicin-Induced Cardiotoxicity: An Overview on Pre-Clinical Therapeutic Approaches. Cardiovasc. Toxicol. 2022, 22, 292–310. [Google Scholar] [CrossRef] [PubMed]
- Mitry, M.A.; Edwards, J.G. Doxorubicin Induced Heart Failure: Phenotype and Molecular Mechanisms. Int. J. Cardiol. Heart Vasc. 2016, 10, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Iqubal, M.K.; Saleem, S.; Iqubal, A.; Chaudhuri, A.; Pottoo, F.H.; Ali, J.; Baboota, S. Natural, Synthetic and Their Combinatorial Nanocarriers Based Drug Delivery System in the Treatment Paradigm for Wound Healing Via Dermal Targeting. Curr. Pharm. Des. 2020, 26, 4551–4568. [Google Scholar] [CrossRef] [PubMed]
- Iqubal, A.; Wasim, M.; Ashraf, M.; Najmi, A.K.; Syed, M.A.; Ali, J.; Haque, S.E. Natural Bioactive as a Potential Therapeutic Approach for the Management of Cyclophosphamide-Induced Cardiotoxicity. Curr. Top. Med. Chem. 2021, 21, 2647–2670. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Jia, Y.; Li, T.; Chen, Y.; Pan, L.; Jia, C. Preparation of Puerarin Nanocrystals and Their Application on Rats with Myocardial Ischemic Injury Combined with Electroacupuncture-PC6 (Neiguan). Sci. Adv. Mater. 2021, 13, 2065–2074. [Google Scholar] [CrossRef]
- Shalaby, N.M.M.; Soliman, W.I. Comparative Study on the Effects of Lycopene and Saffron on Doxorubicin-Induced Cardiotoxicity in Adult Male Albino Rats: A Histological and Biochemical Assessment. Egypt. J. Forensic Sci. Appl. Toxicol. 2017, 17, 237–259. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Cao, F. Synthesis of Doxorubicin-Loaded Nanobubble and Its Effect on Targeted Therapy for Patients with Ovarian Cancer. Sci. Adv. Mater. 2021, 13, 1114–1124. [Google Scholar] [CrossRef]
- Swamy, A.V.; Gulliaya, S.; Thippeswamy, A.; Koti, B.C.; Manjula, D.V. Cardioprotective Effect of Curcumin against Doxorubicin-Induced Myocardial Toxicity in Albino Rats. Indian J. Pharmacol. 2012, 44, 73–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, L.; Jiang, G.; Yu, H.; Liu, S. Preparation of Metformin/Doxorubicin-Bovine Serum Albumin-Hyaluronic Acid-Carbon Dots Nanoparticles and Their Application in Treating Polycystic Ovary Syndrome on Matrix Metalloproteinase-9 and Vascular Endothelial Growth Factor of Patient Combine with Metformin. Sci. Adv. Mater. 2021, 13, 1951–1959. [Google Scholar] [CrossRef]
- Ekbbal, R.; Iqubal, A.; Ansari, M.A.; Ahmad, S.; Haque, S.E. Evaluation of Cardioprotective Potential of Isolated Swerchirin against the Isoproterenol-Induced Cardiotoxicity in Wistar Albino Rats. Pharmacogn. Mag. 2022, 18, 10–21. [Google Scholar] [CrossRef]
- Xu, M.; Huang, J.; Wang, L. Effects of Liposomal Nanoparticles-Mediated MiR-126 on Cervical Cancer Cells via Anti-Programmed Cell Death-1/Programmed Death Ligand 1 (PD-1/PD-L1) Signaling. Sci. Adv. Mater. 2021, 13, 1506–1511. [Google Scholar] [CrossRef]
- Songbo, M.; Lang, H.; Xinyong, C.; Bin, X.; Ping, Z.; Liang, S. Oxidative Stress Injury in Doxorubicin-Induced Cardiotoxicity. Toxicol. Lett. 2019, 307, 41–48. [Google Scholar] [CrossRef]
- Liu, S.; Duan, W.; Zhou, X. Cardioprotective Effects of HO-1-Loaded Collagen-Targeted Phase Change Nanoparticles on Cardiomyocytes Following Acute Myocardial Infarction. Sci. Adv. Mater. 2021, 13, 1685–1690. [Google Scholar] [CrossRef]
- Trivedi, P.P.; Kushwaha, S.; Tripathi, D.N.; Jena, G.B. Cardioprotective Effects of Hesperetin against Doxorubicin-Induced Oxidative Stress and DNA Damage in Rat. Cardiovasc. Toxicol. 2011, 11, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z. Role of MicroRNA-24 Transfection Mediated by Silica Nanoparticles in Apoptosis of Cardiomyocyte. Sci. Adv. Mater. 2021, 13, 455–462. [Google Scholar] [CrossRef]
- Gianazza, E.; Brioschi, M.; Fernandez, A.M.; Banfi, C. Lipoxidation in Cardiovascular Diseases. Redox Biol. 2019, 23, 101119. [Google Scholar] [CrossRef]
- Chen, R.; Wang, X. Preparation of Nano-Cerium Dioxide and Its Auxiliary Protection on Rats with Pulmonary Fibrosis via Notch/Jagged Signaling Pathway. Sci. Adv. Mater. 2021, 13, 2149–2156. [Google Scholar] [CrossRef]
- Ma, Z.G.; Yuan, Y.P.; Xu, S.C.; Wei, W.Y.; Xu, C.R.; Zhang, X.; Wu, Q.Q.; Liao, H.H.; Ni, J.; Tang, Q.Z. CTRP3 Attenuates Cardiac Dysfunction, Inflammation, Oxidative Stress and Cell Death in Diabetic Cardiomyopathy in Rats. Diabetologia 2017, 60, 1126–1137. [Google Scholar] [CrossRef] [Green Version]
- Oeckinghaus, A.; Ghosh, S. The NF-KappaB Family of Transcription Factors and Its Regulation. Cold Spring Harb. Perspect. Biol. 2009, 1, a000034. [Google Scholar] [CrossRef]
- Alshabi, A.M.; Vastrad, B.; Shaikh, I.A.; Vastrad, C. Identification of Important Invasion and Proliferation Related Genes in Adrenocortical Carcinoma. Med. Oncol. 2019, 36, 73. [Google Scholar] [CrossRef]
- El-Agamy, D.S.; El-Harbi, K.M.; Khoshhal, S.; Ahmed, N.; Elkablawy, M.A.; Shaaban, A.A.; Abo-Haded, H.M. Pristimerin Protects against Doxorubicin-Induced Cardiotoxicity and Fibrosis through Modulation of Nrf2 and MAPK/NF-KB Signaling Pathways. Cancer Manag. Res. 2019, 11, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Elblehi, S.S.; El-Sayed, Y.S.; Soliman, M.M.; Shukry, M. Date Palm Pollen Extract Avert Doxorubicin-Induced Cardiomyopathy Fibrosis and Associated Oxidative/Nitrosative Stress, Inflammatory Cascade, and Apoptosis-Targeting Bax/Bcl-2 and Caspase-3 Signaling Pathways. Animals 2021, 11, 886. [Google Scholar] [CrossRef]
- Yarmohammadi, F.; Rezaee, R.; Haye, A.W.; Karimi, G. Endoplasmic Reticulum Stress in Doxorubicin-Induced Cardiotoxicity May Be Therapeutically Targeted by Natural and Chemical Compounds: A Review. Pharmacol. Res. 2021, 164, 105383. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, T.; Chen, J.; Alkhanjaf, A.A.M.; Zhang, D. Ginkgolic Acid Inhibits Proliferation and Migration of Glioblastoma Cells by Inducing Cell Cycle Arrest and Apoptosis. Sci. Adv. Mater. 2021, 13, 2295–2301. [Google Scholar] [CrossRef]
- Alkahtani, S.A.; Alshabi, A.M.; Shaikh, I.A.; Orabi, M.A.A.; Abdel-Wahab, B.A.; Walbi, I.A.; Habeeb, M.S.; Khateeb, M.M.; Shettar, A.K.; Hoskeri, J.H. In Vitro Cytotoxicity and Spectral Analysis-Based Phytochemical Profiling of Methanol Extract of Barleria Hochstetteri, and Molecular Mechanisms Underlying Its Apoptosis-Inducing Effect on Breast and Lung Cancer Cell Lines. Separations 2022, 9, 298. [Google Scholar] [CrossRef]
- Moutabian, H.; Ghahramani-Asl, R.; Mortezazadeh, T.; Laripour, R.; Narmani, A.; Zamani, H.; Ataei, G.; Bagheri, H.; Farhood, B.; Sathyapalan, T.; et al. The Cardioprotective Effects of Nano-Curcumin against Doxorubicin-Induced Cardiotoxicity: A Systematic Review. Biofactors 2022, 48, 597–610. [Google Scholar] [CrossRef] [PubMed]
Groups | Body Weight (in g) | Heart Weight (in mg) | HW/BW (mg/g) |
---|---|---|---|
Control | 253.5 ± 4.12 | 839.9 ± 7.16 | 3.31 ± 0.04 |
TOXIC | 230 ± 4.85 | 974.7 ± 5.34 *** | 4.23 ± 0.03 |
FSN 100 | 248.3 ± 4.82 | 963.5 ± 7.12 ns | 3.88 ± 0.02 |
FSN 200 | 241.7 ± 3.07 | 855.4 ± 6.64 ### | 3.53 ± 0.02 |
NIFI 10 | 245 ± 2.58 | 833.2 ± 2.18 ### | 3.39 ± 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkhanjaf, A.A.M.; Athar, M.T.; Ullah, Z.; Alsayhab, A.M.H.; Umar, A.; Shaikh, I.A. Farnesol Protects against Cardiotoxicity Caused by Doxorubicin-Induced Stress, Inflammation, and Cell Death: An In Vivo Study in Wistar Rats. Molecules 2022, 27, 8589. https://doi.org/10.3390/molecules27238589
Alkhanjaf AAM, Athar MT, Ullah Z, Alsayhab AMH, Umar A, Shaikh IA. Farnesol Protects against Cardiotoxicity Caused by Doxorubicin-Induced Stress, Inflammation, and Cell Death: An In Vivo Study in Wistar Rats. Molecules. 2022; 27(23):8589. https://doi.org/10.3390/molecules27238589
Chicago/Turabian StyleAlkhanjaf, Abdulrab Ahmed M., Md Tanwir Athar, Zabih Ullah, Abdullah Mohammed H. Alsayhab, Ahmad Umar, and Ibrahim Ahmed Shaikh. 2022. "Farnesol Protects against Cardiotoxicity Caused by Doxorubicin-Induced Stress, Inflammation, and Cell Death: An In Vivo Study in Wistar Rats" Molecules 27, no. 23: 8589. https://doi.org/10.3390/molecules27238589
APA StyleAlkhanjaf, A. A. M., Athar, M. T., Ullah, Z., Alsayhab, A. M. H., Umar, A., & Shaikh, I. A. (2022). Farnesol Protects against Cardiotoxicity Caused by Doxorubicin-Induced Stress, Inflammation, and Cell Death: An In Vivo Study in Wistar Rats. Molecules, 27(23), 8589. https://doi.org/10.3390/molecules27238589