Electrochemical Enzyme Sensor Based on the Two-Dimensional Metal–Organic Layers Supported Horseradish Peroxidase
Abstract
:1. Introduction
2. Results and Discussions
HRP Electrodes | Sensitivity (μA·mM−1·cm−2) | Linear Range (μM) | LOD (μM) | Km (μM) | Reference |
---|---|---|---|---|---|
HRP/GO-Co3O4-Nafion/GCE | 18.7 ± 0.5 | 1000–30,000 | 2000 | — | [27] |
PEDOT/PB/PPyBA/HRP | 1.15 | 100–700 | 30 | - | [28] |
HRP/chitosan-NiFe2O4/GCE | 0.314 | 300–1200 | 14 | 1400 | [29] |
HRP/TBA−COOH−IL/MWCNT/GCE | 160.6 | 20–4300 | 6 | — | [30] |
[(ZIF-8@HRP/GO)/(GO-PEI)]4/ITO | — | 20–6000 | 3.4 | 9250 | [16] |
HRP/SiO2/BSA/Au | — | 8–3720 | 2.0 | 2300 | [31] |
HRP/GO/GCE | 120 | 2–500 | 1.6 | — | [32] |
BPT/AuNPs/graphene/HRP/Au | — | 5–2500 | 1.5 | — | [33] |
HRP/PDA-MNPs/(l-Arg/Tb)/GCE | — | 0.5–30 | 0.23 | — | [34] |
NH2-MIL-53(Fe)/HRP/MWNTs/GCE | — | 0.1–1, 1–600 | 0.028 | — | [2] |
HRP/MWNTs/CC | 185.2 | 50–600 | 5.8 | 330 | This work |
HRP/NH2-Hf-BTB-MOL/MWNTs/CC | 282.4 | 7.5–1500 | 0.87 | 220 | This work |
3. Materials and Methods
3.1. Chemicals and Materials
3.2. The Fabrication of HRP/NH2-Hf-BTB-MOL Modified Electrodes
3.3. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Wang, P.; Li, S.; Kan, J. A hydrogen peroxide biosensor based on polyaniline/FTO. Sens. Actuators B-Chem. 2009, 137, 662–668. [Google Scholar] [CrossRef]
- Jiang, T.; Sun, X.; Wei, L.; Li, M. Determination of hydrogen peroxide released from cancer cells by a Fe-Organic framework/horseradish peroxidase-modified electrode. Anal. Chim. Acta 2020, 1135, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.B.; Pang, G.C.; Liang, X.Y.; Wang, M.; Liu, J.; Zhu, W.M. Study on a hydrogen peroxide biosensor based on horseradish peroxidase/GNPs-thionine/chitosan. Electrochim. Acta 2012, 62, 327–334. [Google Scholar] [CrossRef]
- Nikolaev, K.G.; Ermakov, S.S.; Ermolenko, Y.E.; Navolotskaya, D.V.; Offenhaeusser, A.; Mourzina, Y.G. Horseradish Peroxidase-Based Biosensors with Different Nanotransducers for the Determination of Hydrogen Peroxide. J. Anal. Chem. 2021, 76, 510–517. [Google Scholar] [CrossRef]
- Thenmozhi, K.; Narayanan, S.S. Horseradish peroxidase and toluidine blue covalently immobilized leak-free sol-gel composite biosensor for hydrogen peroxide. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017, 70, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Shimada, H.; Noguchi, S.; Yamamoto, M.; Nishiyama, K.; Kitamura, Y.; Ihara, T. Electrochemical Sensing of Neurotoxic Agents Based on Their Electron Transfer Promotion Effect on an Au Electrode. Anal. Chem. 2017, 89, 5743–5748. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xie, Y.; Guo, X.; Sun, D. Self-supporting electrochemical sensors for monitoring of cell-released H2O2 based on metal nanoparticle/MOF nanozymes. Microchem. J. 2022, 181, 107715. [Google Scholar] [CrossRef]
- Huang, J.D.; Yang, Y.; Shi, H.B.; Song, Z.; Zhao, Z.X.; Anzai, J.; Osa, T.; Chen, Q. Multi-walled carbon nanotubes-based glucose biosensor prepared by a layer-by-layer technique. Mater. Sci. Eng. C-Biomim. Supramol. Syst. 2006, 26, 113–117. [Google Scholar] [CrossRef]
- Kim, T.-H.; Lee, D.; Choi, J.-W. Live cell biosensing platforms using graphene-based hybrid nanomaterials. Biosens. Bioelectron. 2017, 94, 485–499. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Hu, S. Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim. Acta 2017, 184, 1–44. [Google Scholar] [CrossRef]
- Torvinen, K.; Pettersson, F.; Lahtinen, P.; Arstila, K.; Kumar, V.; Österbacka, R.; Toivakka, M.; Saarinen, J.J. Nanoporous kaolin—Cellulose nanofibril composites for printed electronics. Flex. Print. Electron. 2017, 2, 024004. [Google Scholar] [CrossRef] [Green Version]
- Soldatkin, O.O.; Kucherenko, I.S.; Shelyakina, M.K.; Soy, E.; Kirdeciler, K.; Ozturk, S.; Jaffrezic-Renault, N.; Akata, B.; Dzyadevych, S.V.; Soldatkin, A.P. Application of Different Zeolites for Improvement of the Characteristics of a pH-FET Biosensor Based on Immobilized Urease. Electroanalysis 2013, 25, 468–474. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, Y.; Liu, S.; Wu, D.; Su, Z.; Chen, G.; Liu, J.; Li, G. Recent advances in enzyme immobilization based on novel porous framework materials and its applications in biosensing. Coord. Chem. Rev. 2022, 459, 214414. [Google Scholar] [CrossRef]
- Li, H.Y.; Zhao, S.N.; Zang, S.Q.; Li, J. Functional metal-organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 2020, 49, 6364–6401. [Google Scholar] [CrossRef] [PubMed]
- Koo, W.-T.; Jang, J.-S.; Kim, I.-D. Metal-Organic Frameworks for Chemiresistive Sensors. Chem 2019, 5, 1938–1963. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, J.; Nie, Y.; Ren, L.; Liu, B.; Liu, G. Metal-Organic Frameworks/Graphene Oxide Composite: A New Enzymatic Immobilization Carrier for Hydrogen Peroxide Biosensors. J. Electrochem. Soc. 2016, 163, B32–B37. [Google Scholar] [CrossRef]
- Liu, X.; Chen, W.; Lian, M.; Chen, X.; Lu, Y.; Yang, W. Enzyme immobilization on ZIF-67/MWCNT composite engenders high sensitivity electrochemical sensing. J. Electroanal. Chem. 2019, 833, 505–511. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, J.; Mao, J.; Guo, Q.; Chen, Z.; Lai, Y. Metal-organic frameworks and their derivatives with graphene composites: Preparation and applications in electrocatalysis and photocatalysis. J. Mater. Chem. A 2020, 8, 2934–2961. [Google Scholar] [CrossRef]
- Soni, I.; Kumar, P.; Kudur Jayaprakash, G. Recent advancements in the synthesis and electrocatalytic activity of two-dimensional metal–organic framework with bimetallic nodes for energy-related applications. Coord. Chem. Rev. 2022, 472, 214782. [Google Scholar] [CrossRef]
- Yang, S.; Ding, S.; Li, L.; Ding, S.; Cao, Q.; Yang, J.; Xu, W.; Chen, A. One-Step Preparation of Direct Electrochemistry HRP Biosensor via Electrodeposition. J. Electrochem. Soc. 2017, 164, B710–B714. [Google Scholar] [CrossRef]
- Chen, X.; Peng, X.; Kong, J.; Deng, J. Facilitated electron transfer from an electrode to horseradish peroxidase in a biomembrane-like surfactant film. J. Electroanal. Chem. 2000, 480, 26–33. [Google Scholar] [CrossRef]
- Liu, X.; Huang, Y.; Shang, L.; Wang, X.; Xiao, H.; Li, G. Electron transfer reactivity and the catalytic activity of horseradish peroxidase incorporated in dipalmitoylphosphatidic acid films. Bioelectrochemistry 2006, 68, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Komori, K.; Terse-Thakoor, T.; Mulchandani, A. Electrochemical properties of seamless three-dimensional carbon nanotubes-grown graphene modified with horseradish peroxidase. Bioelectrochemistry 2016, 111, 57–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voiry, D.; Chhowalla, M.; Gogotsi, Y.; Kotov, N.A.; Li, Y.; Penner, R.M.; Schaak, R.E.; Weiss, P.S. Best Practices for Reporting Electrocatalytic Performance of Nanomaterials. ACS Nano 2018, 12, 9635–9638. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Chen, W.; Weng, W.; Liu, L.; Li, G.; Wang, J.; Sun, W. Direct electron transfer of horseradish peroxidase at Co3O4-graphene nanocomposite modified electrode and electrocatalysis. J. Iran. Chem. Soc. 2017, 14, 925–932. [Google Scholar] [CrossRef]
- Kafi, A.K.M.; Naqshabandi, M.; Yusoff, M.M.; Crossley, M.J. Improved peroxide biosensor based on Horseradish Peroxidase/Carbon Nanotube on a thiol-modified gold electrode. Enzym. Microb. Technol. 2018, 113, 67–74. [Google Scholar] [CrossRef]
- Asif, S.A.B.; Khan, S.B.; Asiri, A.M. Electrochemical sensor for H2O2 using a glassy carbon electrode modified with a nanocomposite consisting of graphene oxide, cobalt(III) oxide, horseradish peroxidase and nafion. Microchim. Acta 2016, 183, 3043–3052. [Google Scholar] [CrossRef]
- Ernst, A.; Makowski, O.; Kowalewska, B.; Miecznikowski, K.; Kulesza, P.J. Hybrid bioelectrocatalyst for hydrogen peroxide reduction: Immobilization of enzyme within organic-inorganic film of structured Prussian Blue and PEDOT. Bioelectrochemistry 2007, 71, 23–28. [Google Scholar] [CrossRef]
- Yalciner, F.; Cevik, E.; Senel, M.; Baykal, A. Development of an Amperometric Hydrogen Peroxide Biosensor based on the Immobilization of Horseradish Peroxidase onto Nickel Ferrite Nanoparticle-Chitosan Composite. Nano-Micro Lett. 2011, 3, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.; Theyagarajan, K.; Thenmozhi, K.; Senthilkumar, S. Quaternary Ammonium Based Carboxyl Functionalized Ionic Liquid for Covalent Immobilization of Horseradish Peroxidase and Development of Electrochemical Hydrogen Peroxide Biosensor. Electroanalysis 2020, 32, 2422–2430. [Google Scholar] [CrossRef]
- Yuan, S.; Yuan, R.; Chai, Y.; Zhuo, Y.; Yang, X.; Yuan, Y. Enzyme biosensor based on the immobilization of HRP on SiO2/BSA/Au composite nanoparticles. Appl. Biochem. Biotechnol. 2010, 162, 2189–2196. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, K.; Zhang, Z.; Jia, H.; Chen, J.; Fu, C. Simple Approach to Fabricate a Highly Sensitive H2O2 Biosensor by One-Step of Graphene Oxide and Horseradish Peroxidase Co-immobilized Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2018, 13, 2921–2933. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Zhu, Y.; Li, G.; Zhang, S.; Song, J.; Mao, C.; Wu, J.; Jin, B.; Tian, Y. A novel hydrogen peroxide biosensor based on the BPT/AuNPs/graphene/HRP composite. Sci. China Chem. 2011, 54, 1645–1650. [Google Scholar] [CrossRef]
- Sardaremelli, S.; Hasanzadeh, M.; Seidi, F. Enzymatic recognition of hydrogen peroxide (H2O2) in human plasma samples using HRP immobilized on the surface of poly(arginine-toluidine blue)-Fe3O4 nanoparticles modified polydopamine; A novel biosensor. J. Mol. Recognit. 2021, 34, e2928. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Lu, W.; Zuo, X.; Zhu, Q.; Pan, C.; Niu, X.; Liu, J.; Chen, H.; Chen, X. A novel biosensor based on boronic acid functionalized metal-organic frameworks for the determination of hydrogen peroxide released from living cells. Biosens. Bioelectron. 2017, 95, 131–137. [Google Scholar] [CrossRef]
- Cao, L.; Lin, Z.; Peng, F.; Wang, W.; Huang, R.; Wang, C.; Yan, J.; Liang, J.; Zhang, Z.; Zhang, T.; et al. Self-Supporting Metal-Organic Layers as Single-Site Solid Catalysts. Angew. Chem.-Int. Ed. 2016, 55, 4962–4966. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Y.; Wang, C.; Wu, Y.; Luo, C.; Zhan, D.; Wang, S. Electrochemical Enzyme Sensor Based on the Two-Dimensional Metal–Organic Layers Supported Horseradish Peroxidase. Molecules 2022, 27, 8599. https://doi.org/10.3390/molecules27238599
Xiong Y, Wang C, Wu Y, Luo C, Zhan D, Wang S. Electrochemical Enzyme Sensor Based on the Two-Dimensional Metal–Organic Layers Supported Horseradish Peroxidase. Molecules. 2022; 27(23):8599. https://doi.org/10.3390/molecules27238599
Chicago/Turabian StyleXiong, Yu, Chao Wang, YuanFei Wu, Chunhua Luo, Dongping Zhan, and Shizhen Wang. 2022. "Electrochemical Enzyme Sensor Based on the Two-Dimensional Metal–Organic Layers Supported Horseradish Peroxidase" Molecules 27, no. 23: 8599. https://doi.org/10.3390/molecules27238599
APA StyleXiong, Y., Wang, C., Wu, Y., Luo, C., Zhan, D., & Wang, S. (2022). Electrochemical Enzyme Sensor Based on the Two-Dimensional Metal–Organic Layers Supported Horseradish Peroxidase. Molecules, 27(23), 8599. https://doi.org/10.3390/molecules27238599