Selective Grafting of Protease-Resistant Adhesive Peptides on Titanium Surfaces
Abstract
:1. Introduction
2. Results
2.1. Surface Peptide Density
2.2. Biological Assays
2.2.1. Identification of the Optimal Surface Peptide Density
2.2.2. Osteoblast Adhesion and Proliferation
2.2.3. Immunohistochemistry
2.2.4. Mineralization and Osteogenic Differentiation
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Peptide Synthesis
4.2.1. DHVPX
4.2.2. A-DHVPX
4.2.3. A-DHVPX-TAMRA
4.2.4. D2HVP
4.3. Glass Surface Covalent Grafting
4.4. Titanium Surface Covalent Grafting
4.5. Two-Photon Microscope
4.6. Biological Assays
4.6.1. Cell Culture
4.6.2. Cell Adhesion and Proliferation
4.6.3. Immunohistochemistry
4.6.4. Calcium Deposition
4.6.5. Gene Expression
4.6.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ortman, J.M.; Velkoff, V.A.; Hogan, H. An Aging Nation: The Older Population in the United States; Report Number P25-1140; United States Census Bureau: Washington, DC, USA, 2014; pp. 1–28.
- Srinivasan, M.; Meyer, S.; Mombelli, A.; Müller, F. Dental implants in the elderly population: A systematic review and meta-analysis. Clin. Oral Implant. Res. 2016, 28, 920–930. [Google Scholar] [CrossRef] [PubMed]
- Sailer, I.; Mühlemann, S.; Zwahlen, M.; Hämmerle, C.H.F.; Schneider, D. Cemented and screw-retained implant reconstructions: A systematic review of the survival and complication rates. Clin. Oral Implant. Res. 2012, 23, 163–201. [Google Scholar] [CrossRef]
- Wittneben, J.-G.; Millen, C.; Brägger, U. Clinical performance of screw-versus cement-retained fixed implant-supported reconstructions—A systematic review. Int. J. Oral Maxillofac. Implant. 2014, 29, 84–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goriainov, V.; Cook, R.; Latham, J.M.; Dunlop, D.G.; Oreffo, R.O. Bone and metal: An orthopaedic perspective on osseointegration of metals. Acta Biomater. 2014, 10, 4043–4057. [Google Scholar] [CrossRef]
- Mantripragada, V.P.; Lecka-Czernik, B.; Ebraheim, N.A.; Jayasuriya, A.C. An overview of recent advances in designing orthopedic and craniofacial implants. J. Biomed. Mater. Res. Part A 2012, 101, 3349–3364. [Google Scholar] [CrossRef] [Green Version]
- Lewallen, E.A.; Riester, S.M.; Bonin, C.A.; Kremers, H.M.; Dudakovic, A.; Kakar, S.; Cohen, R.C.; Westendorf, J.J.; Lewallen, D.G.; van Wijnen, A.J. Biological strategies for improved osseointegration and osteoinduction of porous metal orthopedic implants. Tissue Eng. Part B Rev. 2015, 21, 218–230. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Zhang, D.; Gu, J.; Zhang, H.; Wu, X.; Cao, C.; Zhang, X.; Liu, R. The impact of antifouling layers in fabricating bioactive surfaces. Acta Biomater. 2021, 126, 45–62. [Google Scholar] [CrossRef]
- Mavrogenis, A.F.; Dimitriou, R.; Parvizi, J.; Babis, G.C. Biology of implant osseointegration. J. Musculoskelet. Neuronal Interact. 2009, 9, 61–71. [Google Scholar]
- Smeets, R.; Stadlinger, B.; Schwarz, F.; Beck-Broichsitter, B.; Jung, O.; Precht, C.; Kloss, F.; Gröbe, A.; Heiland, M.; Ebker, T. Impact of dental implant surface modifications on osseointegration. BioMed Res. Int. 2016, 2016, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Brun, P.; Scorzeto, M.; Vassanelli, S.; Castagliuolo, I.; Palù, G.; Ghezzo, F.; Messina, G.M.L.; Iucci, G.; Battaglia, V.; Sivolella, S.; et al. Mechanisms underlying the attachment and spreading of human osteoblasts: From transient interactions to focal adhesions on vitronectin-grafted bioactive surfaces. Acta Biomater. 2013, 9, 6105–6115. [Google Scholar] [CrossRef]
- Sawyer, A.A.; Hennessy, K.M.; Bellis, S.L. The effect of adsorbed serum proteins, RGD and proteoglycan-binding peptides on the adhesion of mesenchymal stem cells to hydroxyapatite. Biomaterials 2007, 28, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Jurczak, P.; Witkowska, J.; Rodziewicz-Motowidło, S.; Lach, S. Proteins, peptides and peptidomimetics as active agents in implant surface functionalization. Adv. Colloid Interface Sci. 2020, 276, 102083. [Google Scholar] [CrossRef] [PubMed]
- Dettin, M.; Herath, T.; Gambaretto, R.; Iucci, G.; Battocchio, C.; Bagno, A.; Ghezzo, F.; Di Bello, C.; Polzonetti, G.; Di Silvio, L. Assessment of novel chemical strategies for covalent attachment of adhesive peptides to rough titanium surfaces: XPS analysis and biological evaluation. J. Biomed. Mater. Res. Part A 2009, 91A, 463–479. [Google Scholar] [CrossRef] [PubMed]
- Dettin, M.; Zamuner, A.; Iucci, G.; Messina, G.M.L.; Battocchio, C.; Picariello, G.; Gallina, G.; Marletta, G.; Castagliuolo, I.; Brun, P. Driving h-osteoblast adhesion and proliferation on titania: Peptide hydrogels decorated with growth factors and adhesive conjugates. J. Pept. Sci. 2014, 20, 585–594. [Google Scholar] [CrossRef]
- Zamuner, A.; Brun, P.; Scorzeto, M.; Sica, G.; Castagliuolo, I.; Dettin, M. Smart biomaterials: Surfaces functionalized with proteolytically stable osteoblast-adhesive peptides. Bioact. Mater. 2017, 2, 121–130. [Google Scholar] [CrossRef]
- Conde, J.; Dias, J.T.; Grazú, V.; Moros, M.; Baptista, P.V.; de la Fuente, J.M. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front. Chem. 2014, 2, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Sapsford, K.E.; Algar, W.R.; Berti, L.; Gemmill, K.B.; Casey, B.J.; Oh, E.; Stewart, M.H.; Medintz, I.L. Functionalizing nanoparticles with biological molecules: Developing chemistries that facilitate nanotechnology. Chem. Rev. 2013, 113, 1904–2074. [Google Scholar] [CrossRef]
- Yamada, K.M. Adhesive recognition sequences. J. Biol. Chem. 1991, 266, 12809–12812. [Google Scholar] [CrossRef]
- Hersel, U.; Dahmen, C.; Kessler, H. RGD modified polymers: Biomaterials for stimulated cell adhesion and beyond. Biomaterials 2003, 24, 4385–4415. [Google Scholar] [CrossRef]
- Ruoslahti, E. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 1996, 12, 697–715. [Google Scholar] [CrossRef]
- Barczyk, M.; Carracedo, S.; Gullberg, D. Integrins. Cell Tissue Res. 2010, 339, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhang, Z.-C.; Liu, Y.; Chen, Y.-R.; Deng, R.-H.; Zhang, Z.-N.; Yu, J.-K.; Yuan, F.-Z. Function and mechanism of RGD in bone and cartilage tissue engineering. Front. Bioeng. Biotechnol. 2021, 9, 773636. [Google Scholar] [CrossRef] [PubMed]
- Cacchioli, A.; Ravanetti, F.; Bagno, A.; Dettin, M.; Gabbi, C. Human vitronectin-derived peptide covalently grafted onto titanium surface improves osteogenic activity: A pilot in vivo study on rabbits. Tissue Eng. Part A 2009, 15, 2917–2926. [Google Scholar] [CrossRef] [PubMed]
- Zubrzak, P.; Williams, H.; Coast, G.M.; Isaac, R.E.; Reyes-Rangel, G.; Juaristi, E.; Zabrocki, J.; Nachman, R.J. β-amino acid analogs of an insect neuropeptide feature potent bioactivity and resistance to peptidase hydrolysis. Biopolymers 2007, 88, 76–82. [Google Scholar] [CrossRef]
- Fetse, J.; Zhao, Z.; Liu, H.; Mamani, U.-F.; Mustafa, B.; Adhikary, P.; Ibrahim, M.; Liu, Y.; Patel, P.; Nakhjiri, M.; et al. Discovery of cyclic peptide inhibitors targeting PD-L1 for cancer immunotherapy. J. Med. Chem. 2022, 65, 12002–12013. [Google Scholar] [CrossRef]
- Doti, N.; Mardirossian, M.; Sandomenico, A.; Ruvo, M.; Caporale, A. Recent applications of retro-inverso peptides. Int. J. Mol. Sci. 2021, 22, 8677. [Google Scholar] [CrossRef]
- Rai, J. Peptide and protein mimetics by retro and retroinverso analogs. Chem. Biol. Drug Des. 2019, 93, 724–736. [Google Scholar] [CrossRef]
- Ravanetti, F.; Gazza, F.; D’Arrigo, D.; Graiani, G.; Zamuner, A.; Zedda, M.; Manfredi, E.; Dettin, M.; Cacchioli, A. Enhancement of peri-implant bone osteogenic activity induced by a peptidomimetic functionalization of titanium. Ann. Anat. Anat. Anz. 2018, 218, 165–174. [Google Scholar] [CrossRef]
- Zamuner, A.; Brun, P.; Ciccimarra, R.; Ravanetti, F.; Veschini, L.; Elsayed, H.; Sivolella, S.; Iucci, G.; Porzionato, A.; Silvio, L.D.; et al. Biofunctionalization of bioactive ceramic scaffolds to increase the cell response for bone regeneration. Biomed. Mater. 2021, 16, 055007. [Google Scholar] [CrossRef]
- Zhao, X.; Guan, J.-L. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv. Drug Deliv. Rev. 2011, 63, 610–615. [Google Scholar] [CrossRef] [Green Version]
- Fisher, L.W.; McBride, O.W.; Termine, J.D.; Young, M.F. Human bone sialoprotein. Deduced protein sequence and chromosomal localization. J. Biol. Chem. 1990, 265, 2347–2351. [Google Scholar] [CrossRef]
- Griggs, J.A. Dental implants. Dent. Clin. N. Am. 2017, 61, 857–871. [Google Scholar] [CrossRef] [PubMed]
- Rupp, F.; Liang, L.; Geis-Gerstorfer, J.; Scheideler, L.; Hüttig, F. Surface characteristics of dental implants: A review. Dent. Mater. 2018, 34, 40–57. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.-C.; Zhou, X.-D.; Yu, H.-Y.; Wu, Y.; Bao, C.-Y.; Man, Y.; Cheng, L.; Sun, Y. Advances in titanium dental implant surface modification. West China J. Stomatol. 2019, 37, 124–129. [Google Scholar] [CrossRef]
- Dal Sasso, E.; Zamuner, A.; Filippi, A.; Romanato, F.; Palmosi, T.; Vedovelli, L.; Gregori, D.; Gómez Ribelles, J.L.; Russo, T.; Gloria, A.; et al. Covalent functionalization of decellularized tissues accelerates endothelialization. Bioact. Mater. 2021, 6, 3851–3864. [Google Scholar] [CrossRef]
- Battista, E.; Causa, F.; Lettera, V.; Panzetta, V.; Guarnieri, D.; Fusco, S.; Gentile, F.; Netti, P.A. Ligand engagement on material surfaces is discriminated by cell mechanosensoring. Biomaterials 2015, 45, 72–80. [Google Scholar] [CrossRef]
- Dettin, M.; Zamuner, A.; Roso, M.; Iucci, G.; Samouillan, V.; Danesin, R.; Modesti, M.; Conconi, M.T. Facile and selective covalent grafting of an RGD-peptide to electrospun scaffolds improves HUVEC adhesion: Facile and selective covalent grafting. J. Pept. Sci. 2015, 21, 786–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dettin, M.; Conconi, M.T.; Gambaretto, R.; Bagno, A.; Di Bello, C.; Menti, A.M.; Grandi, C.; Parnigotto, P.P. Effect of synthetic peptides on osteoblast adhesion. Biomaterials 2005, 26, 4507–4515. [Google Scholar] [CrossRef]
- Ede, N.J.; Eagle, S.N.; Wickham, G.; Bray, A.M.; Warne, B.; Shoemaker, K.; Rosenberg, S. Solid phase synthesis of peptide aldehyde protease inhibitors. Probing the proteolytic sites of hepatitis C virus polyprotein. J. Pept. Sci. 2000, 6, 11–18. [Google Scholar] [CrossRef]
- Lee, G. Luna Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology, 3rd ed.; Blakiston Division, McGraw-Hill: New York, NY, USA, 1968. [Google Scholar]
Peptide | Sequence |
---|---|
HVP | H-Phe-Arg-His-Arg-Asn-Arg-Lys-Gly-Tyr-OH |
DHVP | H-D-Tyr-Gly-D-Lys-D-Arg-D-Asn-D-Arg-D-His-D-Arg-D-Phe-OH |
DHVPX | H-D-Tyr-Gly-D-Lys-D-Arg-D-Asn-D-Arg-D-His-D-Arg-D-Phe-Gly-Ahp-Ahp-Ahp-Phe-CHO |
A-DHVPX | H-D-Tyr-Gly-D-Lys-D-Ala-D-Asn-D-Ala-D-His-D-Ala-D-Phe-Gly-Ahp-Ahp-Ahp-Phe-CHO |
A-DHVPX-TAMRA | TAMRA-D-Tyr-Gly-D-Lys-D-Ala-D-Asn-D-Ala-D-His-D-Ala-D-Phe-Gly-Ahp-Ahp-Ahp-Phe-CHO |
D2HVP | H-D-Tyr-Gly-D-Lys-D-Arg-D-Asn-D-Arg-D-His-D-Arg-D-Phe-D-Tyr-Gly-D-Lys-D-Arg-D-Asn-D-Arg-D-His-D-Arg-D-Phe-Phe-CHO |
[A-DHVPX-TAMRA] | Average Concentration/ Focal Volume [M] | Number of Moles/ Focal Volume | Superficial Peptide Density [mol/cm2] |
---|---|---|---|
1 nM | 3.79 × 10−7 ± 2.80 × 10−7 | 1.78 × 10−16 | 7.58 × 10−14 |
1 μM | 4.29 × 10−6 ± 1.28 × 10−6 | 2.01 × 10−15 | 8.59 × 10−13 |
1 mM | 1.40 × 10−5 ± 1.04 × 10−5 | 6.56 × 10−15 | 2.80 × 10−12 |
Gene | Sequence |
---|---|
GAPDH | fw 5′-agtgccagcctcgtcccgta-3′ rv 5′-caggcgcccaatacggccaa-3′ |
IBSP | fw 5′-ttggtttgcacatttaagta-3′ rv 5′-tggaacctgaggctctt-3′ |
SPP1 | fw 5′-cgcagacctgacatccagta-3′ rv 5′-ggctgtcccaatcagaagg-3′ |
VTN | fw 5′-ggaggacatcttcgagcttct-3′ rv 5′-gctaatgaactggggctgtc-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamuner, A.; Pasquato, A.; Castagliuolo, I.; Dettin, M.; Brun, P. Selective Grafting of Protease-Resistant Adhesive Peptides on Titanium Surfaces. Molecules 2022, 27, 8727. https://doi.org/10.3390/molecules27248727
Zamuner A, Pasquato A, Castagliuolo I, Dettin M, Brun P. Selective Grafting of Protease-Resistant Adhesive Peptides on Titanium Surfaces. Molecules. 2022; 27(24):8727. https://doi.org/10.3390/molecules27248727
Chicago/Turabian StyleZamuner, Annj, Antonella Pasquato, Ignazio Castagliuolo, Monica Dettin, and Paola Brun. 2022. "Selective Grafting of Protease-Resistant Adhesive Peptides on Titanium Surfaces" Molecules 27, no. 24: 8727. https://doi.org/10.3390/molecules27248727
APA StyleZamuner, A., Pasquato, A., Castagliuolo, I., Dettin, M., & Brun, P. (2022). Selective Grafting of Protease-Resistant Adhesive Peptides on Titanium Surfaces. Molecules, 27(24), 8727. https://doi.org/10.3390/molecules27248727