Region Met225 to Ile412 of Bacillus cereus Hemolysin II Is Capable to Agglutinate Red Blood Cells
Abstract
:1. Introduction
2. Results
2.1. Isolation and Purification of Denatured and Native HlyIILCTD
2.2. Production of Monoclonal Antibodies against HlyIILCTD
2.3. Agglutination of Erythrocytes and Inhibition of Agglutination by Antibodies against HlyIILCTD
3. Discussion
4. Materials and Methods
4.1. Cloning of HlyIILCTD
4.2. Expression and Purification of HlyIILCTD under Native Conditions
4.3. Production and Isolation of MAbs
4.4. Agglutination of Erythrocytes and Inhibition of Agglutination by Antibodies
4.5. Bioinformatic Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Dietrich, R.; Jessberger, N.; Ehling-Schulz, M.; Märtlbauer, E.; Granum, P.E. The Food Poisoning Toxins of Bacillus cereus. Toxins 2021, 2, 98. [Google Scholar] [CrossRef] [PubMed]
- Enosi Tuipulotu, D.; Mathur, A.; Ngo, C.; Man, S.M. Bacillus cereus: Epidemiology, Virulence Factors, and Host-Pathogen Interactions. Trends Microbiol. 2020, 29, 458–471. [Google Scholar] [CrossRef] [PubMed]
- Cormontagne, D.; Rigourd, V.; Vidic, J.; Rizzotto, F.; Bille, E.; Ramarao, N. Bacillus cereus Induces Severe Infections in Preterm Neonates: Implication at the Hospital and Human Milk Bank Level. Toxins 2021, 2, 123. [Google Scholar] [CrossRef] [PubMed]
- Ramarao, N.; Sanchis, V. The pore-forming haemolysins of Bacillus cereus: A review. Toxins 2013, 6, 1119–1139. [Google Scholar] [CrossRef]
- Cadot, C.; Tran, S.L.; Vignaud, M.L.; de Buyser, M.L.; Kolstø, A.B.; Brisabois, A.; Nguyen-Thé, C.; Lereclus, D.; Guinebretière, M.H.; Ramarao, N. InhA1, NprA and HlyII as candidates to differentiate pathogenic from non-pathogenic Bacillus cereus strains. J. Clin. Microbiol. 2010, 48, 1358–1365. [Google Scholar] [CrossRef]
- Mondal, A.K.; Chattopadhyay, K. Taking Toll on Membranes: Curious Cases of Bacterial β-Barrel Pore-Forming Toxins. Biochemistry 2020, 2, 163–170. [Google Scholar] [CrossRef]
- Baida, G.; Budarina, Z.I.; Kuzmin, N.P.; Solonin, A.S. Complete nucleotide sequence and molecular characterization of hemolysin II gene from Bacillus cereus. FEMS Microbiol. Lett. 1999, 1, 7–14. [Google Scholar] [CrossRef]
- Rudenko, N.V.; Karatovskaya, A.P.; Zamyatina, A.V.; Siunov, A.V.; Andreeva-Kovalevskaya, Z.I.; Nagel, A.S.; Brovko, F.A.; Solonin, A.S. C-terminal domain of Bacillus cereus hemolysin II is able to interact with erythrocytes. Russ. J. Bioorg. Chem. 2020, 46, 321–326. [Google Scholar] [CrossRef]
- Rudenko, N.; Siunov, A.; Zamyatina, A.; Melnik, B.; Nagel, A.; Karatovskaya, A.; Borisova, M.; Shepelyakovskaya, A.; Andreeva-Kovalevskaya, Z.; Kolesnikov, A.; et al. The C-terminal domain of Bacillus cereus hemolysin II oligomerizes by itself in the presence of cell membranes to form ion channels. Int. J. Biol. Macromol. 2022, 200, 416–427. [Google Scholar] [CrossRef]
- Shcherbakov, D.V.; Garber, M.B. Perekryvaiushchiesia geny v genomakh bakteriĭ i bakterifagov [Overlapping genes in bacterial and bacteriophage genomes]. Mol. Biol. 2000, 4, 572–583. [Google Scholar]
- Meydan, S.; Vázquez-Laslop, N.; Mankin, A.S. Genes within Genes in Bacterial Genomes. Microbiol. Spectr. 2018, 4, 133–154. [Google Scholar] [CrossRef]
- Stadtman, E.R.; Van Remmen, H.; Richardson, A.; Wehr, N.B.; Levine, R.L. Methionine oxidation and aging. Biochim. Biophys. Acta 2005, 2, 135–140. [Google Scholar] [CrossRef]
- Duport, C.; Madeira, J.P.; Farjad, M.; Alpha-Bazin, B.; Armengaud, J. Methionine Sulfoxide Reductases Contribute to Anaerobic Fermentative Metabolism in Bacillus cereus. Antioxidants 2021, 5, 819. [Google Scholar] [CrossRef]
- Moumen, B.; Nguen-The, C.; Sorokin, A. Sequence Analysis of Inducible Prophage phIS3501 Integrated into the Haemolysin II Gene of Bacillus thuringiensis var israelensis ATCC35646. Genet. Res. Int. 2012, 2012, 543286. [Google Scholar] [CrossRef]
- Ivanova, N.; Sorokin, A.; Anderson, I.; Galleron, N.; Candelon, B.; Kapatral, V.; Bhattacharyya, A.; Reznik, G.; Mikhailova, N.; Lapidus, A.; et al. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 2003, 6935, 87–91. [Google Scholar] [CrossRef]
- Köhler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975, 5517, 495–497. [Google Scholar] [CrossRef]
- Xu, D.; Prestegard, J.H.; Linhardt, R.J.; Esko, J.D. Essentials of Glycobiology, 4th ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2022; ISBN 978-1-62182-421-3. [Google Scholar]
- Cardin, A.D.; Weintraub, H.J. Molecular Modeling of Protein-Glycosaminoglycan Interactions. Arteriosclerosis 1989, 9, 21–32. [Google Scholar] [CrossRef]
- Muñoz, E.M.; Linhardt, R.J. Heparin-Binding Domains in Vascular Biology. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1549–1557. [Google Scholar] [CrossRef]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space with High-Accuracy Models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef]
- Shapyrina, E.V.; Shadrin, A.M.; Solonin, A.S. Purification of recombinant Bacillus cereus ResD-ResE proteins expressed in Escherichia coli strains. Prikl. Biokhim. Mikrobiol. 2013, 6, 547–553. [Google Scholar] [CrossRef]
- Taylor, N.M.; Prokhorov, N.S.; Guerrero-Ferreira, R.C.; Shneider, M.M.; Browning, C.; Goldie, K.N.; Stahlberg, H.; Leiman, P.G. Structure of the T4 baseplate and its function in triggering sheath contraction. Nature 2016, 7603, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Kapust, R.B.; Tözsér, J.; Fox, J.D.; Anderson, D.E.; Cherry, S.; Copeland, T.D.; Waugh, D.S. Tobacco etch virus protease: Mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng. 2001, 14, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Karatovskaya, A.P.; Rudenko, N.V.; Tsfasman, I.M.; Guseva, K.A.; Laman, A.G.; Boziev, K.; Brovko, F.A.; Vasilyeva, N.V. A method for the quantitation of homologous endopeptidases AlpA and AlpB from Lysobacter sp. XL1. Process Biochem. 2016, 51, 1521–1526. [Google Scholar] [CrossRef]
- Mole, S.E.; Lane, D.P. Production of monoclonal antibodies against fusion proteins produced in Escherichia coli. In DNA Cloning: A Practical Approach; Glover, D.M., Ed.; IRL Press: Oxford, UK, 1987; Volume 3, pp. 197–198. [Google Scholar]
- Wattam, A.R.; Davis, J.J.; Assaf, R.; Boisvert, S.; Brettin, T.; Bun, C.; Conrad, N.; Dietrich, E.M.; Disz, T.; Gabbard, J.L.; et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res. 2017, 45, D535–D542. [Google Scholar] [CrossRef] [PubMed]
Species: | Bacillus anthracis | Bacillus thuringiensis | Bacillus cereus |
---|---|---|---|
number of analyzed strains | 51 | 82 | 132 |
hlyII gene is completely missing | 0 | 34 | 80 |
hlyII gene is interrupted | 51 | 8 | 1 |
hlyII gene is not broken | 0 | 40 | 51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagel, A.S.; Rudenko, N.V.; Luchkina, P.N.; Karatovskaya, A.P.; Zamyatina, A.V.; Andreeva-Kovalevskaya, Z.I.; Siunov, A.V.; Brovko, F.A.; Solonin, A.S. Region Met225 to Ile412 of Bacillus cereus Hemolysin II Is Capable to Agglutinate Red Blood Cells. Molecules 2023, 28, 3581. https://doi.org/10.3390/molecules28083581
Nagel AS, Rudenko NV, Luchkina PN, Karatovskaya AP, Zamyatina AV, Andreeva-Kovalevskaya ZI, Siunov AV, Brovko FA, Solonin AS. Region Met225 to Ile412 of Bacillus cereus Hemolysin II Is Capable to Agglutinate Red Blood Cells. Molecules. 2023; 28(8):3581. https://doi.org/10.3390/molecules28083581
Chicago/Turabian StyleNagel, Alexey S., Natalia V. Rudenko, Polina N. Luchkina, Anna P. Karatovskaya, Anna V. Zamyatina, Zhanna I. Andreeva-Kovalevskaya, Alexander V. Siunov, Fedor A. Brovko, and Alexander S. Solonin. 2023. "Region Met225 to Ile412 of Bacillus cereus Hemolysin II Is Capable to Agglutinate Red Blood Cells" Molecules 28, no. 8: 3581. https://doi.org/10.3390/molecules28083581
APA StyleNagel, A. S., Rudenko, N. V., Luchkina, P. N., Karatovskaya, A. P., Zamyatina, A. V., Andreeva-Kovalevskaya, Z. I., Siunov, A. V., Brovko, F. A., & Solonin, A. S. (2023). Region Met225 to Ile412 of Bacillus cereus Hemolysin II Is Capable to Agglutinate Red Blood Cells. Molecules, 28(8), 3581. https://doi.org/10.3390/molecules28083581